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Biomarkers of chemotherapy-
induced cardiotoxicity: toward
precision prevention using
extracellular vesicles
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Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity,

pose barriers for preventing cancer progression, or treating cancer early through

molecular interception. Extracellular vesicles (EVs) are valued for their potential as

biomarkers of human health, chemical and molecular carcinogenesis, and

therapeutics to treat disease at the cellular level. EVs are released both during

normal growth and in response to toxicity and cellular death, playing key roles in

cellular communication. Consequently, EVs may hold promise as precision

biomarkers and therapeutics to prevent or offset damaging off-target effects of

chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity

induced by chemotherapies and as cardioprotective therapeutic agents. However,

EVs can also mediate cardiotoxic cues, depending on the identity and past events of

their parent cells. Understanding how EVs mediate signaling is critical toward

implementing EVs as therapeutic agents to mitigate cardiotoxic effects of

chemotherapies. For example, it remains unclear how mixtures of EV populations

from cells exposed to toxins or undergoing different stages of cell death contribute

to signaling across cardiac tissues. Here, we present our perspective on the outlook

of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both

as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we

discuss how heterogeneous mixtures of EVs and transient exposures to toxicants

may add complexity to predicting outcomes of exogenously applied EVs. Elucidating

how EV cargo and signaling properties change during dynamic cellular events may

aid precision prevention of cardiotoxicity in anticancer treatments and development

of safer chemotherapeutics.
KEYWORDS

cancer, cardioprotection, cardiotoxicity, chemotherapy, doxorubicin, extracellular
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Abbreviations: DOX, doxorubicin; ESC, embryonic stem cell; EV, extracellular vesicle; iPSC, induced

pluripotent stem cell; lncRNA, long non-coding RNA; MI, myocardial infarction; miRNA, microRNA;

MSC, mesenchymal stem cell.
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Introduction

Rapid, non-invasive strategies for testing and routine

monitoring of changes at the cellular level are critical toward

understanding chemical and molecular carcinogenesis and

preventing symptomatic onset of devastating diseases such as

cancer (1, 2). Liquid biopsies, consisting of blood or other bodily

fluids, are gaining considerable interest in the scientific community.

Biofluids contain a wealth of potential information that could be

harnessed toward detecting early cancerous phenotypes (individual

or multiple cancers simultaneously) and monitoring response to

anticancer therapeutics (3–6). Numerous proteins and nucleic

acids, both free-floating and encapsulated within extracellular

vesicles (EVs), are released from the cells of internal tissues and

are present in extracellular fluids (2, 7, 8).

EVs are a diverse family of membrane-bound particles. EVs

were discovered in the early 1980s and first proposed to function as

waste transporters for the cell (9). However, coinciding with the

finding that EVs contain RNA, the view shifted to consider these

particles as potential mediators in cellular communication (10–12).

The bi-layered lipid structure of EVs provides a stable means for

intercellular transport of a variety of biomolecules, including

nucleic acids, both locally and over long distances (13–17).

Although a full description of the breadth of cargo identified in

EVs would be immense, and is beyond the scope of this article, we

point the reader to several excellent reviews and proteomic studies

on this topic (18–21).

EVs can participate in cellular communication through fusing with

the cellular plasma membrane of target cells and releasing their

contents, or through signaling cascades: for example, by binding to

receptors on tumor cells to trigger apoptosis (17, 22). EVs display

several surface proteins including glycoproteins, tetraspanins, and

adhesion molecules that contribute to determining the eventual

target and distribution of EVs (17). With their diverse size and

composition, EVs play a variety of roles in development and disease.

The pleiotropic roles of EVs are well exemplified in the cardiovascular

system. Many cells of the cardiovascular system release EVs, including

endothelial cells, cardiomyocytes, stem cells, and progenitor cells, both

during normal development and in response to disease (23).

EVs may be produced through a variety of mechanisms,

including the endocytic pathway (exosomes) (17), budding of the

plasma membrane (microvesicles) (24), and as the result of cellular

death mechanisms such as apoptosis (apoptotic bodies) (25). These

EVs can go on to mediate cardioprotective signaling responses, but

EVs can also contribute to cardiotoxicity. Harnessing the

cardioprotective properties of EVs and minimizing mechanisms

of cardiotoxicity would be of great value for cancer therapies. For

instance, many anticancer therapeutics can cause deleterious off-

target cardiotoxic effects (26), a classic example being the

anthracycline doxorubicin (DOX) (27). In this article, we present

our perspective on the potential of EVs as tools to prevent cardiac

damage resulting from chemotherapies, both as biomarkers of early

cardiotoxicity and as therapeutic cardioprotective agents.
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Extracellular vesicles as biomarkers of
cardiac health and cardiotoxicity

The deleterious effects of cardiotoxicity caused by some

chemotherapeutic agents are multifaceted and include changes in

calcium signaling that cause arrhythmias, cardiac hypertrophy,

myocardial remodeling, and cellular death (28). Aberrant cellular

death in cardiac tissue is of primary concern as it is a driver of cardiac

malfunction and disease (29). Cardiotoxicants often lead ultimately to

increased cellular death. For example, DOX can trigger numerous

cellular death pathways including apoptosis, ferroptosis, autophagy,

necrosis, and pyroptosis (30). EVs are of potential value for detecting

tissue-level events because they both represent the current state of a

given cell and contain cargo representative of past events. For

instance, cells that have been exposed to biochemical or mechanical

stimuli such as glucose deprivation or stretch release EVs enriched in

receptors for glucose or angiotensin, respectively (31). Overall levels

of EVs can be an indicator of cardiovascular disease (24). Developing

the ability to isolate and trace EV populations back to specific events,

such as toxicity, in their parent tissues is an exciting prospect.

Circulating EVs could thus serve as early indicators of cardiac

malfunction (32, 33), which could be of value for monitoring

cardiac health during chemotherapy.

Several EV properties including size, protein composition, and

nucleic acids are altered upon cellular demise, providing a potential

means by which to communicate tissue-level events such as

cardiotoxicity. Cells undergoing a death pathway have the

potential to generate very large (>1000 nm) EVs compared to

healthy cells. Isolation and characterization of these large vesicles

may provide information about the prevalence and pathways of

cellular death initiated in response to a cardiotoxic exposure

(Figure 1). For instance, apoptotic vesicles can range from 50

-5000 nm (34). Vesicles released from necrotic cells are generally

slightly smaller at 200-800 nm (35). EVs of a variety of sizes (30 nm-

1000 nm) can be generated in response to several forms of lytic cell

death, specifically primary and secondary necrosis and pyroptosis

(36). Autophagic processes can generate vesicles (autophagosomes)

up to 10 mm in diameter, containing parts of cellular organelles or

even intact mitochondria (37).

Further clues as to the origin of an EV may be contained in its

associated proteins and cargo. Proteins such as such as CD81,

CD63, and CD9 may be indicative of EVs secreted actively via an

intracellular pathway (38), whereas vesicles that bud from the

plasma membrane during apoptotic or necrotic processes may

contain specific cell surface markers (39). For example, both

apoptotic and necrotic cells release vesicles presenting

phosphatidylserine (35). In addition, EVs expelled from cells

undergoing necroptosis, a regulated form of necrosis, carry a key

marker of necroptosis, pMLKL (35). Protein cargo can also be

significantly altered. For example, a total of 24 EV-associated

proteins were found to be differentially regulated in response to

apoptosis (40). In addition, EVs generated during apoptosis can

encompass fragments of nuclei and thus contain genomic DNA and
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related proteins such as histones, or stem from the plasma

membrane and contain cytoplasmic cargo (34). These vesicles

were found to differ from EVs released during autophagy, in that

their proteome was depleted of nuclear proteins, and enriched in

cytoskeletal and mitochondrial proteins (37).

EV-encapsulated nucleic acids provide both a history of events

and can confer downstream effects. For instance, the long

noncoding RNA (lncRNA) GAS5 was elevated in atherosclerotic

plaques in both patients and humans, and EVs containing lncRNA

GAS5 promoted endothelial cell apoptosis (41). EVs commonly

contain microRNAs (miRNAs), which play numerous signaling

roles and may confer gene silencing through mRNA degradation or

repression of protein translation (42). miRNAs involved in the

propagation of deleterious signaling pathways can be released in

EVs from unhealthy or dying cells. For example, oxidative stress

caused release of EV-packaged miR-185-5p, which enhances

caspase activity and promotes both apoptosis and necrosis (43).

Irradiation of human whole blood samples induced upregulation of

EV-containing miR-204-5p, miR-92a-3p, and miR-31-5p, which

are involved in pathways regulating apoptosis, proliferation, and

immune response (44). Although miRNA transfer is believed to be a

primary means through which EVs mediate intercellular signaling,

they can also signal via cytokines. For instance, cardiomyocytes

expel EVs enriched in TNF-a in response to hypoxia in vitro, which

can go on to promote further cell death in an autocrine manner

(30). Although many forms of cellular death protect tissues by

eliminating damaged cells, EVs released from dying cells can be a

means for propagating deleterious protein machinery within a

stressed tissue. For example, autophagy-dependent ferroptosis
Frontiers in Oncology 03
induced by oxidative stress was found to promote propagation of

mutant KRAS to other cell types via EVs (45). Understanding EV-

cargo released by cardiac tissues undergoing cellular death in

response to toxic insult may uncover EVs that could serve as

biomarkers of early cardiotoxicity.

However, programmed cellular death is not necessarily an

isolated outcome that reflects toxicity or poor tissue health.

Recently, it has been identified that cells can recover from

apoptosis after events including caspase-activation, mitochondrial

fragmentation, and DNA damage (46). A separate cell death

pathway, ferroptosis, was also found to be reversible (47).

Mechanisms through which cells can recover from death

pathways may serve to protect valuable cell populations such as

cardiomyocytes. However, such processes also drive DNA damage,

micronuclei formation, and massive genetic rearrangements, which

can lead to cancerous mutations and deleterious phenotypes (46).

Not surprisingly, RNA transcription was proposed to be a critical

step in apoptosis recovery (46). Thus, cells undergoing recovery

from a death pathway might be expected to release different sets of

EV-encapsulated cargo than homeostatic cells. An important

question is whether these vesicles reflect beneficial or deleterious

phenotypes. Knowledge of the differences in EVs released from cells

that undergo cellular death versus from cells that recover could aid

our ability to use EVs as biomarkers. Using released EVs to identify

early cardiotoxic and tumorigenic processes could help predict

tissue fate and guide preventative therapeutics.

EVs have already shown promise as biomarkers of DOX-

induced cardiotoxicity in mouse models. Specifically, DOX

treatment was observed to increase serum EVs that were larger
FIGURE 1

Characteristics of EVs produced in response to different cellular death pathways. Shown is a schematic illustrating characteristics of EVs (cargo,
surface proteins) released by cells undergoing several different forms of cellular death. DAMPS, damage-associated molecular patterns; HSP, heat
shock proteins; LDH, lactate dehydrogenase; MLK, mixed lineage kinase; RER, rough endoplasmic reticulum.
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and irregularly shaped, with an increase in protein cargo specific to

several key organs including heart and skeletal muscle (48).

Notably, these EV-associated protein markers increased earlier

and in greater proportions than traditional markers of cardiac

disease such as cardiac Troponin-I. In addition to proteins,

miRNA within EVs may also reflect DOX-induced toxicity. In

dogs undergoing chemotherapy, three serum EV-associated

miRNAs were differentially regulated post-DOX treatment (49).

Already, such biomarkers have shown potential for clinical utility in

humans. Notably, EV-associated miRNA from survivors of acute

lymphoblastic leukemia post-DOX chemotherapy were found to be

differentially regulated compared to control individuals (50).

Further, EV-associated miR-144-3p specifically was correlated

with cardiomyopathy. Together, these research efforts suggest that

EVs have propensity as biomarkers for cardiotoxicity monitoring.

Still, in order for EVs to be successfully implemented as clinical

monitoring tools, several challenges must be overcome. Specifically,

one limitation is differences in protocols and storage methods for

EV isolation across studies, which can alter EV populations and

cargo identified (51). Also, the small size and low abundance of

some EVs requires increasingly sensitive assays to detect (52).

Further development of specific and sensitive methods of EV

isolation and detection should bring us closer to identifying EVs

that could serve as robust clinical biomarkers. Yet, in addition to

using EVs as predictive tools, EVs might themselves be harnessed as

cardioprotective agents.
Harnessing extracellular vesicles as
cardioprotective agents

Some major goals of EV-based therapeutics are administering

cardioprotective EVs immediately post myocardial infarction (MI)

(31) to promote cell survival and developing EV-based strategies for

inhibiting cardiotoxicity of cancer drugs. Multiple cell types in the

heart including fibroblasts, cardiomyocytes, endothelial cells, and

cardiac progenitor cells have been found to release EVs that mediate

cellular crosstalk, and play numerous roles in cardiac health

including protection from atherosclerosis and modulation of

inflammation (31, 53, 54). Due to their plasticity, differentiation

capacity, flexibility, and renewal capacity, stem cells have been

identified as a promising source of EVs with therapeutic

potential. Embryonic stem cell (ESC)-derived EVs have been

observed to increase survival, proliferation, neovascularization,

and reduce fibrosis in mouse MI models (55). 3D cardiospheres,

enriched in stem cells, also release EVs that were shown to be

protective in MI models (56). Induced pluripotent stem cell (iPSC)-

derived EVs have also been shown to protect against apoptosis

following oxidative stress and MI (57). EVs derived from

mesenchymal stem cells (MSCs) also possess protective

properties. Bone marrow MSC-derived EVs may reduce fibrosis

and improve cell function and survival (58). Endometrial MSC-

derived EVs may be even more cardioprotective than bone marrow

or adipocyte MSCs in some contexts (59). Cardiac stem cells

pretreated with EVs produced by MSCs performed better in

mouse MI models and showed enhanced proliferation, migration,
Frontiers in Oncology 04
and vascularization in comparison to untreated counterparts

through regulation of numerous miRNAs (60). Many miRNAs

have been identified to regulate fibrosis through the TGF-b and

NF- kB signaling pathways (61). In addition, excellent reviews have

been written summarizing the actions of various miRNAs in

additional cardiotoxic processes including apoptosis and

inflammation (62, 63).

The cardioprotective properties of EVs may be further exploited

to deter the cardiotoxic off-target effects of chemotherapeutics such

as DOX via several miRNA-mediated signaling pathways. In mice,

systemic delivery of cardiac progenitor cell-derived EVs was found

to inhibit cardiotoxicity induced by DOX and trastuzumab, a

common breast cancer drug, in a manner dependent on

upregulation of miR-146a-5p (64). EVs isolated from bone

marrow MSCs attenuated the cardiotoxic effects of DOX in rats

through delivery of miRNA-96 (30). In addition, ultrasound-

targeted microbubble destruction-assisted EV delivery of miRNA-

21 to the heart reduced DOX toxicity in mice (65). EVs have been

further implicated in the response and mediation of DOX

cardiotoxicity through circular RNA spindle and kinetochore-

associated protein 3 (circ-SKA3), miRNA-1303, and Toll-Like

Receptor 4 (TLR4) (66). Transfer of lncRNAs such as NEAT1

through EVs was also observed to reduce the cardiotoxic effects of

DOX in mice via inhibition of miRNA-221-3p (67). Microvesicles

released from apoptotic DOX-treated cells also protected mice from

later tumor formation (68). In addition, treatment with ESC-

derived EVs decreased inflammation and pyroptosis in response

to DOX treatment (69). The breadth of cardioprotective capabilities

observed in EVs suggests they may have use as therapeutic tools in

the clinic. Yet, unfortunately, not only can cardioprotective

properties be transmitted by EVs, but also deleterious phenotypes.

Whether an EV will trigger a cardioprotective or cardiotoxic

response depends highly on the identity and history of the cells that

released them. For example, although EVs from ESCs appear to

promote survival and function of cardiac cells following either DOX

exposure or induced MI in mice, EVs isolated from embryonic

fibroblasts do not show these cardioprotective benefits (69, 70).

Rather, EVs collected from fibroblasts can induce cardiomyocyte

hypertrophy (71). It is becoming increasingly apparent that EV-

mediated signaling is dependent on the differentiation status,

microenvironment, and past events of the cells that released

them. These factors can profoundly impact the phenotypes

transmitted by released EVs, and their ability to promote cardiac

tissue health. For example, EVs derived from cardiomyocytes

preconditioned by hypoxia or angiotensin have been observed to

promote fibrosis by transferring miRNA-208a to fibroblasts (72). In

addition to promoting fibrosis or hypertrophy, EVs can serve

additional deleterious roles, including cancer drug-resistance via

miRNA transfer (73). Strategies aiming to destroy certain cell

populations (such as tumorigenic cells) and preserve or repair

other tissues (such as cardiac) require an understanding of the

numerous and dichotomous roles that EVs can play.

EVs transmit signals which can trigger the survival or demise of

cardiac cells, with cell type and microenvironmental cues impacting

their release (33). This opens opportunities for generating

therapeutic EVs in vitro by guiding the phenotype of the cells
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from which they are produced. However, the response that will be

induced by a given EV type is not necessarily clearly predictable.

Intriguingly, for example, prior treatment of cardiac progenitor cells

with H2O2 to induce oxidative stress enhanced the ability of

released EVs to attenuate H2O2-induced apoptosis via miR-21

transfer (23). Successful administration of therapeutic EVs also

depends on our ability to target these vesicles within the body. For

instance, in mouse models, macrophage engulfment of EVs resulted

in sequestration in the liver and spleen, preventing them from

reaching their intended target tissue (74). Suppressing endocytosis

in macrophages by knocking down clathrin, a key protein involved

in endocytosis (75), via an EV delivery strategy, improved cardiac

targeting of therapeutic EVs containing miR-21a-5p and decreased

the cardiotoxic effects of subsequently applied DOX (74).

Combining cardiac-targeting peptides with biomaterials can

further improve retention of therapeutic EVs in cardiac tissue.

For example, encapsulating EVs isolated from human umbilical

cord MSCs in a hydrogel containing cardioprotective peptides

improved retention and cardiac function post MI in rats (76). In

addition, conjugating cardiac stem cell-derived EVs with a homing

peptide sequence greatly enhanced their protective ability, targeting

them more specifically to the heart (77, 78). Precision targeting of

EVs within the body is another critical component of successfully

implementing preventative molecular strategies.
Discussion

Current strategies for monitoring chemotherapy patients for

cardiotoxicity include echocardiography and molecular biomarkers,

most commonly c-troponin and N-terminal-pro-brain natriuretic

peptide. However, these assessments may fail to identify the earliest

stages of cardiotoxicity, prior to damage taking place (79). Novel

biomarkers, such as EVs, are needed toward detection of impending

deleterious events. A deeper understanding of EV makeup in

response to specific cellular events within a tissue is critical not

just for diagnostic purposes, but also for understanding how the

balance of EVs impacts surrounding cells and overall tissue health.

Since tissues are comprised of multiple cell populations undergoing

heterogeneous events, EV tissue-specific signatures are likely

complex mixtures of vesicles with diverse cargo and properties.

For example, a transient toxic exposure triggering death of cells in

one part of a tissue, and subsequent recovery of some cells might be

expected to generate a mixture of EVs with cardiotoxic or unknown

signaling potential (Figure 2A). The surrounding healthy cardiac

tissue would thus be subjected to a mixture of EVs with

cardioprotective, cardiotoxic, or unclear cardiac signaling

potential. The balance of cardioprotective and cardiotoxic EVs in

a tissue would be expected to determine the probable fate of the

surrounding cells, but may be increasingly hard to predict in

complex EV mixtures (Figure 2B). Further research is needed to

better understand EV release in response to transient application of

cardiotoxins and recovery from cell death pathways.

Predicting the probable outcome of exposing healthy cardiac

tissue to a mixture of EVs is made yet more difficult by the complex

relationship between cellular states. For example, cell death is not
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always a sign of toxicity or poor tissue health. Remarkably, the

dependence of tissue repair processes on cell death, termed

“regenerative cell death” has been observed in several species and

contexts (80, 81). In these studies, EVs from apoptotic cells did not

appear to play a toxic role. Rather, the detected apoptotic bodies

were engulfed by other neighboring cells (82). However, the extent

to which EVs were involved directly in these regenerative processes

was not fully explored.

An exciting prospect would be if specific EV signatures could be

mapped to individual pathways of toxicity or demise, enabling

personalized therapeutic strategies and precision prevention of

cardiotoxicity. Toward this end, a better understanding of what

types of EVs are released from cells undergoing specific cell death

pathways and cells in intermediate stages of cell death would be

valuable. In addition, off-target cardiotoxic effects of anticancer

drugs can potentially be minimized through encapsulation or

parallel administration with cardioprotective EVs. However, to

fully develop these strategies, a thorough understanding of the
A

B

FIGURE 2

Impact of mixtures of EVs released by cells in different states of
growth and cellular death on the surrounding tissue. (A) Illustration
of the possible outcome of a toxic exposure on EV release in
cardiac tissue. A transient toxic exposure in one part of the tissue
could create a mixture of cell populations: dying cells, unaffected
cells, and cells recovering from a death pathway. Consequently, the
surrounding tissue would be expected to encounter a mixture of
EVs, consisting of vesicles with cardioprotective, cardiotoxic, or
unknown signaling potential. (B) Schematic illustrating that EVs from
some cell types might result in a higher probability of a
cardioprotective outcome (blue), whereas other EVs might result in
a cardiotoxic outcome (brown). However, the impact of a mixture of
EVs with either cardioprotective or cardiotoxic potential is difficult
to predict.
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factors that contribute to producing EVs with cardioprotective

properties is critical. Rather than focusing on simple addition of

cardioprotective EVs, a personalized medicine approach balancing

the proportions of multiple EV types may increase the probability of

a cardioprotective or regenerative outcome.
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