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Introduction: Nucleic acid-sensing (NAS) pathways could induce innate and

adaptive immune responses. However, rare evidence exhibited how the core

genes of the NAS pathways affected the immune response and prognosis of small

cell lung cancer (SCLC) patients.

Methods:We conducted a comprehensive bioinformatic analysis based on the RNA

profiles of 114 SCLC patients, including 79 from cBioPortal, 21 from GSE30219, and

14 from our sequencing data. The multiplex immunohistochemistry (mIHC) was

used to characterize the role of NAS related genes in the tumor microenvironment

(TME) of SCLC.

Results: A prognostic model (7NAS risk model) was constructed based on 7 NAS-

related genes which was demonstrated as an independent prognostic index. The

low-risk group was identified to have a better prognosis and an immune-

activated microenvironment in both the public datasets and our dataset.

Intriguingly, mIHC data showed that CD45+ immune cells, CD8+ T

lymphocytes, and CD68+ macrophages were prevalently enriched in low-risk

SCLC patients and positively correlated with IRF1 expression. Additionally,

Patients in the low-risk group might have superior responses to chemotherapy

and immunotherapy.

Conclusion: Conclusively, this study created a new risk model based on genes

associated with NAS pathways which could predict the prognosis and response

of treatment in patients with SCLC.
KEYWORDS

small cell lung cancer, nucleic acid sensing-related genes, prognostic signature, tumor
microenvironment, multiplex immunohistochemistry
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Introduction

Small cell lung cancer (SCLC), a highly aggressive

neuroendocrine malignancy, comprises about 15% of bronchogenic

carcinomas (1–3). It is known for its swift progression, propensity for

widespread metastasis, and overall dismal prognosis (4, 5). Platinum-

based chemotherapy combined with etoposide remains the

cornerstone of SCLC treatment, delivering an initially favorable

response in patients (6, 7). Nonetheless, recurrence rates for SCLC

are notoriously high. Recent strides in immunotherapy have opened

promising avenues for treatment (1, 3, 7). However, only an

estimated 30% of patients with SCLC experience benefits from such

immunotherapeutic approaches (8). Currently, there is a lack of

reliable biomarkers that can accurately predict the survival of patients

and which patients will positively respond to chemotherapy or

immunotherapy. Hence, there is a pressing need to identify novel

molecular markers that can prognosticate survival and potentially

guide therapeutic responses in SCLC patients.

The essential roles of nucleic acid-sensing (NAS) pathways in

detecting microbial pathogens, through recognizing their nucleic

acids and activating innate immunity, have been well-established

(9), and their involvement in malignant tumors is now garnering

increased attention (9, 10). Recent evidence indicates that NAS

regulates DNA damage responses and monitors micronuclei,

potentially impacting the treatment of malignant tumors (11).

The primary role of NAS pathways is attributed to activating

NAS, which can trigger an anti-tumor immune response (12).

Radiotherapy and chemotherapy can damage genomic DNA,

which, in turn, may activate NAS pathways. Activation of NAS

pathways can lead to cytokine secretion and CD8+ T cell infiltration,

enhancing the impact of radiotherapy and chemotherapy (13, 14).

Moreover, activating nucleic acid sensors like STING stimulates T

cell proliferation and may also induce vascular collapse,

contributing to tumor cell death and apoptosis and potentially

increasing the release of tumor-associated antigens (15–17). The

diverse functions of the cGAS-STING pathway in modulating the

immune microenvironment hold significant promise in the context

of immunotherapy. Studies have shown that STING agonists can

overcome resistance to anti-PD-1 agents in mouse tumor models

(18). All the evidence thus reinforces the critical role of NAS

pathways in cancer therapy (19–22). However, a comprehensive

analysis of the relationship between NAS pathways and SCLC

remains to be conducted.

Consequently, this study intends to elucidate the specific roles

of NAS pathways in SCLC and to create a new risk model founded

on genes associated with NAS pathways, aiming to predict the

prognosis and response to treatment in patients with SCLC.
Materials and methods

Data collection

The nucleic acid-sensing (NAS) pathways-related genes were

acquired from GSEA gene sets , path cards (https : / /

pathcards.genecards.org/), and published articles. By eliminating
Frontiers in Oncology 02
duplicated genes, 371 NAS-related genes were included in this

study. Three independent SCLC cohorts were enrolled in this

study, including 79 SCLC patients collected from cBioPortal, 21

samples from GSE30219, and our cohort including 14 SCLC

patients from Sichuan Provincial People’s Hospital, University of

Electronic Science and Technology of China. This study was

approved by the Ethics Committee of Sichuan Province People’s

Hospital, School of Medicine, University of Electronic Science and

Technology of China (No.20240122). The clinicopathological

characteristics of the 14 patients were provided in Supplementary

Table 1. The raw bulk transcriptome counts data, normalized and

log2 converted RNA-sequencing (RNA-seq) profiles FPKM and

normalized RMA of SCLC patients, and normal samples were

acquired from cBioPortal (https://www.cBioPortal.org/) and GEO

(https://www.ncbi.nlm.nih.gov/geo/). Normal samples and SCLC

samples without complete clinical information were excluded from

this study. The “GeoTcgaData” R package was applied to convert

ensemble IDs to gene symbols.
Expression distributions and variation levels
of nucleic acid-sensing risk genes in SCLC

To identify the differentially expressed genes (DEGs) between

SCLC and normal samples, the “limma” package was used with the

criterion of the adjust. P < 0.05 and |log2FC| > 1.0.
Consensus clustering analysis of NAS-
related genes

Based on the expression profiles of 371 NAS-related genes,

unsupervised classes of SCLC datasets were estimated with the

consensus clustering method using the ‘Consensus Cluster-Plus

1.60.0’ package in R, and two clusters were obtained. Principal

Component Analysis (PCA) was used to verify the clusters based on

the expression profiles of the above genes.
Relationship between NAS patterns with
the prognosis of SCLC patients

To explore the differences in overall survival (OS) of the two

clusters identified by consensus clustering, we conducted a Kaplan–

Meier analysis generated by the ‘Survival’ and ‘Survminer’ packages

of R.
Construction of the NAS-related patterns

The least absolute shrinkage and selection operator (LASSO)

method was used to screen out the genes that make a difference to

the OS of SCLC patients, and a total of 12 genes were regarded as

candidate genes. Based on the 12 genes, multivariate Cox regression

was utilized to construct the final signature. Ultimately, the risk

score of SCLC patients was calculated as: Risk score= ∑Coefficient of
frontiersin.org
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(i)× Expression of the gene(i). The patients could be divided into

high-risk and low-risk groups according to the median risk score.
Fluorescence-based multiplex
immunohistochemistry staining

The tissue slides of SCLC patients (n = 14) were stained with

multiplex fluorescence using PanoPANEL mIHC Kits (#0004100100).

The slides were dewaxed by xylene and rehydrated by ethanol, and

then the slides were heated in a microwave with antigen retrieval. The

slides were incubated with primary antibody overnight at 4°C for

specific antigen binding including anti-IRF1 (#8478, CST, USA), anti-

CD45 (#13917, CST, USA), anti-CD68 (#97778. CST, USA), anti-CD8

(#85336, CST, USA), anti-panCK (#4545, CST, USA), anti-FoxP3

(#12653, CST, USA). The corresponding secondary antibodies

should be pipetted onto the slides, and incubated at room

temperature for 1 hour. DAPI was used to stain cell nuclei and at

last the slides were sealed. The staining was scored by image J software

based on the intensity and degree of staining. The degree of staining

was compared using the Wilcoxon rank-sum test.
Relationship between risk score and
clinical characteristics

To evaluate the clinical significance of the risk score,

we compared the associations between risk scores and

clinicopathological features. The characteristics of the patients

included survival status and subtypes (SCLC-A, SCLC-N, SCLC-

P, and SCLC-Y). We used the “clusterProfiler” R package to identify

differences in biological function between the high-risk and low-risk

groups. Univariate and multivariate Cox regression analyses were

performed to determine whether the risk model could be an

independent prognostic factor for SCLC patients. We constructed

a nomogram to predict the 1-, 2-, and 3-year OS of SCLC patients

by the “RMS” R package.
The analysis of the
immune microenvironment

To explore the landscape of the immune microenvironment, the

CIBERSORT algorithm was used to measure the infiltration of

immune cells.
Prediction of the response to
immunotherapy and chemotherapy

The TIDE (Tumor Immune Dysfunction and Exclusion) score

was calculated in TIDE (http://tide.dfci.harvard.edu/), which is

usually used to predict the response to immunotherapy for cancer

patients. The ‘oncoPredict’ package was used to predict the sensitivity

of SCLC patients at different risks to chemotherapy drugs.
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Statistical analysis

Statistical analyses were performed using GraphPad Prism (v.9.0)

(for experimental data), and R (v.4.2.1), and RStudio (v.3.5.3) (for

sequencing data and matched clinical variables). Comparisons between

groups were conducted using c2 tests for categorical variables.

Student’s t test was used for continuous variables. All the tests were

two tailed, and P < 0.05 was considered statistically significant.
Results

NAS-related genes cluster SCLC patients
into distinct subtypes

Before analysis, we adjusted the transcriptome data from public

datasets and our dataset (Supplementary Figure S1A). The GSE30219

cohort yielded 271 differentially expressed genes (DEGs) compared to

adjacent normal tissues (Figure 1A). Among the 271 DEGs, 164 genes

are upregulated, and 107 genes are downregulated, including several

NAS related genes, such as TLR3, PTGS2, IL-6, PRKDC, and MMP9

(Figure 1B). The UMAP analysis revealed that NAS related genes

performed well in distinguishing cancer tissues and adjacent normal

tissues (Figure 1C). We then conducted consensus clustering analysis

to identify novel subtypes of SCLC based on NAS related genes. It

demonstrated that the SCLC patients could be well classified into two

clusters when k = 2 (Figures 1D–F; Supplementary Figures S1B–D).

The PCA analysis, used to validate the clusters with respect to the

expression profiles of NAS-related genes, showed a precise

classification of the two clusters (Supplementary Figures S1E-G).

More importantly, a notable disparity was observed in the OS time

between the two clusters. Patients in Cluster 1 exhibited a favorable

prognosis, whereas those in Cluster 2 showed a poor prognosis

(Figure 1G). Similar results were validated in two additional SCLC

cohorts, including the GEO cohort and our own cohort (Figures 1H, I).

Overall, SCLC patients can be effectively classified into two groups

based on the expression of NAS-related genes and the patients in

cluster 1 have a better prognosis than patients in cluster 2.
Construction of a prognostic gene
signature based on 7 NAS-related genes
for SCLC patients

To construct a prognostic model based on a signature of NAS

related genes, we conducted LASSO regression analysis and identified

a total of 12 genes (Figures 2A, B). The multivariate Cox regression

analysis demonstrated that there are 7 genes are related to the

prognosis of patients, including APOH, IL23A, IRF1, MAPKAPK2,

POLR2E, TF, and UBA1(Supplementary Figures S2A–G). Using the

expression levels and coefficients of the 7 model genes, we

constructed a prognostic gene signature (7NAS risk model) and

calculated the risk score for each patient using the provided formula:

Risk score = (-0.05773 * APOH) + (-0.01659 * IL23A) + (-0.01181 *

IRF1) + (-0.01023 *MAPKAPK2) + (-0.01169 * POLR2E) + (-0.03609
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* TF) + (-0.00676 * UBA1). Our results demonstrated that the risk

score correlated with clinical characteristics such as alive or dead

survival status but not with the subtypes of SCLC patients

(Figures 2C, D). The low-risk groups significantly exhibit

enrichment of multiple biological processes, particularly immune-

related functions, such as adaptive immune response, antigen

processing and presentation, and MHC protein complex binding

(Figures 2E, F). We further analyzed the 7NAS risk model in

predicting OS in both the training and validation sets (Figures 2G–

I). Notably, a significant disparity was observed in the OS time

between the high-risk and low-risk groups. Patients in the low-risk
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group demonstrated a tendency towards longer OS time in both the

training and validation cohorts (P < 0.05) (Figures 2J–L). Collectively,

we constructed a 7NAS risk model that could effectively predict the

immune function status and OS of SCLC patients.
The 7NAS risk score is an independent
prognostic factor for SCLC patients

Next, we conducted univariate and multivariate Cox regression

analyses to validate whether the 7NAS risk score could stand as an
B C

D E F

G H I

A

FIGURE 1

NAS-related genes can effectively distinguish and predict the prognosis of small cell lung cancer patients. (A) Heatmap of the differentially expressed
genes between normal and SCLC tissues. (B) Volcano map of differentially expressed NAS-related genes between normal and SCLC tissues. The red dots
represented upregulated genes in SCLC tissues, and the blue dots represented downregulated genes in SCLC tissues. (C) UMAP of normal and SCLC
tissues. (D–F) According to the expression of NAS related genes, the SCLC patients were divided into two clusters in the training set (D), external training
set (E), and our own validation set (F) (k = 2). (G–I) Kaplan-Meier analysis of the two SCLC subtypes in the training set (G), external training set (H), and
own validation set (I). NAS, Nucleic acid-sensing; SCLC, Small cell lung cancer; UMAP, Uniform Manifold Approximation and Projection.
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independent prognostic factor in SCLC. The univariate Cox regression

analysis illustrated that the risk score constituted a risk factor in SCLC

(HR = 1.262, 95% CI: 1.173-1.357, P < 0.001, Figure 3A). Following

adjustment for confounding factors, the multivariate analysis also

indicated that the risk score remained an independent prognostic

factor (HR = 1.234, 95% CI: 1.139-1.337, P < 0.001, Figure 3B) for

SCLC patients. A nomogram was developed to estimate the 1-, 2-, and
Frontiers in Oncology 05
3-year OS, incorporating sex, tumor stage, metastasis and risk score

(Figure 3C). Calibration curves demonstrated the predictive accuracy

of this model for 1-, 2-, and 3-year survival rates (Figure 3D). It can be

observed that the concordance index of nomogram is significantly

better than clinical stage and metastasis, but slightly lower than the risk

score of 7NASmodel (Figure 3E).We assessed the area under the curve

(AUC) values in a merged cohort which demonstrated the high
B C D

E F

G H I

J K L

A

FIGURE 2

Construction of a prognostic model based on NAS related genes. (A) LASSO coefficient profiles of the twelve differentially expressed NAS related
genes in SCLC patients. (B) The two dotted vertical lines are drawn at the optimal values by the minimum criteria (left) and 1−SE criteria (right).
(C) Violin plots showing the correlation between risk score and survival status of SCLC patients. (D) Violin plots showing the correlation between risk
score and SCLC subtypes. (E, F) KEGG (E) and GO (F) enrichment analysis based on the differentially expressed NAS genes between high-risk and
low-risk groups. (G–I) Data are the area under the curve (AUC) of the risk scores in training set (G), external training set (H), and own validation set
(I). (J–L) Kaplan-Meier analysis of the prognosis of high-risk and low-risk groups in training set (J), external training set (K), and own validation set
(L). The P values are calculated by log-rank test for survival, unpaired, two-tailed Student’s t test, or one-way ANOVA. *P < 0.05. ns, non-significant;
LASSO, Least Absolute Shrinkage and Selection Operator; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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accuracy in predicting 1-, 2-, and 3-year survival among SCLC patients

(Figure 3F). The high-nomo-risk group commonly has a worse

prognosis than the low-nomo-risk group (Figure 3G). Collectively,

the 7NAS risk model represents an independent prognostic factor for

patients with SCLC.
The immune landscape related to the 7NAS
risk scores in SCLC

We analyzed the relationships between the risk scores and the

immune characteristics of SCLC patients. The results revealed
Frontiers in Oncology 06
distinct immune microenvironments between the high-risk and

low-risk groups. Specifically, SCLC patients in the low-risk group

exhibited higher infiltration of immune cells in the merged dataset

that combined the public dataset and our dataset (Figures 4A–C).

The patients with lower risk scores were more sensitive to

immunotherapy in IMvigor210 and GSE126044 datasets

(Figures 4D, E), and the patients with lower risk scores tended to

have better OS in IMvigor210 (Figure 4F). We further analyzed the

correlation between the expression of the 7 NAS-related genes and

the infiltration of intra-tumoral immune cells, separately. The

results indicated that IRF1 was correlated with the infiltration of

M1 macrophages, NK cells, and gd T cells (Figure 4G). Further
B

C D

E F G

A

FIGURE 3

Validation of a nomogram that combines the 7NAS risk scores, sex, and stage to predict the overall survival of SCLC patients. (A) The univariate Cox
regression analysis. (B) The multivariate Cox regression analysis. (C) The nomogram model was constructed to predict the prognosis of SCLC
patients. (D) Regarding 1-, 2-, and 3-year survival of SCLC patients, the calibration curves showed that the predicted values were consistent with the
observed values. (E) Concordance index analysis of nomogram. (F) ROC curves showed the performance of the nomogram in the Merged cohort.
(G) The Kaplan-Meier analysis showed the overall survival between patients with low and high-risk scores. The P values are calculated by log-rank
test for survival. ROC, Receiver Operating Characteristic curve. *P < 0.05; ***P < 0.001.
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confirmation through mIHC revealed a positive correlation

between high IRF1 expression and the infiltration of CD45+

immune cells, CD8+ T lymphocytes, and CD68+ macrophages

(Figures 4H, I). These results showed that the 7NAS risk score,

especially the IRF1 expression, has a positive relationship with the

activated immune microenvironment.
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The effectiveness of the 7NAS risk score in
predicting drug sensitivity of SCLC patients

To examine the predictive role of the 7NAS risk score in drug

sensitivity of SCLC patients, we determined the half-maximal

inhibitory concentration (IC50) value for each drug. The IC50
B C D

E F G

H I

A

FIGURE 4

The immune landscape characterized based on the 7NAS risk model and IRF1 gene. (A–C) The violin plot shows the immune score (A) Estimate
Score (B), and Tumor purity (C) of the low-risk group and the high-risk group. (D, E) The box plots present the response efficiency to
immunotherapy of high-risk and low-risk groups in IMvigor210 (D) and GSE126044 (E) dataset. (F) Kaplan-Meier curve of overall survival for patients
with high and low-risk groups in IMvigor210 dataset. (G) The heatmap shows the relationship between different model-related genes and the
enrichment of immune cells. (H) Representative images of mIHC panel (panCK, CD45, CD8, CD68, FoxP3, and IRF1) in tumor tissues between high
risk and low risk SCLC patients (Scale bar = 100 mm). (I) Correlation scatter plot showing the relationship between the expression of IRF1 and the
number, density, and rate of CD45+, CD8+, and CD68+ immune cells. The P values are calculated by unpaired, two-tailed Student’s t test. *P < 0.05;
**P < 0.01; ***P < 0.001.
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values of these chemotherapeutic agents exhibited a positive

correlation with the risk score (Figure 5A), suggesting that patients

with a low-risk score generally exhibited better responses to

chemotherapy. Furthermore, in the case of Temozolomide (a

second-line drug for SCLC patients) and PARP inhibitors,

including MN.64_1864, Olaparib, WIKI4, XAV939, and
Frontiers in Oncology 08
Palbociclib, patients in the low-risk group exhibited greater

sensitivity compared to those in the high-risk group (Figures 5B–

G). Moreover, patients in the low-risk group decreased the TIDE

score compared to the high-risk group from cBioPortal (Figure 5H).

Conclusively, the 7NAS risk score plays a role in predicting patients

who are sensitive to chemotherapy and immunotherapy.
B C

D E

F G

H

A

FIGURE 5

The effectiveness of the 7NAS risk model in predicting drug sensitivity. (A) Bar plots showing the relationship between IC50s of commonly used
drugs and the expressions of the model genes. (B–G) The violin plot (left) and correlation scatter plot (right) show the IC50s between the high-risk
group and low-risk group and the correlation of risk scores and IC50s of Temozolomide (B), MN.64 1854 (C), Olaparib (D), WIKI4 (E), XAV939 (F),
Palbociclib (G). (H) The violin plot and correlation scatter plot show the TIDE score of the high-risk group and low-risk group in the cBioPortal
cohorts. The P values are calculated by unpaired, two-tailed Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001.
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Discussion

SCLC is a high-grade malignant epithelial tumor and the lack of

a specific molecular target limits the treatment approaches (1, 23,

24). In this study, we constructed a risk model based on the

expression of 7 NAS-related genes and validated the prognostic

and therapeutic efficacy prediction value of the model in different

cohorts, including cBioPortal, GSE30219, and our cohort.

Despite emerging recognition of the subtypes of SCLCs based on

high levels of ASCL1 (SCLC-A subtype), NEUROD1 (SCLC-N),

POU2F3 (SCLC-P) or YAP1 (SCLC-Y), and other biomarkers

including gene amplifications on 4q12 and CCNE1 amplification

that could predict the overall survival of patients, the clinical

approach to treatment is consistent irrespective (5, 25, 26). How the

subtypes and other biomarkers influence therapeutic responsiveness

and patterns of disease progression still needs to be further explored.

Here, our study demonstrated that the 7NAS risk score could effectively

predict the prognosis and immunotherapy response of patients.

However, the high and low 7NAS risk scores have no significant

variation among the four subtypes of patients with SCLCs.

SCLCs can be recognized by cytotoxic T cells, leading to durable

benefit from immunotherapy (27, 28). While, this benefit has been

seen in only a small minority of patients with metastatic SCLC (6, 8,

29). How to predict the immune responses of SCLC patients? Our

study demonstrated that the patients with low 7NAS risk scores were

mainly enriched in leukocyte-mediated immunity, adaptive immune

response, antigen processing and presentation, and MHC protein

complex. Moreover, the patients with lower 7NAS risk scores have a

better response to immunotherapy and commonly have a long overall

survival time compared to the patients high 7NAS risk scores

underwent immunotherapy. IRF1 is the key transcription factor

downstream of IFNg which can be induced by STAT1 (30, 31).

Here, in this study we demonstrated that IRF1 was most strongly

correlated with the infiltration and functional roles of immune cells,

suggesting it could serve as a potential target for enhancing the

effectiveness of immunotherapy for SCLC patients.

In addition, we further explored the relationship between risk

scores and the IC50 values of chemotherapeutics. The IC50s of most

chemotherapeutics were positively correlated with the risk score,

suggesting that patients in the low-risk group were more responsive

to chemotherapy. Recent research has shown that a combination of

Temozobmide and PARP inhibitors could improve the prognosis of

SCLC (32, 33). Interestingly, our research suggested that patients in

the low-risk group may have better responses to Temozobmide and

PARP inhibitors, such as Olaparib.

Several limitations of our study must be acknowledged. Firstly,

this was a retrospective cohort study with a relatively small number

of patients, and the results need to be validated in future large

prospective clinical trials. Secondly, no relevant information on

immunotherapy was collected for all small cell lung cancer patients

in this study. The predictive role of 7NAS risk scores on the

effectiveness of immunotherapy and the prognosis of patient was

based on the analysis of immunotherapy databases of bladder

cancer patients. In future studies, more small cell lung cancer

patients receiving immunotherapy will be collected to explore its

effects. Last but not least, the treatment strategies for SCLC patients
Frontiers in Oncology 09
in multicenter cohorts are different. Although our final model

exhibited robust and accurate predictive potential in patients who

received different treatment options, to further ensure its predictive

ability, the results need to be validated in more well-designed

clinical trials with larger patient cohorts.

Overall, the 7NAS model that constructed by 7 NAS-related

genes has an accurate predictive efficiency in identifying the SCLC

patients who possess the activated immune microenvironment and

long-time prognosis. The 7NAS model and nomo-risk-model

combined 7NAS scores, sex and stages could help clinicians select

patients who possess the long-time overall survival and could

benefit from chemo or immunotherapy. The 7NAS model and

nomo-risk-model could guide treatment decisions based on

differing risks to provide the best treatment strategy for patients

with SCLC.
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SUPPLEMENTARY FIGURE 1

(A) The data showed the adjustment of the transcriptome data in the training
set, external training set and validation set. (B–D) The cumulative distribution

map of consensus clustering in training set, external training set and validation

set. (E–G) The principal component analysis graph of the two SCLC subtypes
in the training set, external training set and validation set.

SUPPLEMENTARY FIGURE 2

The prognostic value of the 7 filtered DNA sensor-related genes. (A) The Kaplan-
Meier analysis showed the prognostic value of IL23A. (B) The Kaplan-Meier

analysis showed the prognostic value of MAPKAPK2. (C) The Kaplan-Meier

analysis showed the prognostic value of APOH. (D) The Kaplan-Meier analysis
showed the prognostic value of TF. (E) The Kaplan-Meier analysis showed the

prognostic value of POLR2E. (F) The Kaplan-Meier analysis showed the prognostic
value of UBA1. (G) The Kaplan-Meier analysis showed the prognostic value of IRF1.

The P values are calculated by log-rank test for survival.
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