
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Rosario Caltabiano,
University of Catania, Italy

REVIEWED BY

Rajeev Kumar Pandey,
Johns Hopkins Medicine, United States
Mangala Hegde,
Indian Institute of Technology Guwahati, India

*CORRESPONDENCE

Yanling Li

doctorlyl@hb2h.com

RECEIVED 29 February 2024
ACCEPTED 12 August 2024

PUBLISHED 30 August 2024

CITATION

Lu F, Wang L, Ma X and Li Y (2024)
A Mendelian randomization study
of genetic liability to cutaneous
melanoma and sunburns.
Front. Oncol. 14:1393833.
doi: 10.3389/fonc.2024.1393833

COPYRIGHT

© 2024 Lu, Wang, Ma and Li. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 August 2024

DOI 10.3389/fonc.2024.1393833
A Mendelian randomization
study of genetic liability to
cutaneous melanoma
and sunburns
Fengmin Lu, Ling Wang, Xixing Ma and Yanling Li*

Department of Dermatology, Clinical Medical Research Center of Dermatology and Venereal Disease
in Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
Background: Some studies have reported that sunburns and cutaneous

melanoma (CM) risk is increasing, but a clear causal link has yet to be established.

Methods: This current study conducted a two-sample Mendelian randomization

(MR) approach to clarify the association and causality between sunburn history

and CM using large-scale genome-wide association study data.

Results: The inverse-variance weighted method result showed that sunburn

might be associated with the risk of CM increasing (p = 2.21 × 10−23, OR = 1.034,

95% CI= 1.027-1.041), causally. The MR-Egger regression, weighted median

method, simple mode method, and weighted mode method results showed

similar results.

Conclusion: This study offers evidence of sunburn history and increased risk of

CM, and it shows that theremight be common genetic basics regarding sunburns

and CM susceptibility in Caucasian, European, or British ethnic groups.
KEYWORDS

cutaneous melanoma, sunburns, Mendelian randomization study, genetic
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Introduction

Cutaneous melanoma (CM) originates from melanocytes located in the basal layer of

the skin’s epidermis. It accounts for 5%~10% of all skin cancers yet accounts for over 80%

of skin cancer-related deaths (1, 2) Yuan et al. reported that CM prevalence increased in

most countries between 1990 and 2019, and the predictive analysis results suggested a

declining trend in the age-standardized incidence rate incidence but a growing number of

CM (3). Arnold et al. estimated that there might be a total of 325,000 new cases and 57,000

deaths from CM worldwide in 2020; new cases would increase to 510,000 (a roughly 50%
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increase) and 96,000 deaths (a 68% increase) by 2040 (4)]. The

treatment of CM includes wide excis ion, checkpoint

immunotherapy, targeted therapy, and radiotherapy, and

multidisciplinary care models have been widely used in advanced

CM (5). Immunotherapy has significantly improved the outcome of

CM, but its expensive price has become an important factor

hindering the survival rate of low-income CM patients (5–7).

CM is a result of the complex interaction between genetic and

environmental risk factors. Sunburns have been identified as the

first risk factor for CM (1, 2, 8). An Australian study showed that

sunscreen could effectively reduce the incidence of CM (9). Most

studies have focused on the association between URV exposure and

CM, but the causal relationship between sunburn history (severe

URV exposure history) and CM has often been overlooked.

We conducted a two-sample Mendelian randomization (MR)

study to clarify the association and causality between sunburn

history and CM using large-scale genome-wide association studies

(GWAS) data. This study provides new perspectives and evidence

for the early prevention and potential pathogenesis of CM.
Methods

Data sources and instrumental
variable selection

The data deployed in this study were publicly available GWAS

datasets validated by the IEU open GWAS database (https://

gwas.mrcieu.ac.uk), so this study did not require ethical approval.

The GWAS dataset of sunburn (ebi-a-GCST90029034) was

released in 2018 (10), including 350,232 participants. The GWAS

dataset of CM (ieu-b-4969) was released in 2021, including 375,767

participants. The population of exposure factors we selected were

350,232 European ancestry individuals, mainly from the United

Kingdom, European (U.K.); the population of melanoma was

mainly from the UK Biobank, which is European British ethnic.

Based on the utilization of aggregated-level data in our research,

which lacks specific biological individual information, and following

the data usage policy of the UKBB GWAS results, no further
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database data in this study (https://www.nealelab.is/uk-biobank/faq).

Sunburn-related SNPs were considered to be instrumental

variables (genome-wide significance: p < 5 × 10−8; clumping

algorithm: r2 = 0.001 and kb = 10,000) (11). F statistics of ≥10

demonstrated a low risk of weak instrumental bias (12, 13).
MR analyses

A two-sample MR strategy was used in this study, and SNP

exposure and SNP outcome associations were estimated using

summary statistics from independent samples. We utilized five

MR methods to obtain the causality between sunburns and CM:

MR-Egger regression (14), weighted median method (15), inverse-

variance weighted (IVW) (16), simple mode, and weighted mode.

The IVW method uses a weighted linear regression (Wald ratio of

each SNP) of SNP-exposure coefficients and SNP-disease

coefficients to estimate the effect of exposure on outcomes. This

method minimizes the mean variance and is often used in meta-

analyses to integrate independent measurement results. The

weighted median estimation provides accurate estimates if at least

half of the IVs are valid. The MR-Egger regression assumes that all

IVs are invalid and is the least powerful in causality inference. It

typically serves to validate the direction of the effects.

MR study results with p < 0.05 were considered significant.

Effect sizes are provided as odds ratio (OR) alongside 95%

confidence intervals (CIs). All MR analyses were performed in R

(Version 4.3.1) using the TwoSampleMR package (version 0.5.0)

(17). Figure 1 shows the flow of the MR study.
Sensitivity analyses and power calculation

To evaluate the reliability of our results, the Cochran Q-test was

performed to confirm the statistical heterogeneity of SNPs using

IVW estimates. p < 0.05 was considered as the sign of sign of

significant heterogeneity. Heterogeneity was judged visually by

funnel plots. Horizontal pleiotropy was evaluated using the MR-
FIGURE 1

Flow of the MR study.
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Egger intercept term (18), and an MR-PRESSO test (19) was used in

a leave-one-out (LOO) analysis to exclude each SNP in turn and

repeated IVW estimation.

The power calculation for the IVW estimates was based on

mRnd (20) (https://shiny.cnsgenomics.com/mRnd/). Sufficient

statistical power is recommended to be over 80%.
Results

Mendelian randomization analysis

At beginning, we used a total of 56 snps (instrumental variables)

according to the threshold setting in the method. After controlling

confounding factors by MRlap package and MR-PRESSO outlier

test, we identified 49 SNPs for the MR analysis. The F statistics were

above 10 (ranging from 27.088 to 1,463.858, with an average of

111.274) (Supplementary Table 1). The results showed that the

possibility of weak instrument bias might be ruled out (21).

In addition, MR-PRESSO outlier test is used to eliminate

outliers and to remove horizontally pleiotropic SNPs. By MR-

PRESSO outlier test, we deleted rs12203592, rs3114908,

rs4406278, rs62209647, etc. The corrected MR results still

significant (Supplementary Table 2).

The results of the IVW method suggested that sunburn might

be associated with the risk of CM increasing (p = 2.21 × 10−23,

OR = 1.034, 95% CI = 1.027–1.041), causally. Also, the other four

MR method analysis results showed similar results (Table 1,

Figure 2). As the risk of sunburn rises, so does the risk of

CM (Figure 3).

Due to the heterogeneity of the data, we finally used two

methods, fixed effects and random effects models, to calculate the

Mendelian analysis result. The results of all six methods are all in

the same direction, indicating that they are harmful factors, and the

p values of all methods show a high degree of correlation. The fixed

effects model p-value was 5.541543e−51 (Supplementary Table 3),

still significant either. The power calculation for the IVW estimates

based on mRnd was over 80% sufficient for the statistics.
Sensitivity analyses

Sensitivity analyses were performed to confirm whether the

association was obtained through the MR assumptions violation.
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The results showed that there was no heterogeneity (I2 = 0.01.1).

There was no evidence suggesting that directional pleiotropy caused

risk estimates (IVW MR_pleiotropy_test p = 0.182). An MR funnel

plot was used in the visual assessment of directional pleiotropy, and

the results showed that all variants were distributed symmetrically

(Figure 4), suggesting that estimates might not be caused by

unknown outliers.

A LOO sensitivity analysis was performed using the MR-

PRESSO test. The results suggest that there might be no single-

SNP-caused bias (Figure 5).
Discussion

The direct cause of CM is the long-term accumulation of

mutations in skin cells. To determine the causal relationship

between sunburns and CM, long-term continuous follow-up and

experimental studies based on basic medicine are required. Due to

high costs, including the ongoing investment of money and time, a

long-term randomized cohort study is a very challenging job. This

limits our ability to obtain a more complete picture of CM risk

factors and the corresponding causal relationships between sunburn

history and CM. In general, germline genetic variants could not be

affected by environmental risk factors because their combined form

had already been determined at the time of zygote formation. This

statute can be approximated as completely randomized, comparable

with the design principles used in randomized controlled trials (22).

With germline genetic variants as proxies for risk factors, through

the reanalysis of GWAS data, MR analysis can replace long-term

randomized cohort studies to some extent. Thus, the MR study

could also effectively address the issue of reverse causality.

The results of the MR study, which involved a combined sample

of 3,751 cases and 372,016 non-cases, revealed an association

between sunburn history and increased CM risk . A

comprehensive meta-analysis reported that intermittent sun

exposure and sunburn history increased the risk of CM (23). A

systematic review of gene–sun exposure interactions in skin cancer

identified variants of MC1R, CAT, and NOS1 that could help

explain the mechanism by which sun exposure causes CM (24).

There have been three MR studies about sunburns and CM, and

we obtained similar results. Li et al. reported that childhood

sunburn and malignant melanoma were indicated (OR = 4.74),

sites of tumor occurrence including on the face and trunk (25).

Zhong et al. reported that elevating the number of sunburns during

childhood increased the risk of CM (26). Liu et al. reported that a

history of childhood sunburn might increase the risk of CM

(OR = 6.317) (12). Data sources of sunburns for the above three

studies were obtained from the UK Biobank, but melanoma data

were obtained from the FinnGen Biobank and 23andMe. Although

these databases are derived from European populations, the

influence of genetic backgrounds between the British and Finnish

populations cannot be ruled out. The data in this study are from the

UK Biobank; the population involved in the study is British, which

can partly reduce the influence of the genetic backgrounds of

different populations on the MR results.
TABLE 1 Association between sunburn and risk of melanoma
skin cancer.

Method Beta SE p OR (95% CI)

MR-Egger 0.039 0.005 1.44×109 1.039 (1.029-1.050)

Weighted median 0.037 0.004 1.78×10−16 1.038 (1.029-1.047)

Inverse variance weighted 0.033 0.003 2.21×10−23 1.034 (1.027-1.041)

Simple mode 0.041 0.012 1.15×10−3 1.042 (1.018-1.067)

Weighted mode 0.034 0.004 9.06×10−10 1.035 (1.026-1.044)
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Previous evidence suggests that the PI3K/Akt and MAKP

pathways might play important roles in UVR-related CM (27).

However, this mechanism cannot explain all the etiology of CM.

The melanoma GWAS meta-analyses by Landi et al. reported 54

genome-wide significant loci (28); based on the result, Erping Long

identified functional variants and target genes for melanoma (29).

We found overlapping genes in sunburn-associated variants (which

we selected in this study) and in the melanoma susceptibility gene,

as reported in the above two studies. The overlap gene set includes

SLC45A2, HAL, and CYP1B1, whose related SNP set contains

rs16891982, rs3213737, and rs4670813. rs16891982, a locus in

SLC45A2, has been reported as a skin ageing- (30), skin

pigmentation- (31, 32), and skin photosensitivity- (33)

associated SNP.

Previous studies about HAL, containing the rs3213737 locus,

might play roles in basal cell carcinoma (24) and skin pigmentation

(34). However, there had been no study that reported the

association between rs4670813 and CM, and CYP1B1 whose

rs4670813 locus might be involved in the occurrence and

progression of CM (35–37). This result suggests that there might

be a common occurrence basis, including common genes and

mechanisms. An in-depth analysis of the mechanism would help
Frontiers in Oncology 04
to comprehensively understand the relationship between sunburn

history and CM. This relationship not only is epidemiological but

can also reveal the specific biological process.

Cutaneous malignant melanoma is skin tumor which accounts

for the third place among skin malignant tumors (approximately

6.8%~20%) (38). The conclusion of our study suggests sunburn

harmful for CM, so the following intervention strategies and related

research have positive healthy implications. Preventive strategies

are as follows: avoiding overexposure to the sun and taking

protective measures such as using sunscreen, wearing a sunhat,

and clothing can help reduce the risk of melanoma. Melanoma is

highly hereditary and family clustering. The high incidence of

family aggregation can detect the CM early, and this can be an

early warning method for whole family screening (39). For

prognostic screening testing for melanoma: Prognostic tests can

be used to estimate the severity of a melanoma and can help inform

further treatment decisions. Such as UCSF 500 test and Gene

Expression Profiling (GEP) which are relatively new and have not

been universally adopted (39–41). Early treatment: The prognosis of

early complete surgical resection, maturity of immunotherapy, and

targeted therapy technology all have good short-term and long-

term effects with few side effects.
FIGURE 3

Scatter plot to visualize the causal effect of sunburn on the risk of MCS. The slope of the straight line indicates the magnitude of the
causal association.
FIGURE 2

Forest plot to visualize the causal effect of sunburn on the risk of MCS using all MR methods.
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This MR analysis presented some limitations in data

availability. It is inevitable that there will be some overlap,

which may lead to bias and confounding. In addition, sun

exposure is not the only factor causing melanoma. The

influence of other confounding factors needs to be analyzed in

future: the elderly people and people with fair skin, with acral

skin nevus, and with a history of melanoma or skin diseases are
Frontiers in Oncology 05
all high-risk groups for melanoma (38–40). The age of the

population in this study (UK Biobank) is the British

population aged 40–69, so the analysis results may be

confounded by age factors. Many confounding factors may

affect the results of our analysis. However, the sensitivity test is

reliable (Supplementary Tables 1–3), so the confounding factors

did not affect our results.
FIGURE 5

LOO plot to visualize the causal effect of sunburn on the risk of CM when one SNP is left out.
FIGURE 4

Funnel plots to visualize the overall heterogeneity of MR estimates for the effect of sunburn on CM.
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Conclusion

This two-sample MR study provided a positive correlation

between the number of sunburns and increased CM risk.

Sunburn’s genetic susceptibility might lead to CM risk. This

suggests that people with a history of sunburns should be on high

alert for the occurrence of CM. The scope of application of the

conclusion in our analysis is limited to Caucasian, European, or

British ethnic groups. Whether there is significance in Asian and

other races is yet to be studied. Public health and clinical

departments should pay more attention to the prevention of

sunburn to reduce the occurrence of CM.
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