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Tumor metastasis is the main cause of death in triple-negative breast cancer

(TNBC) patients. TNBC is the most aggressive subtype of breast cancer lacking

the expression of estrogen, progesterone, and human epidermal growth factor 2

receptors, thereby rendering it insensitive to targeted therapies. It has been well-

established that excess adiposity contributes to the progression of TNBC;

however, due to the aggressive nature of this breast cancer subtype, it is

imperative to determine how multiple factors can contribute to progression.

Therefore, we aimed to investigate if exposure to an environmental carcinogen

could impact a pre-existing obesity-promoted cancer. We utilized a

spontaneous lung metastatic mouse model where 4T1 breast tumor cells are

injected into the mammary gland of BALB/c mice. Feeding a high fat diet (HFD) in

this model has been shown to promote tumor growth andmetastasis. Herein, we

tested the effects of both a HFD and benzo(a)pyrene (B[a]P) exposure. Our results

indicate that diet and B[a]P had no tumor promotional interaction. However,

unexpectedly, our findings reveal an inhibitory effect of B[a]P on body weight,

adipose tissue deposition, and tumor volume at time of sacrifice specifically

under HFD conditions.
KEYWORDS

triple-negative breast cancer, obesity, benzo[a]pyrene, high-fat diet, adipose
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1 Introduction

Obesity is characterized by a state of chronic local and systemic inflammation and exerts

significant effects on the development of triple negative breast cancer (TNBC), an aggressive

breast cancer subtype that has a high rate of reoccurrence and distant metastasis (1). In obesity,

the elevated production of estrogen by adipose tissue affects circulating estrogen levels, and it is

widely recognized that these growth-promoting effects of estrogens are essential in the

development and progression of human breast cancer. However, estrogen does not have a

direct impact on TNBC, since it does not express the estrogen receptor. Metastatic spread of
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TNBC to distant sites occurs earlier in patients with obesity leading to

higher mortality rates (2). The molecular basis for why triple negative

tumors are more aggressive in patients with obesity has been explored

(3), but the potential impact of excess adiposity on the response to

environmental carcinogenic exposure is not well understood. One

study demonstrated that obesity promotes carcinogen 7,12-

dimethylbenz[a]anthracene (DMBA)-initiated mammary

tumorigenesis (4). Additionally, epidemiological studies have

demonstrated that certain inflammatory conditions can exacerbate

carcinogenesis in the context of environmental modifiers. For example,

lung cancer is promoted when patients with chronic obstructive

pulmonary disease are also cigarette smokers (5). Aflatoxin B

exposure synergistically interacts with hepatitis B virus to induce

hepatocellular carcinoma (6). Dietary intake of mutagenic

compounds in the context of ulcerative colitis promotes colon cancer

(7). Herein, we aim to determine if benzo(a)pyrene (B[a]P) exposure

promotes lung metastasis in the context of a high-fat diet (HFD), as

lung is one of the most common sites of metastatic spread of

TNBC (8).

B[a]P is a lipophilic polyaromatic hydrocarbon (PAH) that

readily crosses cell membranes and activates the aryl hydrocarbon

receptor (AhR) in the cytoplasm. Once activated, AhR is transported

into the nucleus where it recognizes and binds to xenobiotic-response

elements in gene promoters regulating various PAH-responsive

genes. Importantly, AhR target genes include the cytochrome P450

gene family, including CYP1A1, and epoxide hydrolase, which are able

to metabolize B[a]P (9, 10). Once B[a]P is metabolized to BPDE, this

metabolite covalently binds to the N2 position of guanines in DNA,

forming bulky adducts that can lead to initiating mutations (11, 12).

We have previously demonstrated that kynurenine released from

adipocytes activates AhR leading to cancer progression in vitro (13).

How potential endogenous and exogenous AhR ligands may

converge to promote cancers has not been explored. We

hypothesized that B[a]P enhances the mammary tumor promoting

activity of a high fat diet (HFD) leading to tumor progression and

metastasis. To test our hypothesis, we subjected the 4T1

transplantation mouse model of TNBC to B[a]P exposure while

concurrently feeding a HFD. The host mouse is BALB/c, which

expresses the Ah b-2 allele. The Ah b-1, Ah b-2, and Ah b-3 alleles encode

AhRs that bind to aromatic ligands like PAHs with high affinity (14).
2 Materials and methods

2.1 In vivo

Female BALB/c mice were purchased from Charles River

Laboratories (MI, USA) at six-weeks of age. Mice were randomly

divided into high fat (60% kcal fat); or control diet/low-fat diet (10%

kcal fat) (Bio Serve Cat# F3282 and F4031) diet groups (n=10). Four

weeks after starting the mice on diets, 4T1 cells (4.0 x 105 cells)

obtained from American Type Culture Collection (ATCC) were
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suspended in 50 mL Matrigel (Corning Cat# 354248) and injected

into the abdominal mammary fat pad of mice. Five days after 4T1 cells

injection, mice received intraperitoneal (IP) injections of either sesame

oil (Sigma Cat# S3547) carrier only or benzo[a]pyrene (2 mg/kg/body

weight, Sigma Cat# B1760) dissolved in sesame oil for 20 days. 4T1

tumors were measured throughout the study and at sacrifice. Mice

were sacrificed 26 days after 4T1 cell injection. Mice were weighed, and

mammary and visceral fat pads, tumors, and lungs were excised and

weighed. Lungs were removed and inflated with PBS via the trachea

and placed in 10% neutral buffered Formalin (Azer Scientific, Cat#

PFNBF-20) for 72 hours. Lung specimens in 70% ethanol and frozen

mammary adipose tissue were provided to the MSU Histology core for

hematoxylin and eosin (H&E) staining. Transverse sections were

obtained, and slides were prepared for quantification.
2.2 Imaging

Imaging and counting of metastatic sites were performed on an

Olympus BX40 microscope. Adipocytes images were analyzed using

Image J. Briefly, after importing an image of interest, a known linear

scale bar was used to set the scale of the image. The distance of the

scale was analyzed to input the distance of the scale bar. The pixel

aspect ratio was adjusted to 1, with the unit specified as (µm).

Subsequently, background was subtracted, and the images were

converted to 8-bit and thresholded to highlight adipocyte areas.

Finally, the areas corresponding to adipocytes were measured to

quantify adipocytes area. Tissue was randomly sectioned by the

histology core and microscopist was blinded to the experimental

groups when quantifying lung metastases and adipocyte size.
2.3 Kynurenine ELISA

Serum kynurenine was measured by enzyme-linked

immunosorbent assay (ELISA), according to manufacturer’s

instructions. At sacrifice, blood was collected by cardiac puncture

and allowed to clot at room temperature before being centrifuged at

1000 RPM for 5 min. Serum was collected and stored at -20°C. Serum

was used for the ELISA to quantify kynurenine levels. Kynurenine

ELISA kit was obtained from Immusmol (Bordeaux, France).
2.4 Dietary information

Mice were randomly divided into High Fat (60% kcal fat; 20.5%

of protein, 36.0% of fat, 3.5% of ash, 0.0% offiber, <10% of moisture,

and 35.7% of carbohydrate) or Control Diet (10% kcal fat; 20.5% of

protein, 7.2% of fat, 3.5% of ash, 0.0% of fiber, <10% of moisture,

and 61.6% of carbohydrate) groups (Bio Serve Cat# F3282 and

F4031) groups. The nutritional composition is similar between diets

except for fat and carbohydrate. Tryptophan is obtained from a
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dietary protein source; since protein composition is 20.5% for both

diets, the level of tryptophan in each diet is similar. Food

consumption was measured and remained stable across

experimental groups.
2.5 Statistical analysis

Each bar of tumor size represents the mean ± SEM (n = 10). Each

bar of body weight represents the mean ± SEM (n = 10). The data

were evaluated using a two-way ANOVA and were expressed as a

mean ± SD. A Tukey’s test was used to compare the means of each

treatment/exposure to the means of all other treatment/exposure

groups. Values * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001

were considered statistically significant. Statistical analyses were

performed using GraphPad Prism version 10 for Mac, GraphPad

Software, La Jolla, CA, USA (www.graphpad.com).
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3 Results

3.1 B[a]P exposure reduces mammary 4T1
tumor volume in HFD-fed mice

BALB/c 4T1 tumor bearing mice were fed respective diets and

exposed to either B[a]P or vehicle treatment for 26 days. The

volume of tumor at sacrifice was not significantly larger in LFD-

fed compared to HFD-fed mice or LFD-vehicle compared to LFD-B

[a]P. However, opposite to what was hypothesized, B[a]P exposure

significantly reduced the effect of HFD on tumor volume at time of

sacrifice (p<0.0001). The number of lung metastases were not

affected by diet and/or B[a]P exposure (Figure 1B). Statistical

differences in lung weights by diet and/or B[a]P exposure were

not detected (Figure 1C). The weights of the kidney, spleen, and

liver were not significantly impacted by diet and/or B[a]P exposure,

even when normalized to bodyweight (data not shown).
FIGURE 1

B[a]P-exposed mice on a high-fat diet have significantly reduced tumor volume at time of sacrifice compared to vehicle-exposed mice on a high-fat
diet. (A) Tumor volume over the last 14 days of diet and B[a]P or vehicle treatment. (B) Number of observed metastatic sites quantitated under the
microscope. (C) Lung weights measurements at sacrifice. Each bar represents the mean ± SEM (n = 10 mice/group). A two-way ANOVA was
performed to determine statistical significance and the value ****p < 0.0001 is considered statistically significant.
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3.2 B[a]P reduces body weight in
HFD-fed mice

The body weights of mice fed a HFD were significantly greater

compared to those of mice fed the LFD at the time of sacrifice

(p<0.0001) (Figure 2A). The body weights of B[a]P-exposed mice

fed a HFD were significantly greater compared to B[a]P-exposed
Frontiers in Oncology 04
mice fed a LFD at the time of sacrifice (p<0.05) (Figure 2A).

Interestingly, the body weights of B[a]P-exposed mice fed a HFD

were significantly lower compared to vehicle-exposed mice fed a

HFD at the time of sacrifice (p<0.0001) (Figure 2A). HFD-fed mice

had a significantly increased visceral adipose tissue (Figure 2B) and

mammary adipose tissue (Figure 2C) weight compared to mice on

the LFD (p<0.001). Consistent with the reduced total body weight,
FIGURE 2

B[a]P exposed mice on a high-fat diet have significantly reduced body weight, visceral fat pad weight, and mammary fat pad weight at time of
sacrifice compared to vehicle exposed mice on a high-fat diet. (A) Mouse body weights over the course of the study. Mice were on respective diets
and were administered B[a]P or vehicle. (B, C) Visceral and mammary fat pad weights at sacrifice, respectively. (D) Analysis of mammary adipocytes
size in hematoxylin and eosin in stained mammary fat pad. (E) Microscopy of mammary adipose tissue; scale bar 140µm. Each bar of body weight
represents the mean ± SEM (n = 10 mice/group). A two-way ANOVA was performed to determine statistical significance and values *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001 are considered statistically significant.
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HFD-fed mice exposed to B[a]P had a significantly reduced visceral

(Figure 2B) and mammary (Figure 2C) adipose tissue weight than

HFD-fed, vehicle exposed mice (p<0.01). A reduction in average

mammary adipocyte size was observed in HFD-fed mice exposed to

B[a]P compared to HFD-fed vehicle exposed mice, although not

significant (Figure 2D). Images show mammary adipose

tissue (Figure 2E).
3.3 Serum kynurenine concentration is
significantly increased in HFD-fed mice
exposed to B[a]P

Serum kynurenine levels were not significantly different in HFD-

fed mice when compared to LFD-fed mice (Figure 3). Serum

kynurenine levels were not significantly different between B[a]P or

vehicle exposed mice on LFD (Figure 3). Only the combinatorial

effect of B[a]P exposed mice on a HFD significantly increased serum

kynurenine compared to all other groups. B[a]P exposed mice fed a

HFD had significantly higher levels of serum kynurenine compared

to B[a]P exposed mice on a LFD (p<0.001) or vehicle exposed mice

on a HFD (p<0.05) (Figure 3).
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4 Discussion

High-fat diets are a major contributor to obesity and a strong

risk factor for triple-negative breast cancer (TNBC) (15–19).

Herein, the HFD-fed mice developed tumors that were not

significantly different in volume compared to those of LFD-fed

mice or LFD-vehicle compared to LFD-BaP suggesting no tumor

promotional effect of diet or B[a]P, individually in this study.

(Figure 1A). This result may be due to the shorter duration of

HFD-feeding compared to previously published study which

demonstrated that long-term (16 weeks) intake of a high-fat diet

increases tumor growth of TNBC cells (4T1 cells) in BALB/c mice

(20). Our rationale for only feeding the HFD for 4 weeks prior to B

[a]P exposure was based on our hypothesis that there would be an

interaction between diet and B[a]P exposure on tumor promotion

and metastasis. Herein, we show that B[a]P exposure was associated

with reduced body weight, reduced overall mammary and visceral

fat weight and reduced tumor volume only when the 4T1 tumor-

bearing mice were challenged with a HFD, suggesting that B[a]P

inhibited HFD-promoted weight gain. Due to the lipophilicity of

polyaromatic hydrocarbons such as B[a]P, bioaccumulation in

adipose tissue has been observed in several species (21) and in

mammary glands (22). However, the adipose tissue reducing

mechanism of B[a]P observed herein is unknown.

B[a]P has a wide range of biological activities. B[a]P interacts

with the AhR, induces reactive oxygen species (ROS), forms DNA

adducts, promotes immunosuppression, modulates the microbiome,

and induces epigenetic changes. Many of these mechanisms have

been shown to influence adiposity and/or inflammation. B[a]P can

promote hematotoxcity which may induce immunosuppression and

impair HFD-promoted inflammatory responses and adiposity (23).

Another AhR-independent mechanismmay involve the translocation

of hormone-sensitive lipase, a critical component of the lipolytic

pathway responsible for fat breakdown. This translocation is

stimulated by an increase in ROS in adipose tissue, highlighting the

essential role of ROS in the complete process of lipolysis (24, 25).

Therefore, further exploration of the translocation of hormone-

sensitive lipase and its stimulation by ROS in visceral and

mammary adipose tissue could contribute to a more

comprehensive understanding of the adipose tissue-reducing effects

of B[a]P. In addition to impacting adipogenesis, B[a]P could directly

influence cancer cells by unknown mechanisms. Other benzo-

derivatives have apoptosis-inducing activities in cancer cells. Anti-

tumor effects have been identified for benzopyran derivatives (26–28)

and a novel benzocoumarin-stilbene hybrid (29).

The gut microbiome has emerged as a key player in adiposity

regulation. Certain microbial species have been associated with

obesity, while others have been linked to leanness. The microbiome

can influence adiposity through various mechanisms, including the

production of metabolites that affect energy balance and

inflammation. For example, the short-chain fatty acid butyrate

has been shown to promote energy expenditure and reduce

adiposity (30, 31). Primary findings show that butyl butyrate was

significantly altered in human microbiota by B[a]P exposure (32)

suggesting that B[a]P leads to changes in the abundance of volatile

metabolites in the microbiota which can impact adiposity. Future
FIGURE 3

Serum kynurenine concentration is significantly increased in HFD-
fed mice exposed to B[a]P. Serum kynurenine concentrations as
measured by ELISA. A two-way ANOVA was performed to determine
statistical significance and values *p < 0.05 and ***p < 0.001 are
considered statistically significant.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1394039
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gonzalez-Pons and Bernard 10.3389/fonc.2024.1394039
studies could aim to identify microbial species impacted by B[a]P

exposure, elucidating their specific contributions to energy

metabolism, inflammatory responses, and adiposity regulation.

For instance, experiments could involve microbial community

profiling using high-throughput sequencing techniques to assess

changes in species diversity and abundance in response to B[a]P

exposure. All these potential mechanisms potentially outweigh that

of AhR-dependent effects.

Interestingly, B[a]P-exposed mice on a HFD were protected

from obesity closely resembling the phenotype observed in studies

where mice are deficient in AhR activity. For example, AhR

knockout mice are protected from HFD-induced obesity (33).

This effect was only observed when challenged with HFD—no

effect on weight gain was observed in LFD-fed mice. Adipose

tissue-specific depletion of AhR, protected against diet-induced

obesity (34). Consistent conclusions are drawn from alternative

models: chemical inhibition of AhR by either a-napthoflavone or

CH-223191 protected against Western diet-induced weight gain in

vivo (35). Therefore, there may be a mechanism whereby B[a]P has

AhR inhibitory activity by either 1) reducing the activity of

endogenous agonists from adipose tissue, such as kynurenine,

and/or 2) inducing the expression of the AhR repressor.

Several conclusions can be drawn from this study to be applied

to future experiment design. Although our prior studies

demonstrated that HFD-feeding of mice significantly increased

adipose tissue kynurenine (36), herein, circulating kynurenine

concentration was not associated with overall adipose tissue

weight. The highest concentrations of serum kynurenine were

observed in HFD-fed, B[a]P exposed mice (Figure 3)—a group

that had significantly less body weight and adipose tissue weight

compared to the HFD-fed, vehicle exposed mice. The elevated

concentration of serum kynurenine in B[a]P exposed mice on a

HFD may be more reflective of the amount of total body AhR

activation and/or tumor AhR activation, as the transcriptional

activity of AhR induces indoleamine 2,3-dioxigenase (IDO), the

enzyme responsible for the catabolizing tryptophan to kynurenine.

Elevated IDO leads to increases in kynurenine in a positive feedback

manner (37). Tumor cells exhibit a high demand for nutrients,

particularly tryptophan, to promote their growth and are capable of

releasing kynurenine into the periphery (37). Therefore, elevated

levels of serum kynurenine in the B[a]P-exposed group fed a HFD

may be linked to the secretion of kynurenine from tumors. To

further explore these findings, future studies could test this

hypothesis in different mouse strains that have higher and lower

affinity AhR alleles to see if we observe the same modulatory effect

with respect to kynurenine levels and/or adipose tissue mass in B[a]

P-exposed mice challenged with HFD.

We had originally hypothesized that there would be a positive

interaction between B[a]P and HFD on progression and metastasis.

One study limitation is that 4T1 model of mammary carcinoma is

highly aggressive, potentially missing a more sensitive window for

detecting interactions. Our hypothesis may be better suited to be

tested in transgenic models where tumor formation occurs over the

course of months instead of weeks. However, by utilizing the 4T1

model of tumorigenesis, we determined there was no additional

effect of B[a]P on the promotion of established cancer. Instead, we
Frontiers in Oncology 06
unexpectedly discovered that B[a]P had an off-target effect,

inhibiting HFD-promoted adipogenesis.
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