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Hospital, Olomouc, Czechia, 3Department of Cytokinetics, Institute of Biophysics of the Czech
Academy of Sciences, Brno, Czechia
Background: Prostate cancer is the second leading cause of male cancer-related

deaths in Western countries, which is predominantly attributed to the metastatic

castration-resistant stage of the disease (CRPC). There is an urgent need for

better prognostic and predictive biomarkers, particularly for androgen receptor

targeted agents and taxanes.

Methods:We have searched the PubMed database for original articles and meta-

analyses providing information on blood-based markers for castration-resistant

prostate cancer monitoring, risk group stratification and prediction of

therapy response.

Results: The molecular markers are discussed along with the standard clinical

parameters, such as prostate specific antigen, lactate dehydrogenase or C-

reactive protein. Androgen receptor (AR) alterations are commonly associated

with progression to CRPC. These include amplification of AR and its enhancer,

point mutations and splice variants. Among DNA methylations, a novel 5-

hydroxymethylcytosine activation marker of TOP2A and EZH2 has been

identified for the aggressive disease. miR-375 is currently the most promising

candidate among non-coding RNAs and sphingolipid analysis has recently

emerged as a novel approach.

Conclusions: The promising biomarkers have the potential to improve the care

of metastatic prostate cancer patients, however, they need further validation for

routine implementation.
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1 Introduction

Prostate cancer (PC) is the most common malignancy and the

second leading cause of male cancer related deaths in developed

countries (1). PC begins to grow as an asymptomatic localized

cancer. However, PC is often diagnosed in the higher stage when it

continues to grow through the prostate envelope and becomes

advanced cancer, making treatment more challenging. While

prostatectomy is an option for localized or locally advanced PC,

androgen-deprivation therapy (ADT) is commonly employed for

metastatic disease (Figure 1).

PC cells are often androgen-dependent and need androgen

stimuli for proliferation. Therefore, ADT aims to reduce

androgen concentration and inhibit PC cell growth. Over time,

castration-resistant PC (CRPC) can emerge, showing resistance to

ADT. Some androgens can still be produced by the adrenal glands,

fuelling PC growth, and AR-pathway inhibitors (ARPI) are used to

neutralize this androgen effect by acting as androgen antagonists

(e.g., enzalutamide) or further inhibit androgen production (e.g.,

abiraterone). ARPI are also known as AR-targeting agents

(ARTA) (2).

The therapeutic armamentarium for treating metastatic CRPC

(mCRPC) in clinical practice has evolved in recent decades.

Nowadays, there are several classes of therapeutic options to

manage the disease progression. Besides chemotherapeutic agents

such as docetaxel and cabazitaxel, ARPI, innovative radioligand

therapy represented by Lu-PSMA, and PARP inhibitors have

extended the therapeutic scheme. Nevertheless, the specific

biomarkers to choose the best therapeutic approach are still

challenging to find because of the heterogeneity of CRPC (3, 4).

Therefore, the liquid biopsy (LB) can offer a tremendous predictive
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tool for future personalized approaches, providing varied material

for molecular examinations (Figure 2). Recent reviews were

primarily dedicated to circulating tumor cells (5–8), and we have

also focused on their potential in modeling metastatic PC (9). It’s

worth noting that urine testing also holds great potential for

examining PC patients; for more detailed information about LB

based on urine examination, see the dedicated review (10). This

article aims to present circulating cell-free markers with potential

value in progression monitoring of CRPC from blood samples,

including whole blood, plasma, or serum. Importantly, novel

markers should be evaluated in the context of the established

clinical protocols and currently available tools.
2 Prognostic biomarkers for risk group
stratification from a perspective of
clinical practice

The current decision-making by the physicians is typically

based on metastasis sites (nodes, bones, visceral), the progression

pace, and the previous road of the treatment (3). Biomarkers

extensively studied as a prognostic factor in patients with mCRPC

are inflammatory response cells. The most valuable benefit of these

markers is their easy accessibility in every clinical laboratory, cost-

effectiveness, the possibility to evaluate them retrospectively, and

their known prognostic correlation with many malignancies.

Altered infiltration of the tumor microenvironment with various

subgroups of lymphocytes is often associated with a prognosis and

inflammation-promoted progression of the malignancy. The most

used inflammation-related indicators are the neutrophil-to-
FIGURE 1

Scheme of liquid biopsy sampling in relation to different treatment schemes in hormone-sensitive prostate cancer (HSPC) and castration-resistant
prostate cancer patients (CRPC). HSPC patients are first treated with androgen-deprivation therapy (ADT) and androgen-receptor targeted agents
(ARTA) or androgen-receptor pathway inhibitors (ARPI) are used after castration resistance occurrence leading to ARTA resistance and metastatic
CRPC (mCRPC). Now, based on novel treatment protocol metastatic HSPC patients treated with ADT and ARTA combination leading to double-
resistance and mCRPC. Liquid biopsy sampling can be performed at different time points throughout the course of treatment for monitoring of
progression and metastatic activity of the cancer. Created with BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fonc.2024.1394292
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and C-

reactive protein (CRP).

In several meta-analyses, it was shown that higher NLR (cut-off

value >3) correlates with poor overall survival (OS) in patients with

advanced and metastatic PC treated with abiraterone or

enzalutamide (11, 12). Recent reviews dedicated to cells of

inflammation and their prognostic role in PC can be found

elsewhere (13). Just for demonstration, Lolli et al. published a

retrospective study with 230 patients diagnosed with mCRPC

treated with abiraterone. The patients with NLR higher than three

prior abiraterone had 14.7 months median OS, and those with NLR

lower than 3 had 20.4 months median OS (14). Similar conclusions

were also reported in a study by Koo and coworkers. They

performed a retrospective analysis of 303 mCRPC patients treated

with docetaxel before/after ARPI therapy. The NLR cut-off value of

2.5 was used for the stratification. The patients with NLR lower than

2.5 had better cancer-specific survival (CSS). Hence, this group

(NLR<2.5) profited from the treatment sequence docetaxel-to-

ARPI with better progression-free survival (PFS) and CSS than

the group with the opposite treatment sequence (15).

PLR is another inflammation-related biomarker often reported

with NLR as a systemic immune-inflammation index (SII). This

index overall reflects the immune status connected with prognosis

as the increased platelets can play an active role in the development

of distant bone metastasis (16), while tumor-related neutrophils

promote tumor growth and progression (17). On the other hand,

lymphocytes have an anti-tumor role connected with apoptosis and

proliferation suppression (17). Thus, the SII reflects the infiltration

of the tumor microenvironment with immune cells that will

determine further progression. The most used cut-off value for

stratification is 535; patients with higher values have worse median

OS and a more significant hazard ratio (18). The inflammatory

response cells, therefore, can efficiently serve as effective biomarkers

for prognosis prediction for patients with mCRPC.

CRP and procalcitonin (PCT), another non-specific

inflammation-related indicator, have been associated with any

inflammation within the body. They are usually increased in case
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of systemic infection or tissue damage but have also been described

as reflecting the prognosis of cancer. In PC patients, the role of CRP

has so far been inconclusive. Elevated preoperative CRP

(CRP≥5mg/L) correlated with a postoperative pathological

diagnosis of PC with aggressive patterns (19). Similarly, CRP

levels before prostate biopsy were associated with increased

Gleason score (20). Regarding prognosis, the higher levels of CRP

were assigned as an independent predictor of poor OS in mCRPC

(21). On the contrary, other studies claimed the absence of any

correlation between CRP and PC (22, 23). PCT was helpful in terms

of PC diagnostic accuracy since PCT was demonstrated to correlate

with PC development (24, 25).

As an immune-related biomarker, CRP is often used in

multivariable analysis to boost the significance of mCRPC

stratification. The Glasgow Prognostic Score (GPS), used to

determine cancer outcomes in general, is worth mentioning. The

value of CRP and albumin from this prognostic score can even be

explicitly refined for mCRPC diagnosis as was done in the work of

Ando et al. in 2021. They set the cut-off value of CRP to 3 mg/L and

albumin to 35 g/L to get to the high-sensitivity modified Glasgow

prognostic score (26). These values were used for stratification of

mCRPC patients treated with docetaxel; the clinical significance of

this score can be seen in Table 1. A better result was reached when

this score was combined with starting prostate-specific antigen

(PSA) and testosterone levels (Table 1).

PSA is often used as a monitoring tool for the progression of the

mCRPC disease. According to the Response Evaluation Criteria in

Solid Tumors (RECIST) version 1.1, the progression of PC is

defined as three consecutive elevated values of PSA resulting in

two 50% rises over the nadir or the appearance of ≥2 bone lesions

on bone scan or soft tissue lesions enlargement on computed

tomography (CT). Nevertheless, the level of PSA and PSA kinetic

are treatment-sensitive parameters. For example, non-rising PSA

with metastatic radiographic progression is often observed in

mCRPC patients treated with enzalutamide (27). In combination

with the heterogeneity of the disease, the non-rising PSA can lead to

delayed detection of the progressing disease. Similarly, initial PSA
FIGURE 2

Different types of biomarkers are present in circulation. The cell-free DNAs, various types of RNAs, as well as nucleic acid captured in exosomes, are
released from cancer cells in different pathological or normal biological processes (apoptosis, necrosis, tissue damage, …). There is a need for
standardization of both the acquisition of samples and validation of methods used for the analysis to ensure the reproducibility of analysis and the
accuracy of the results (measured in one workspace or across laboratories). Created with BioRender.com.
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TABLE 1 Prognostic stratification of metastatic castration-resistant prostate cancer (mCRPC) patients based on clinical biomarkers and various cancer
and health-related factors.

cohort
and treatment

stratification
predictors
(score: 0 or 1)

risk groups
(the sum score
of predictors)

median OS reference

211 mCRPC patients
ARPI/docetaxel

Time of ADT
0: ADT≥12 M
1: ADT<12 M
ALP
0: ALP ≤ 350 U/dL
1: ALP>350 U/dL
Hemoglobin
0: Hb>110 mg/L
1: Hb ≤ 110 mg/L

Low risk (0)
Intermed. risk (1)
Poor risk (≥2)

NR*(>60 months)
27 months
12 months

Uchimoto et al.,
2021 (160)

131 CRPC patients
docetaxel

High-sensitivity modified Glasgow
prognostic score
0: CRP<3 mg/L + albumin≥35 g/L
1: CRP≥3 mg/L + albumin≥35 g/L
2: CRP≥3 mg/L + albumin<35 g/L

Low risk (0)
Intermed. risk (1)
Poor risk (≥2)

51.8 months
18.1 months
8.5 months

Ando et al., 2021 (26)

131 CRPC patients
docetaxel

HS-m Glas. prognostic score
0: CRP<3 mg/L + albumin≥35 g/L
1: CRP≥3 mg/L + albumin≥35 g/L
2: CRP≥3 mg/L + albumin<35 g/L
PSA level
0: PSA<28.9 mg/mL
1: PSA≥28.9 mg/mL
Testosterone
0: TST<130 ng/L
1: TST≥130 ng/L

Low risk (0-1)
Intermed. risk (2-3)
Poor risk (4)

58.3 months
21.2 months
5.4 months

Ando et al., 2021 (26)

196 mCRPC
patients
ARPI/docetaxel/
cabazitaxel

dNLR
0: dNLR<1.51
1: dNLR≥1.51
Lactate dehydrogenase
0: LDH≤ULN
1: LDH>ULN

Low risk (0)
Intermed. risk (1)
Poor risk (2)

46.2 months
28.9 months
16.6 months

Yamada et al.,
2020 (161)

45 mCRPC
patients
cabazitaxel

PSA level
0: PSA ≤ 100 ng/mL
1: PSA>100 ng/mL
Abs. monocyte count
0: AMC<400 per µL
1: AMC≥400 per µL
Visceral metastases
0: NO
1: YES

Low risk (0)
Intermed. risk (1-2)
Poor risk (3)

23.3 months
16.1 months
2.5 months

Kosaka et al., 2018 (162)

519 mCRPC
patients
223RaCl2

dNLR
0: dNLR<3.1
3: dNLR≥3.1
ECOG-PS
0: 0-1
1: 2-3
N bone metastases
0: <6
1: 6-20
3: >20
ALP
0: <220 U/L
2: ≥220 U/L
PSA
0: <44 ng/mL
2: ≥44 ng/mL

Low risk (0-2)
Intermed. risk (3-4)
Poor risk (5-10)

31 months
26.6 months
9.6 months

Bauckneht et al.,
2022 (163)

39 mCRPC patients
II. line enzulatamide

CgA <120
CgA 120-360
CgA ≥360

Low risk
Intermed. risk
Poor risk

>12.2 months
9.4 months
3.4 months

Conteduca et
al., 2014 (43)
F
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ADT (androgen deprivation therapy), ALP (alkaline phosphatase), AMC (absolute monocyte count), ARPI (AR-pathway inhibitors), CgA - chromogranin A, CRP (C-reactive protein), dNLR
(derived neutrophil-to-lymphocyte ratio), ECOG-PS (Eastern Cooperative Oncology Group Performance Status), Hb (hemoglobin), LDH (lactate dehydrogenase), NR* (not reached), TST
(testosterone), ULN (upper limit of normal), OS (overall survival).
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and mainly PSA response (PSAr; ≥50% decrease) as stratification

factors must be used cautiously and only in cohorts with the same

type of treatment. Still, the PSA kinetic (PSA NADIR, time to

NADIR) during the initial ADT (during metastatic hormone-

sensitive PC) can be helpful prognostic factors for patients with

further PC progression to mCRPC. For example, in a study by

Hamano and coworkers, the patients with PSA nadir lower than

0.64 ng/mL in less than seven months after the start of ADT had

better OS after mCRPC diagnosis (28).

Several other biomarkers can also be found as factors in

multivariable analysis, improving the prognostic model

performance. Besides the previously mentioned biomarkers, such

as PSA, PSA kinetic, and inflammatory response cells, the other

biomarkers can be divided into several categories. Those are

biomarkers and factors specifically related to PC, such as the level

of testosterone, duration of ADT before mCRPC diagnosis, and

localization of metastasis sides (nodes, bones, visceral). General

cancer-related biomarkers are represented by alkaline phosphatase

(ALP) – an indicator of bone metastatic tumor load (29), lactate

dehydrogenase (LDH) – an increased biomarker of highly

proliferating cancer cells connected with enhanced glycolysis (30),

and presence of CTCs (31, 32). In the last category, other health-

related features, such as hemoglobin level, albumin level, or

performance status, can be found. All these factors have been

repeatedly used to boost the stratification significance for patients

diagnosed with mCRPC (33–35). Several combinations and their

prognostic model performance are shown in Table 1. Nevertheless,

despite the depth of the current understanding of multivariable

prognostic indicators, none have been accepted as a tool in

clinical practice.

Beyond the general biomarkers listed above, a particular category

related to neuroendocrine phenotype related to poor prognosis must

be highlighted. Typically, the histologic feature of de novo-diagnosed

patients is prostate adenocarcinoma. However, in some cases,

neuroendocrine differentiation of the primary adenocarcinoma

histology can be detected during treatment (36). So far, two

mechanisms have been suggested for the emergence of this very

aggressive form of PC. The first is based on the fact that

neuroendocrine cells can be sparsely distributed in the original

adenocarcinoma cells. Since the malignant neuroendocrine cells are

not sensitive to androgen inhibition, they can start to grow during

hormonal therapy and cause resistance to treatment (clonal

expansion) (37). The second mechanism, transdifferentiation of

adenocarcinoma cells to neuroendocrine prostate cancer, is often

observed after androgen deprivation and other stress stimuli (38, 39).

Still, this highly complex process can also be related to some genomic

alterations (PTEN, TP53, RB1, epigenetic events) (40, 41). Notably,

the proliferation of neuroendocrine cells will be reflected in an

increased expression of typical neuroendocrine biomarkers such as

chromogranin A (CgA), enolase 2 or immunohistochemistry markers

(42). Therefore, these biomarkers can be used as indicators of poor

survival outcomes. Conteduca et al. (43) analyzed serum CgA levels

and their dynamics during the course of therapy with enzalutamide.

This retrospective study showed that mCRPC patients with CgA level

above 360 ng/mL before enzalutamide treatment in the second line

had much worse OS (3.4 months) than the patients with the initial
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CgA A level below 120 ng/mL (OS not reached for 12 months).

Therefore, increased neuroendocrine biomarkers can, independently

from PSA, predict a poor survival outcome. Suspicion of the

development of an aggressive variant of prostate cancer with low

PSA level can be also reflected in carcinoembryonic antigen (CEA)

(44) or other clinical manifestations, including lytic bone metastases,

bulky lymphadenopathy, exclusive visceral metastases along with

short intervals of ADT response (45).
3 Circulating cell-free DNA and
AR signaling

The circulating cell-free DNA (ccfDNA) molecules are

predominantly random fragments with a length of about 180 base

pairs formed during cell disintegration (46). Cancer cells contribute

significantly to ccfDNA levels in the blood, leading to a higher

abundance of cancer-derived ccfDNA. Healthy individuals typically

have about 1-10 ng of ccfDNAs in one mL of blood (47, 48) and

those levels are consistently elevated in cancer patients (49–51).

Despite not being intact, ccfDNA molecules are still valuable for

predictive and diagnostic purposes. Specific assays can examine

different gene changes, such as point mutations, deletions, or

amplifications (46). Furthermore, the amount of tumor-originated

ccfDNA in plasma has been suggested as an independent prognostic

biomarker for CRPC, in particular in combination with PSA

evaluation (52–54). For more in-depth information on ccfDNA,

dedicated reviews are available (48, 55–60).

Androgen receptor (AR) primarily drives PC proliferation and

disease progression, and its signaling pathway is targeted by both

ADT and ARPI. PC can develop various types of resistance, some of

which are based on genetic or proteomic modifications of the AR

(61, 62). The AR gene can be amplified (copy-number variation,

CNV) or altered by point mutations primarily occurring in the

ligand binding site (63–65). Approximately 60% of mCRPC

samples exhibit aberrations in the AR gene (66), with nearly 50%

of mCRPC cases showing AR gene amplification (67, 68). The

plasma samples of CRPC and hormonal-sensitive patients were

examined for AR CNV. However, CNV of AR was found exclusively

in CRPC patients (69). AR gene amplification was associated with

worse OS and/or PFS in both ADT and ARPI-treated patients (70–

73). Later, CNV in different regions of the AR gene was found in

38% of mCRPC samples by Du et al. in 2020. They also suggested

the assessment of CNV in the AR enhancer region and CNV in

exon 8 of the AR gene as an excellent prognostic marker. The AR

enhancer is a region 650 kb upstream of AR that contributes to the

progression of mCRPC (69, 74, 75). The AR and its enhancer were

also analyzed by targeted sequencing, which found alterations in

45% of metastatic patients (76). Importantly, this assay revealed

amplification of AR/enhancer in 78% of patients with resistance to

AR-directed therapy.

The AR gene point mutations are present in 15-20% of CRPC

cases (68, 77). The missense AR mutations, including H875Y,

T878A, and F876L, were detected in 18% of 62 CRPC patients

treated with abiraterone (n=29), enzalutamide (n=19) or other
frontiersin.org
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agents (n=14) (73). The mutations H875Y and L702H were

described in 11% of post-docetaxel, but in no chemotherapy-

naïve, abiraterone-treated CRPC patients (71). Moreover, the

presence of AR gene mutations H875Y and L702H was associated

with worse OS in patients treated with abiraterone, or enzalutamide

(71). The abiraterone-treated CRPC patients with AR aberration

(mutations L702H or T878A or CNV of AR) had a higher risk of

progression or primary resistance to abiraterone (70), and a

significantly shorter PFS when AR aberrations (CNV of AR or

mutations H875Y, L702H, and T878A) were analyzed (78).

Interestingly, the presence of AR gene aberrations was not in

correlation with the PFS of enzalutamide-treated CRPC patients

in the same study (78). Importantly, whole genome sequencing of

clinical samples showed a dramatically increased rate of AR binding

sites which contributes to the upregulation of target genes and

cancer progression (79). The AR alterations in relationship to PC

progression and therapy are summarised in Table 2.
4 Methylation markers in CRPC

Apart from DNA alterations of the AR gene, the DNA

methylation landscape of PC has gained interest as a potential

marker for PC progression. Notably, ccfDNA extracted from CRPC

patients’ plasma contains approximately 64% of tumor-specific

DNA methylation patterns, making it suitable for investigating

epigenetic changes in PC (80). In cases of PC progression, there is
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a notable increase in the levels of methylation in genes GSTP1,

RASSF1A, APC, and RARB compared to patients without

progression (81). The loss of GSTP1, RASSF1A, APC, and RARB

expression due to methylation is observed even in the early stages of

tumorigenesis as they serve as tumor suppressors involved in DNA

repair, cell adhesion, cell cycle control, and signal transduction (82–

84). Hypermethylation of GSTP1 and APC genes has also been

elevated in the plasma of CRPC patients and was correlated with

shorter OS (85). Additionally, the methylation of at least one gene

among GSTP1, RASSF1a, APC, PTGS2, or MDR1 within plasma

ccfDNA was associated with poor mCRPC patient outcomes (86).

Besides the genes mentioned above, the hypermethylation of MDR1

may contribute to PC proliferation and drug resistance, while

PTGS2 silencing was associated with an elevated chance of PC

recurrence (87, 88).

Two other studies have identified methylation markers of poor

OS. Methylation occurring in the promoter region of the cadherin

13 (CDH13) gene correlated with worse survival and elevated risk of

death in serum samples from primary PC patients compared to age-

matched controls (89). Notably, levels of methylated GSTP1 gene

were detectable in 458 (81%) of mCRPC patients before undergoing

docetaxel treatment, and these levels were associated with worse OS.

Additionally, patients exhibiting methylated GSTP1 levels after two

chemotherapy cycles experienced worsened OS and a shorter time

to PSA progression (90). Moreover, a distinct methylation signature

within the genes AKR1B1, LDAH, and KLF8 was identified as

predictive of therapy failure in mCRPC patients’ plasma samples
TABLE 2 The ccfDNA AR markers from plasma useful for prognostic stratification of CRPC (castration-resistant prostate cancer).

marker cohort
analytic
approach

outcome reference

AR amplification
274 samples from 97 CRPC
abiraterone-treated patients

sequencing
worse OS and PFS, primary
resistance to abiraterone

Romanel et al.,
2015 (70)

AR amplification

98 post-docetaxel CRPC ARPI
treated patients, plasma
94 chemotherapy-naı̈ ve ARPI
treated patients

digital PCR
worse OS in post-docetaxel-
treated patients

Conteduca et al.,
2017 (71)

AR amplification
70 prechemotherapy mCRPC
patients on ADT

digital PCR worse OS
Kohli et al.,
2018 (72)

AR amplification, AR mutations H875Y
and T878A

62 CRPC patients treated with
ARPI or other agents

sequencing,
genomic
hybridization

worse PFS, ARPI resistance
Azad et al.,
2015 (73)

AR mutation L702H and T878A
274 samples from 97 CRPC
abiraterone-treated patients

sequencing
worse OS and PFS, primary
resistance to abiraterone

Romanel et al.,
2015 (70)

AR mutation L702H and T878A

98 post-docetaxel CRPC ARPI
treated patients, plasma
94 chemotherapy-naı̈ ve ARPI
treated patients

digital PCR
worse OS in post-docetaxel
treated patients

Conteduca et al.,
2017 (71)

AR amplification or mutation L702H, W742C,
W742L, H875Y and T878A

102 CRPC patients treated
by ARPI

digital PCR
poor response to abiraterone,
but not to
enzalutamide

Sumiyoshi et al.,
2019 (78)

amplification of exon 8 of AR in combination
with amplification of AR enhancer

108 mCRPC patients digital PCR worse OS
Du et al.,
2020 (74)

amplification of AR enhancer 40 mPC ARPI treated patients sequencing worse OS and PFS
Dang et al.,
2020 (76)
AR (androgen receptor), ARPI (AR-pathway inhibitors), PFS (progression free survival), OS (overall survival).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1394292
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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(91). The molecular consequences of silencing the genes mentioned

above in PC prognosis and prediction of therapy response have yet

to be clearly explained. Some clues may be found for KLF8 and

LDAH. The KLF8 enhances the transcriptional activity of AR (92)

and its methylation in therapy-resistant PC may indicate androgen-

independent growth. Loss of LDAH, known as lipid droplet-

associated hydrolase, has already been associated with prostate

tumorigenesis (93). However, the molecular association between

LDAH silencing, lipid metabolism, and driving cancer pathways has

not been described yet.

The ccfDNA methylation of DOCK2, HAPLN3, and FBXO30

genes correlated with a shorter time to progression and CRPC

occurrence and could be used for the identification of patients who

could benefit from intensified treatment (94). While cytosine

conversion to 5-methylcytosine commonly results in transcriptional

repression, further conversion to 5-hydroxymethylcytosine (5hmC) is

associated with transcriptional activation. Importantly, recent

targeted sequencing of cell-free DNA has found 5hmC activation

marker of proliferation TOP2A, and a marker of cell invasion and

angiogenesis EZH2 in patients with an aggressive subtype of

metastatic disease (95–97). TOP2A is an essential nuclear enzyme

required to resolve topological stress associated with DNA replication

(98). Its upregulation may induce rearrangements of genes that

contribute to a more invasive phenotype. It has also been reported

to enhance androgen receptor signaling by facilitating the

transcription of androgen-responsive genes (99). EZH2, the

catalytic subunit of the polycomb repressive complex 2, works in

concert with histone deacetylases as epigenetic modifiers (100). Dual
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upregulation of TOP2A and EZH2 has also been associated with

recurrence after prostatectomy as well as radiotherapy (101, 102).

The new generation sequencing analysis of ccfDNA methylome

from CRPC plasma identified enrichment of AR binding sequences

and hypomethylation of putative AR binding sites associated with

the amplification of the AR gene and a more aggressive clinical

course (103). Interestingly, the trimethylation of histone H3 lysine

27 (H3K27me3) has been implicated as an epigenetic marker

potentially linked to prostate carcinogenesis (104). A significant

decrease in H3K27me3 levels was found in the plasma of metastatic

PC patients compared to those with localized or locally advanced

PC (105). The ccfDNA methylation markers of PC progression are

summarised in Table 3.
5 Messenger RNA of AR and its
splice variants

PC cells can develop different splice variants of AR (ARv)

during resistance development (106). There are more than 20

known ARv (107), and they mostly do not contain a ligand

binding domain (LBS), which is replaced by a variant-specific

short peptide (108). The ARv7 has received the most attention as

it is the most abundant ARv in PC (109) and contributes to PC

growth in a low-androgen environment (110, 111). The connection

between ARv7 expression and the highly aggressive PC was

investigated in many studies, mostly with the use of CTCs (76,

112–116).
TABLE 3 ccfDNA methylation markers with connection to PC (prostate cancer) progression.

marker cohort
analytic
approach

outcome reference

APC, GSTP1, RARB, and RASSF1A
42 PC patients on castration (20 patients
developed CRPC), whole blood

methylation-
specific PCR

progression of PC,
CRPC occurrence

Rouprêt et al.,
2008 (81)

APC, GSTP1, MDR1, PTGS2,
or RASSF1a

76 CRPC patients, serum
methylation-
specific PCR

poor therapy outcome
Okegawa et al.,
2010 (86)

GSTP1 and APC 47 CRPC patients, plasma
methylation-
specific PCR

correlates with shorter OS
Hendriks et al.,
2018 (85)

GSTP1
562 mCRPC patients before docetaxel
treatment, serum

methylation-
specific PCR

worse OS, shorter time
to progression

Mahon et al.,
2019 (90)

tri-methylation of H3K27
22 local, 11 local advanced and 28 metastatic
PC patients, plasma

ELISA-based
discriminate mPC from localized
and advanced PC

Deligezer et al.,
2010 (105)

CDH13 promoter 98 PC patients, serum
methylation-
specific PCR

worse survival, elevated risk
of death

Wang et al.,
2014 (89)

DOCK2, HAPLN3, and/or FBXO30
102 localized PC patients
65 mCRPC patients, plasma

methylation-specific
digital PCR

shorter time to progression and
mCRPC occurrence

Bjerre et al.,
2020 (94)

hypomethylation of putative AR
binding sites

25 mCRPC ARPI treated patients, plasma
whole-genome
sequencing

more aggressive PC
Wu et al.,
2020 (103)

AKR1B1, LDAH, and KLF8 29 mCRPC, plasma
methylation-
specific PCR

therapy failure prediction
Dillinger et al.,
2022 (91)

5-hydroxymethylcytosine activation
of TOP2A and EZH2

64 mCRPC, plasma
whole-genome
sequencing

detection of aggressive
PC phenotype

Sjostrom et al.,
2022 (95)
CRPC (castration-resistant prostate cancer), ELISA (enzyme-linked Immunosorbent assay), mCRPC (metastatic castration-resistant prostate cancer), PCR (polymerase chain reaction), OS
(overall survival).
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The usefulness of ARv7 as a marker of CRPC progression was

discussed in two meta-analyses in 2020 with the same results. The

ARv7 significantly correlated with the worst outcome in mCRPC

patients treated with hormonal therapy (the worst OS, PFS, and

PSA-PFS) or chemotherapy (OS, and PFS) with the use of data from

13 studies (117) or data from 21 studies (118). These findings were

further supported by the recent meta-analysis by Khan et al., where

the presence of ARv7 significantly correlated with shorter OS, PFS,

and PSA-PFS in the whole CRPC-patients’ group as well as in

ARPI-treated CRPC group (with a hazard ratio of 4.34). Need to

note the majority of the 37 studies analyzed ARv7 in CTCs, and

only 7 used whole blood or exosomal RNA (119). For instance, Qu

et al. correlated ARv7 and PSA ccfRNA levels in the plasma of 81

abiraterone- and 51 enzalutamide-treated CRPC patients (120). All

patients with higher ARv7 transcript levels had a shorter time to

treatment failure. On the other hand, when considering multiple

factors together in a multivariate model, significant results were

only observed in the enzalutamide-treated patients. In a subsequent

study conducted by Del Re et al. in 2019, full-length AR and ARv7

were analyzed in plasma samples from 73 CRPC patients before

ARPI treatment using digital droplet PCR. They were able to

identify full-length AR in all samples and ARv7 in 22% of

samples. Moreover, a high number of AR copies (≥ 900 copies/

mL) in plasma correlated with shorter PFS and OS. ARv7 showed

an even better predictive value (121). A study by Stupolyte and

colleagues evaluated the second most common ARv in PC samples

ARv1 (108), which was present in 17% of CRPC plasma samples.

Both elevated AR levels and the presence of ARv1 were associated

with shorter PFS and OS (122). The ccf mRNA markers of CRPC

progression are summarised in Table 4.
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6 Non-coding ccfRNAs

The non-coding RNAs can be categorized based on their length

into small non-coding RNAs (micro-RNAs, miRNAs) and long

non-coding RNAs (lncRNAs). Plasma and serum samples can be

utilized with comparable results for detecting miRNAs. Moreover,

miRNAs demonstrate stability in the blood due to protection from

endogenous RNAse activity (123). Several studies have provided

insights into the possible role of miRNAs in the PC progression and

development of CRPC (124–127).

The significance of miR-375 was demonstrated by several

studies. The expression of miR-141 and miR-375 correlated with

positive lymph node status and Gleason score in 71 samples of

mCRPC (128). The upregulated miR-141, miR-375, and miR-378

were described in serum from CRPC patients, while miR-409-3p

was significantly underexpressed compared to serum from low-risk

localized patients (129).

Furthermore, the levels of miR-141 and miR-375 were associated

with the docetaxel and ARPI treatment outcome in mCRPC patients.

Levels of four miRNAs decreased after therapy started. However,

levels of miR-141 and miR-375 elevated again at the time of

radiological progression, showing potential to be markers of

therapy failure and PC progression (130). Additionally, the miR-

375 levels predicted which patients would develop metastases with

50% sensitivity, and 76% specificity (131) and were associated with

progression-free survival in mCRPC patients treated with

enzalutamide (132). The miR-375 can also be associated with non-

cancerous diagnoses, e.g. diabetes (133–135). Further investigation is

required to understand the impact of lifestyle, diet, and even circadian

rhythms on cell-free molecules release into the bloodstream.
TABLE 4 ccfRNA markers of CRPC (castration-resistant prostate cancer) progression.

marker cohort
analytic
approach

outcome reference

ARv7 36 CRPC patients, plasma digital PCR shorter OS and PFS
Del Re at al.,
2017 (164)

ARv7 85 mCRPC patients before ARPI treatment, whole blood digital PCR
high expression corelated with
shorter PFS and OS

Seitz et al.,
2017 (165)

ARv7
81 abiraterone and 51 enzalutamide treated CRPC patient,
peripheral blood mononuclear cell fraction

digital PCR
shorter time to
treatment failure

Qu et al.,
2017 (120)

ARv7, HOXB13
and KLK2

37 mCRPC patients treated with abiraterone, whole blood
quantitative
PCR

expression levels corelated with
PFS and OS

Todenhöfer et al.,
2017 (166)

ARv7 73 CRPC patients, plasma digital PCR prediction of OS and PFS
Del Re at al.,
2019 (121)

full-length AR ≥ 900
copies/mL

73 CRPC patients, plasma digital PCR shorter OS and PFS
Del Re at al.,
2019 (121)

ARv7, GRHL2, HOXB13,
and FOXA1

115 mCRPC patients, whole blood
quantitative
PCR

shorter OS, stratification
of patients

Kwan et al.,
2019 (167)

high level of full- length
AR and/or ARv1

102 CRPC patients, whole blood
quantitative
PCR

shorter OS and PFS
Stuopelyte et al.,
2020 (122)
AR (androgen receptor), ARV7 (androgen receptor variant 7), ARPI (AR-pathway inhibitors), mCRPC (metastatic castration-resistant prostate cancer), PCR (polymerase chain reaction), PFS
(progression free survival), OS (overall survival).
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The patients with high expression of miR-7 and miR-221 in

whole peripheral blood samples had shorter time to CRPC

development. They had shorter OS than patients with low

expression of these miRNAs. Therefore, the authors suggested the

use of miR-7 for the prediction of CRPC occurrence (136). In the

study by Lin et al., 2014, they analyzed 96 CRPC docetaxel-treated

patients’ blood or plasma samples by a custom Taqman Array for 46

candidate miRNAs. While specific prognostic miRNAs were not

identified, a combination of pre-docetaxel miR-200b levels, post-

docetaxel miR-20a levels, pre-docetaxel hemoglobin levels, and

visceral metastasis proved to be independent predictors of OS

when used together.

In 2013, Watahiki et al. described 63 upregulated plasma

miRNAs and four downregulated miRNAs in mCRPC compared

to localized PC. They could distinguish between mCRPC and

localized PC with higher specificity and sensitivity with the use of

a specific combination of miRNAs rather than with the use of one

miRNA. One set consisted of miR-141, miR-375 and miR-200c, the

second included miR-151-3p, miR-423-3p, miR-126, miR-152 and

miR-2, and the last miR-16 and miR-205. There were three most

important molecules miR-141, miR-151-3p, and miR-16 from each

group that increased the sensitivity of the PSA test and could be

used for discrimination between localized PC and mCRPC (138).

While these findings show promise, validation on a large cohort of

patients is still required for routine use in personalized medicine.

The prognostic miRNAs are summarized in Table 5.

The role of lncRNAs in PC development and therapy resistance

has been gradually unveiled (139–147). The prostate cancer antigen

3 (PCA3) is one of the most prostate-specific biomarkers routinely

used in urine examination. Notably, PCA3 was also analyzed using

a digital PCR approach in plasma LB samples from 201 PC patients.
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It was combined with other lncRNAs, S100A4 and MRC2, as a

minimally invasive biomarker for screening and aggressiveness

stratification of PC patients (148). Additionally, the lncRNA

TUC338 was associated with shorter OS in a cohort of 52 PC

patients (142). The H19 lncRNA encapsulated in EVs was

significantly elevated in ARPI-resistant CRPC patients, however,

the study was conducted on a small number of patients (only 6

ARPI-resistant CRPC patients) (149). In general, lncRNAs are

frequently utilized as diagnostic biomarkers for PC when

examining tissues (150). Despite the efforts of researchers in the

field of lncRNAs, the implementation of circulating lncRNAs as LB

markers for CRPC progression monitoring has yet to be realized.
7 Emerging role of circulating lipids in
CRPC monitoring

Over the past decade, many studies have demonstrated the

significance of lipid metabolism in PC development and

progression (151, 152). We have shown that cholesterol

metabolism is essential for the intratumoral production of

androgens (153, 154), which is in line with clinical observation

that medication with statins prolongs the time to progression in

patients on ADT (153, 154). Furthermore, targeting sphingosine

kinase, an enzyme involved in lipid metabolism, has emerged as a

potential therapeutic approach to overcome enzalutamide

resistance and improve patient treatment outcomes (155).

Several studies highlighted the usefulness of lipid detection in LB

samples for prognostic purposes. A distinct plasma signature containing

two sphingolipids (ceramide d18:1/24:1 and sphingomyelin d18:2/16:0)

and glycerophospholipid phosphatidylcholine 16:0/16:0 was associated
TABLE 5 The summary of miRNAs useful for prognostic stratification of CRPC patients analysed by quantitative polymerase chain reaction.

marker
change
in levels

cohort outcome reference

miR-20a
miR-200b

downregulated
upregulated

96 whole blood/
plasma samples

shorter OS on docetaxel treatment Lin et al., 2014 (137)

miR-7
miR-221

upregulated
upregulated

45 whole blood samples correlation with the time to CRPC and progression
Santos et al.,
2014 (136)

miR-182-
5p
miR-375

upregulated 252 plasma samples more advanced pathologic stage, prediction of the metastasis development
Bidarra et al.,
2019 (131)

miR-375
miR-3687

upregulated 40 whole blood samples reflect progression-free survival after enzalutamide treatment
Benoist et al.,
2020 (132)

miR-141
miR-375

upregulated 71 serum samples positive lymph-node status and Gleason score
Brase et al.,
2011 (128)

miR-141
miR-375
miR-378
miR-
409-3p

upregulated
upregulated
upregulated
downregulated

84 serum samples differentiation between CRPC and localized PC
Nguyen et al.,
2013 (129)

miR-141
miR-375

upregulated 84 plasma samples
elevated baseline levels correlated with shorter OS, prediction of docetaxel or
ARPI failure

Zedan et al.,
2020 (130)
ARPI (AR-pathway inhibitors), OS (overall survival).
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with poor prognosis and OS of mCRPC patients (156). The aberrations

in circulating ceramide levels were associated with poor clinical

outcomes in both localized and metastatic PC (157), prompting

further studies to explore the combined effects of lipidomic and

genetic aberrations on clinical outcomes in mCRPC. The elevated

levels of the three-lipid signature and abnormalities in one or more

genes (AR, TP53, RB1, or PI3K) were associated with worse prognoses

in mCRPC patients (158). The same group has recently introduced a

modified circulating lipid biomarker signature (PCPro), which contains

ceramides (d18:1/18:0), (d18:1/24:0), and (d18:1/24:1), triglycerides, and

total cholesterol. PCPro may be a clinically accessible panel of blood

lipid markers capable of prospectively identifying men with mCRPC

with a poor prognosis (159).
8 Conclusion

This article summarizes recent knowledge about liquid biopsy

markers suitable for monitoring CRPC progression. Especially

promising are AR alterations, miR-375, methylation markers, and

emerging lipidomic analyses. These markers are discussed alongside

standard clinical parameters, such as PSA, LDH, or CRP.

Mutational and methylation analyses provide cancer-specific

information from relatively stable ccfDNA; however, the methods

may be laborious and expensive. Expression analysis may be

hampered by mRNA degradation, but short miRNAs have

repeatedly been shown to be reliable biomarkers. Lipidomics open

new avenues in cancer monitoring thanks to fast mass spectrometry

analysis. The standard clinical parameters should always serve as

benchmarks in new biomarker studies.

Integrating genomic, transcriptomic, and epigenomic

biomarkers in clinical practice can potentially revolutionize the

management of CRPC. Among the various biomarkers studied, AR

alterations, including gene amplifications, point mutations, and the

AR enhancer region CNV, stand out as having significant

prognostic and predictive value (70–78). Specifically, the AR

enhancer CNV has been suggested as an excellent prognostic

marker due to its strong association with progression in mCRPC

and resistance to AR-directed therapy (76).

Additionally, ccfDNA methylation and ccfRNA markers, such

as ARv7, have shown potential in providing prognostic

information. When analyzed from non-invasive liquid biopsies,

methylation markers could offer insights into tumor biology and

patient prognosis (80, 81, 85, 86, 89–91, 94, 95, 103, 105). ARv7, a

splice variant of the AR, has been linked to resistance to AR-

targeted therapies, making it a promising predictive biomarker for

therapy response (117–121). Early detection of treatment failure

followed by the switch of therapy may significantly improve the

patient´s prognosis.

Despite these advancements, it is crucial to standardize sample

acquisition and validation methods across laboratories to ensure

reproducibility and accuracy. Future research should focus on

validating these biomarkers in large, independent cohorts and

developing robust, clinically applicable assays. Adhering strictly to
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standardized sample collection procedures and employing robust

methods are essential prerequisites for reproducing and facilitating

the clinical use of LB markers. Their integration into routine clinical

practice could improve prognostic stratification and personalized

treatment strategies for patients with CRPC. After proper and

multicentric validation, these promising biomarkers have great

potential to enhance the care of metastatic prostate cancer patients.
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39. Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z, et al.
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