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Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable

prognosis in various tumor patient cohorts. Within the tumor microenvironment,

aberrant deposition and expression of Fg have been consistently observed,

interacting with multiple cellular receptors and thereby accentuating its role as

a regulator of inflammatory processes. Specifically, Fg serves to stimulate and

recruit immune cells and pro-inflammatory cytokines, thereby contributing to

the promotion of tumor progression. Additionally, Fg and its fragments exhibit

dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor

migration through both platelet-dependent and platelet-independent

mechanisms. Recent studies have illuminated several tumor-related signaling

pathways influenced by Fg. This review provides a comprehensive summary of

the intricate involvement of Fg in tumor biology, elucidating its multifaceted role

and the underlying mechanisms.
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1 Introduction

Fibrinogen (Fg), a 340 kDa dimeric glycoprotein, is synthesized by hepatocytes and

composed of three polypeptide chains: fibrinogen Aa (FGA, 52.0 kDa), Bb (FGB, 52.0

kDa), and g (FGG, 46.5 kDa (1). Each Fg molecule comprises two outer D domains

connected by a central E domain, with the E-region encompassing the N-terminus of Aa,
Bb, and g chains, while the D-region consists of the C-terminus of the Bb and g chains (2).

Traditionally recognized as a coagulation factor, Fg undergoes transformation into a

fibrin polymer during the clotting cascade. In its role as an acute-phase reaction protein, Fg

actively engages in inflammatory processes and interacts with the activation and migration

of leukocytes (3). Noteworthy, previous research has consistently reported elevated plasma

Fg levels across various tumor types, underscoring its significant involvement in

tumorigenesis (4).

Moreover, Fg deposition has been observed in the tumor extracellular matrix (5) and the

walls of angiogenic blood vessels (6), implying associations between Fg and tumor angiogenesis

and metastasis. These interactions are mediated by binding sites on Fg, which engage with
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diverse molecules, including various plasma proteins and cellular

receptors (7). Furthermore, multiple pathways have been identified

linking Fg to tumor progression (8). This comprehensive review

provides an in-depth overview of the pivotal role played by Fg in

tumor biology, emphasizing its crucial contributions to angiogenesis,

metastasis, and inflammation within the tumor microenvironment.
2 The role and mechanism of Fg
in tumors

2.1 Plasma Fg levels in tumor
patient cohorts

Elevated plasma fibrinogen(Fg) levels consistently manifest in

diverse tumor patient cohorts (9). In lung, rectal, and stomach

cancers, heightened Fg levels correlate with poorer survival (10–12)

are recognized as an independent prognostic marker (4). In

lymphoma and leukemia, multivariate analysis underscores

plasma Fg as a biomarker and a robust predictor.

Table 1 furnishes a comprehensive overview delineating the

multifaceted roles and associations of pre-treatment plasma Fg

levels within diverse medical contexts. The presented findings

underscore the versatile nature of Fg, positioning it as both a

prognostic marker and a predictor across varying conditions,

including considerations of tumor-node-metastasis (TNM) stage

and responses to surgery or chemoradiotherapy.

Notably, although the prognosis of Fg has been demonstrated in

most tumors, the prognosis of Fg in certain tumors remains

controversial. In patients with relapsed and/or metastatic head

and neck squamous cell carcinoma (R/M HNSCC), Fg levels may

serve as a predictive indicator for survival (51). However, insights

from Nenclares’ research on oral squamous cell carcinoma (OSCC)

patients suggest that Fg levels lack predictive value in this context

(52). Additionally, it is noteworthy that decreased plasma Fg levels

are indicative of poor prognosis in angiosarcoma of the head and

neck (ASHN) (53) and acute promyelocytic leukemia (APL) (54), as

reported in the literature.

Elevated Fg levels in patients undergoing treatment for various

tumors often correlate with poor prognosis, offering clinicians

valuable insights for treatment planning and patient management.

In surgical settings, heightened preoperative Fg levels typically signal

a bleak prognosis post-surgery, warranting vigilant monitoring.

Regarding chemotherapy, patients with hepatocellular carcinoma

and elevated preoperative plasma Fg levels tend to exhibit poor

responses to transarterial chemoembolization (TACE) (55).

Similarly, in rectal cancer patients undergoing chemoradiotherapy

(CRT) with radiotherapy, those with lower pre-treatment Fg levels

(≤270 mg/mL) are more than twice as likely to achieve complete

remission compared to counterparts with higher pre-treatment Fg

levels (>270 mg/mL) (11). Moreover, in esophageal squamous cell

carcinoma (ESCC), patients with elevated Fg levels demonstrate

reduced responsiveness to navumab (20). These findings

underscore the importance of tailoring chemotherapy regimens to

individual cancer patients with elevated Fg levels to optimize
Frontiers in Oncology 02
treatment efficacy. Therefore, prioritizing the assessment of elevated

Fg levels before treatment is imperative, enabling clinicians to

customize treatment strategies and accurately evaluate post-

treatment prognosis for cancer patients.
2.2 Fg in tumor extracellular matrix

Research has unveiled the presence of Fg in the tumor stroma,

predominantly composed of connective tissues, inflammatory cells,

and newly formed blood vessels (56). Elevated Fg expression has

been detected in various original tumor biopsy samples,

encompassing patients with breast cancer (57), uterine cervix

carcinoma (58) and HCC (5), among others. Mechanistic insights

into Fg expression in the tumor mesenchyme vary across different

tumor settings. In cases of central nervous system lymphoma,

disruption of the blood-brain barrier contributes to enhanced Fg

deposition within the tumor stroma (59). In breast cancer, the

binding interactions between Fg b15-42 and VE-cadherin improve

endothelial barrier permeability (60). Increased vascular

permeability within tumors results in the leakage of Fg from

plasma into the tumor stroma (61). Notably, Fg deposition in

acute promyelocytic leukemia is mediated by Fg binding to CD44

on APL blasts and NB4 cells (62).

Furthermore, tumor cells, including lung adenocarcinoma A549

cells (63), hepatocellular carcinoma HepG2 cells (64), human breast

carcinoma MCF-7 cells (57) and uterine cervix carcinoma ME-180

cell (58), have been identified as capable of synthesizing and

secreting Fg. This synthesis is attributed to elevated transcription

of fibrinogen Aa (FGA), fibrinogen Bb (FGB), and fibrinogen g
(FGG) genes.

Table 2 provides a comprehensive summary of diverse observations

related to Fg expression across different pathological contexts.
2.3 Pro-inflammatory role of Fg in tumors

Inflammation serves as a driving force across all stages of

carcinogenesis, fostering cancer growth. The creation of an

inflammatory tumor microenvironment (TME) results from

intricately coordinated interactions involving cancer cells, stromal

cells, and inflammatory cells (76). Additionally, tumor cells actively

contribute to crucial stages of leukocyte recruitment and trafficking

(77). These processes encompass chemokine-induced migration,

coupled with the activation of leukocyte integrins and selectin

adhesion molecules, facilitating the interaction of tumor cells with

vascular endothelium and subsequent extravasation.

Vascular and leukocyte responses play pivotal roles in the

pathogenesis of inflammation. Elevated vascular permeability is

among the initial responses to inflammation. Fibrinogen (Fg) plays

a role in facilitating the subsequent transendothelial migration of

leukocytes by binding to VE-cadherin in vascular endothelial cells

(60). Additionally, Fg activates AKT signaling and induces

microfilament depolymerization, thereby enhancing endothelial

barrier permeability (78).
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TABLE 1 Application of Fg as prognostic indicators and biomarkers in tumors.

Odd ratio DFS, disease-
free survival

Recurrence-
free survival

d ratio
5%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

– – – – –

– 1.658
(1.034-
2.657)

0.036 – –

– – – – –

– – – 3.076
(1.19-7.95)

0.02

– 0.996
(0.991-
1.001)

0.136 – –

– – – – –

– – – – –

– – – – –

– – – 2.27
(1.65,3.14)

<0.001

– – – 2.54
(1.19, 5.41)

0.016
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Tumor
Cohort

Authors Patients Major findings OS,
overall survival

hazard
ratio

(95%CI)

P-
value

O
(

Respiratory tumors

NPC He
et al (13)

998 patients from China The pre-treatment plasma Fg level is an
independent prognostic marker with the capacity
to predict survival outcomes.

1.970
(1.324–
2.931)

0.001 –

LSCC Cai
et al (12)

203 patients following therapy
from China

Fg emerges as a pivotal marker in predicting
survival outcomes.

1.992
(1.098-
3.614)

0.023 –

SCLC Fan
et al. (14)

120 patients from China Elevated plasma Fg serves as a reliable
prognostic indicator.

1.505
(1.018–
2.226)

0.041 –

NSCLC Mitsui
et al (15)

149 stage I NSCLC patients
following lobectomy from Japan

Preoperative plasma Fg levels prove to be
valuable predictors of both recurrence
and survival.

5.147
(1.44-18.40)

0.012 –

Sinn
et al (16)

84 stage III/N2 NSCLC patients
following neoadjuvant therapy
from Austria

Decreased Fg predicts superior overall
survival (OS).

0.994
(0.989,0.999)

0.025 –

Gastroenteric carcinoma

Oral cancer Su
et al. (17)

116 patients following oral cancer
surgery from China

Plasma Fg demonstrates diagnostic utility for
identifying osteomyelitis of the jaws after oral
cancer surgery.

– – –

OSCC Wu
et al (18)

365 patients following radical
resection from China

Elevated plasma Fg is associated with a less
favorable prognosis.

5.301
(2.426-
11.581)

<0.001* –

Esophageal
Cancer

Wakatsuki
et al. (19)

100 patients from following radical
esophagectomy with two- or three-
field lymphadenectomy Japan

Preoperative plasma Fg stands out as a potential
biomarker for predicting tumor progression,
recurrence patterns, and prognosis.

1.88
(1.06-3.29)

0.031** –

Hoshino
et al (20)

438 esophageal squamous cell
carcinoma (ESCC) patients following
transthoracic esophagectomy
from Japan

Fg serves as an important prognostic factor
in ESCC.

2.36
(1.66,3.35)

<0.001 –

GC Cheng
et al. (10)

8315 patients Elevated plasma Fg serves as a potential predictor
for worse OS and recurrence-free survival (RFS),

1.57
(1.36,1.81)

< 0.001 –
d
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TABLE 1 Continued

Odd ratio DFS, disease-
free survival

Recurrence-
free survival

dd ratio
(95%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

– – – 1.140
(1.059,1.228)

0.001

– – – – –

026
.369,2.997)

<0.001 – – – –

– 1.90
(1.52, 2.37)

<
0.0001

1.90
(1.52, 2.37)

<
0.0001

– – – – –

666
.802,17.813)

0.003 – – – –

– – – – –

– – – – –

– – – – –

– – – 2.43
(1.40,4.06)

0.002

– – – 1.68
(1.08,2.61)

0.021
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hazard
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(95%CI)

P-
value

O

Gastroenteric carcinoma

correlating significantly with aggressive
clinical features.

Wang
et al (21)

542 advanced gastric cancer patients
with Borrmann type III following
radical gastrectomy from China

Patients with high Fg levels experience worse RFS
and OS.

1.140
(1.058,1.228)

0.001 –

Colon cancer Parisi
et al (22)

126 patients from Italy Elevated Fg levels indicate a higher risk and are
linked to poorer OS.

1.91
(1.15, 3.17)

0.012* –

Rectal cancer Lee
et al. (11)

947 patients receiving preoperative
chemoradiotherapy and following
radical surgery from Korea

Elevated Fg levels remain predictive after
preoperative chemoradiotherapy.

– – 2
(

HCC Huang
et al (23)

1,961 patients from Asia Elevated plasma Fg levels might predict poor
prognosis and advanced tumor progression.

2.08
(1.67, 2.59)

<
0.0001

–

Xu
et al (24)

461 HCC patients following
curative hepatectomy.

High Fg levels are associated HCC survival. 1.362
(1.183,1.567)

<0.001 –

PC Guo
et al (25)

133 patients from China Elevated Fg levels could serve as predictors for
distant metastasis.

– – 5
(

Chung
et al (26)

67 pancreatic ductal adenocarcinoma
patients from Korea

Serum Fg levels may predict prognosis. 1.906
(1.124,3.231)

0.017 –

HC Ye
et al. (27)

171 patients following curative-
intent resection from China

High plasma Fg levels, independent of tumor
stage, surgical margin, vascular invasion, and
lymph-node metastasis, are associated with
poor outcomes.

1.541
(1.044,2.274)

0.029 –

GBC Cao
et al. (28)

58 patients following surgery
from China

Plasma Fg levels act as prognostic factors
predicting outcomes following surgery.

1.012
(0.682,1.876)

<0.001 –

GIST Lu
et al. (29)

91 patients following curative-intent
resection from China

Elevated plasma Fg stands out as an independent
prognostic biomarker.

3.90
(1.90,8.15)

<0.001 –

Hematological malignancy

DLBCL Troppan
et al. (30)

372 patients from Austria High plasma Fg levels at diagnosis predict
poor outcomes.

1.69
(1.06,2.72)

0.029 –
.
1

.
1
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TABLE 1 Continued

dd ratio DFS, disease-
free survival

Recurrence-
free survival

O atio
CI)

P-
value

hazard
ratio

(95%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

– – – – – –

– – – – – –

– – 1.67
(1.30, 2.15)

<0.001 – –

– – – – – –

– – 1.7
(1.4, 2.1)

<0.001 – –

3
( 48)

<0.001 – – – –

1
( .025)

0.07 – – – –

2
(

0.002 – – – –

– – – – – –

– – 1.3
(1.01,1.6)

0.04 – –

– – – – – –

– – – – 1.593
(1.049,2.421)

0.029
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.012
0.998, 1

.4
1.4,4.0)
Tumor
Cohort

Authors Patients Major findings OS,
overall survival

hazard
ratio

(95%CI)

P-
value

Hematological malignancy

AML Zhang
et al. (31)

2947 patients Plasma Fg levels are related to OS. 1.21
(1.01,1.44)

<0.001

LBCL Holtzman
et al. (32)

45 patients with relapsed/refractory
LBCL treated with axicabtagene
ciloleucel from US

Elevated Fg levels at baseline could predict the
risk of immune effector cell-associated
neurotoxicity syndrome.

– –

Urogenital Neoplasms

RCC Tian
et al (33)

3744 patients Elevated plasma Fg levels indicate poor prognosis. 2.13
(1.74,2.61)

<0.001

UTUC Liu
et al. (34)

130 non-metastatic UTUC patients
following surgery from China

Increased preoperative plasma Fg is an
independent prognostic factor

– –

Cervical cancer Polterauer
et al. (35)

313 patients following conization or
simple hysterectomy from Austria

Plasma Fg is an independent
prognostic parameter.

1.7
(1.3,2.1)

<0.001

Ovarian cancer Seebacher
et al. (36)

241 patients with adnexal masses
following surgery from Austria

Plasma Fg is a robust predictor. – –

Farzaneh
et al (37)

141 patients from Iran Plasma Fg levels can independently predict
malignant ovarian tumors.

– –

Hefler-
Frischmuth
(38)

224 patients from Austria Elevated Fg levels are independently related to
malignant ovarian tumors.

– –

Uterine
leiomyosarcoma

Bekos
et al. (39)

70 patients from Austria High plasma Fg levels are linked to aggressive
tumor biology and an unfavorable prognosis.

1.3
(0.60,2.83)

0.51

Endometrial
cancer

Seebacher
et al (40)

436 patients from Austria Plasma Fg is an independent
prognostic parameter.

1.4
(1.1,1.2)

0.01

Prostatic cancer Wang
et al (41)

290 patients following deprivation
therapy from China

Pretreatment plasma Fg level are related to tumor
progression and the prognosis.

1.965
(1.181,3.270)

0.009

Bladder tumor Li et al (42) 206 non-muscle-invasive bladder
cancer from following transurethral
resection China

Preoperative Plasma Fg is a
prognostic biomarker.

– –
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TABLE 1 Continued

OS,
overall survival

Odd ratio DFS, disease-
free survival

Recurrence-
free survival

hazard
ratio

(95%CI)

P-
value

Odd ratio
(95%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

hazard
ratio

(95%CI)

P-
value

– – – – – – – –

– – 3.038
(1.667,5.537)

<0.001 – – – 0.951

– – 2.891
(1.201,4.874)

0.032 – – 4.228
(2.102,7.541)

0.007

0.64
(0.41,1.00)

0.048 – – – – – –

1.81
(1.23,2.65)

<0.01 – – – – – –

– – 6.452
(2.320,17.857)

0.0004 – – – –

1.069
(0.625,1.826)

0.808 – – 1.145
(0.667,1.965)

0.624 – –

1.04
(1.02,1.06)

< 0.001 – – – – – –

ung cancer; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma; GC, gastric cancer; HCC, hepatocellular
use large B cell lymphoma; AML, acute myeloid leukemia; LBCL, large B-cell lymphoma; RCC, renal cell carcinoma; UTUC,
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Tumor
Cohort

Authors Patients Major findings

Other tumors

Breast cancer Graf
et al. (43)

114 nulliparous patients
from Germany

Elevated Fg levels predict the risk of breast cancer
[HR=6.53, 95%CI:1.76-24.3, P=0.01].

Wang
et al (44)

1004 patients with invasive breast
cancer following neoadjuvant
chemotherapy and subsequent
surgery from China

Increased Fg levels predict a worse prognosis.

PTC Liu
et al. (45)

1023 PTC patients following surgery
from China

Patients with hyperfibrinogenemia were possible
to an advanced TNM stage and a higher
recurrence rate.

GBMs Wang
et al. (46)

315 patients following surgery
from China

Elevated plasma Fg predicts a shorter
OS outcome.

MPM Ghanim
et al. (47)

176 patients receiving curative
resection, chemo- and/or
radiotherapy from Austria

Fg is identified as an independent
prognostic biomarker.

Soft
tissue tumor

Asanuma
et al. (48)

102 patients from Japan Elevated Fg levels are recognized as an
important predictor.

Osteosarcoma Pu
et al. (49)

160 patients following surgery
from China

Higher Fg levels are associated with a potential
for worse OS and PFS.

Liposarcoma Peschek
et al. (50)

158 patients following surgery
from Austria

Elevated Fg are linked to adverse OS.

OS, overall survival; RFS, recurrence-free survival; NPC, nasopharyngeal carcinoma; LSCC, laryngeal squamous cell carcinoma; SCLC, small cell
carcinoma; GBC, Gallbladder cancer; PC, pancreatic cancer; HC, hilar cholangiocarcinoma; GIST, gastrointestinal stromal tumor; DLBCL, diff
upper urinary tract urothelial carcinoma; PTC, papillary thyroid carcinoma; GBMs, glioblastomas; MPM, malignant pleural mesothelioma;
*multivariate analyses of prognostic factors in patients.
**multivariate analyses of prognostic factors for overall survival and recurrence-free survival in patients.
l
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Recent evidence has highlighted the association between circulating

Fg and DNA methylation in peripheral blood leukocytes (79),

underscoring Fg’s role in leukocyte migration and recruitment.

Acting as a bridging molecule, Fg links leukocyte integrin aMb2
(Mac-1) to intercellular adhesion molecule-1 (ICAM-1) on

endothelial cells (ECs) (80), facilitating leukocyte adhesion and

transvascular migration across the vascular endothelium. Moreover,

at sites of inflammation, Fg interacts with immune cells, hastening

their recruitment to participate in the inflammatory cascade (81).

(Figure 1) A reciprocal relationship exists between leukocytes and

Fg, wherein during inflammation, reactive oxygen species (ROS)

from neutrophils and monocytes, along with nitric oxide from

lymphocytes and monocytes, cleave Fg (82). Subsequently,

protease-cleaved Fg binds to macrophage toll-like receptors,

amplifying the inflammatory response through an allergic cascade

(83). This establishes a positive feedback loop between Fg and

immune cells, intensifying the inflammatory milieu.

Moreover, inflammatory mediators play crucial regulatory roles

in both vascular and leukocyte responses. Fg has been implicated in

promoting inflammatory responses by enhancing the secretion of

inflammatory factors, either independently or in response to

various environmental cues.

Studies have demonstrated that Fg upregulates the secretion of

several cytokines, including IL-6, IL-17, IL-23, TNF-a, macrophage

inflammatory protein-1 a (MIP-1a), MIP-1b, MIP-2, and
Frontiers in Oncology 07
monocyte chemotactic protein-1 (MCP-1) (84–86). The

molecular mechanisms underlying Fg-mediated promotion of

inflammatory factors have also been elucidated. Fg participates in

the inflammatory process by activating the NF-kB pathway and

inducing the expression of interleukin-6 (IL-6), interleukin-8,

monocyte chemotactic protein-1 (MCP-1), and C-C chemokine

ligand-2 (CCL2) (87, 88).

Furthermore, Fg has been found to stimulate cytokine secretion

under various conditions. Specific chemical modifications, such as

D-ibose glycosylation, can enhance Fg’s involvement in specific

inflammatory responses, resulting in increased expression of

inflammation-associated cytokine genes, including TNF-a, IL-6,
IL-1b, and IFN-g (89). Additionally, specific enzymatic structures,

such as atypical cross-linking mediated by the glutamine transferase

transglutaminase-2 (TG2), enhance the secretion of pro-

inflammatory cytokines (e.g. TNF-a) in myeloid macrophages,

while simultaneously reducing the expression of IL-10 and

inhibiting the phosphorylation of STAT3 (90).

In the specific context of a tumor, the role of Fg and immune cells

undergo alterations. Typically, during inflammation, Fg activates

macrophages, polarizing them into pro-inflammatory M1

macrophages via integrin a1b3. This activation leads to the

expression of M1 macrophage-specific markers such as inducible

nitric oxide synthase (iNOS) and pro-inflammatory cytokines (IL-1b,
IL-6, TNF-a) (91). However, within the tumor microenvironment,
TABLE 2 Fg in ECMs and tumor cell lines.

Cancer
Cohort

Methods Major finding References

NSCLC Immunohistochemical Fibrinogen g (FGG) levels in tissues are observed within the nuclei. (65)

GC WB and RT-
PCR
Immunohistochemical

Gastric cancer tissues express fibrinogen Aa (FGA). (66)

Colorectal
adenocarcinoma

Immunofluorescence
and
immunohistochemical

Colorectal adenocarcinoma biopsies demonstrate elevated Fg deposition, bound to the tumor surface
and adjacent to overlying dermal tissue.

(67, 68)

HCC WB, RT-PCR
and
immunohistochemical

HCC tissue exhibits a significant and dramatic increase in Fg expression. (5, 69)

PC Immunohistochemical Pancreatic cancer stromal tissues are examined for Fg expression. (70)

CNS B-
Cell Lymphoma

Immunohistochemical
and
immunofluorescence

Abundant Fg deposition characterizes specimens of CNS B-cell lymphoma. (59)

RCC Western blot, RT-PCR
and
immunohistochemical

Elevated extravascular Fg expression is identified adjacent to tumor cells or around blood vessels. (71, 72)

Endometrial
cancer

Immunohistochemical Elevated Fg expression is observed in specimens of endometrial cancer. (73)

Breast cancer Immunostaining, RT-
PCR and
southern hybridization

Molecular analyses, including Southern hybridization, demonstrate the presence of fibrinogen Aa
(FGA), fibrinogen Bb (FGB), and fibrinogen g (FGG) chain genes in MCF-7 cells. Immunostaining
further reveals extracellular Fg adjacency to the surface of MCF-7 cells.

(57)

GBMs Immunofluorescence Fg expression is notably higher in tumor specimens. (74)

FLC Immunohistochemical In FLC of the liver, Fg levels Fg levels surpass those in HCC. (75)
NSCLC, non-small cell lung cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; PC, pancreatic cancer; CNS B-Cell Lymphoma, Central Nervous System B-Cell Lymphoma; RCC, renal
cell carcinoma; GBMs, glioblastomas; FLC, fibrolamellar carcinoma.
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Fg becomes associated with increased infiltration of tumor-associated

macrophages (TAMs) exhibiting an M2 phenotype. These M2 TAMs

promote tumor growth, induce angiogenesis, and suppress immune

responses (20).

Importantly, within the specific context of a tumor, the

interplay between Fg and immune cells may contribute to tumor

development. Distinct interactions occur between Fg g390-396A and

leukocyte integrin aMb2 (Mac-1) (92), typically mediated by Fg

binding to CD11b (93). These interactions lead to the activation of

downstream proteins, including focal adhesion kinase (FAK)

phosphorylation and mitogen-activated protein kinase (MAPK)

activation. Consequently, this triggers various processes such as

leukocyte degranulation, recruitment (94), phagocytosis, and

induction of inflammatory responses (95). Specifically, within the

tumor microenvironment, Fg g390-396A’s interaction with leukocyte

integrin aMb2 not only enhances the secretion of pro-

inflammatory cytokines like IL-6, IL-1b, IFN-g, and TNF-a but

also promotes tumor cell proliferation (96). This dual role

underscores Fg’s contribution to inflammation and tumor

development within tumors.
2.4 Fg and angiogenesis

The relationship between Fibrinogen (Fg) and angiogenesis

remains a subject of ongoing debate, with recent research

shedding light on its dual role—both pro- and anti-angiogenic—

in specific tissue contexts, particularly within the spectrum of

various diseases.
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The role of Fg in angiogenesis varies depending on the

environmental context. In skin wound models, a distinctive

pattern emerges as Fg infiltrates the lesion during the

inflammatory phase, coinciding with a decline in vascular

integrity. Notably, this Fg deposition correlates with heightened

re-epithelialization and accelerated angiogenesis, emphasizing its

context-dependent pro-angiogenic effects (97). Contrasting

observations arise in a colon cancer MC38 model, where mice

deficient in Fg exhibit lower vascular density compared to control

mice. This effect is found to be time-dependent (98), further

illustrating the intricate dynamics involved.

Fg demonstrates a pro-angiogenic effect under certain

conditions. Recent insights highlight the direct interaction of

circulating Fg with various growth factors, encompassing

members of the vascular endothelial growth factor (VEGF) family

and fibroblast growth factor (FGF). This interaction stimulates

endothelial cell proliferation, fostering angiogenesis, and fueling

tumor cell growth (99, 100). Mechanistically, tumor-derived Fg

amplifies the impact of FGF-2 on endothelial proliferation through

coordinated effects involving integrin avb3 and FGFR1 (FGF

receptor 1) (101).

Moreover, Fg can promote angiogenesis through alternative

mechanisms. Fg collaborates with immune cells to orchestrate a

dual-promotional role in immune cell recruitment and angiogenesis

(102). This multifaceted engagement includes the inhibition of

tumor angiogenesis inhibitors, such as Endostatin, by Fg, thereby

promoting angiogenic aggregation (103).

Additionally, specific fragments of Fg have been implicated in

promoting angiogenesis. Fg a component enhances mesenchymal
FIGURE 1

Fg b15-42, g117–133 with endothelial cells VE-cadherin, ICAM-1, respectively, improves endothelial barrier permeability; g377-395 with leukocytes
integrin aMb2 promotes adhesion and migration. Besides, Fg may lead to the recruitment of pro-inflammatory cytokines, thus providing an
inflammatory role in TME.
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cell-endothelial cell interactions, actively participating in

angiogenesis through the VEGA-VEGFR-FAK signaling axis

(104).Exploring the intricate landscape of Fg binding sites

involved in tumor angiogenesis reveals a nuanced interplay of

molecular interactions that influence endothelial cell behavior.

One reported interaction spotlights arginine-glycine-aspartic acid

(RGD) site in at a252-254 or a572–574 region, showcasing its

direct engagement with integrin avb3. This interaction holds the

potential to function as a survival signal for endothelial cells,

orchestrating pivotal roles in the angiogenic process (105).

Contrastingly, some studies challenge the notion of Fg’s

indispensability for angiogenesis, suggesting potential anti-

angiogenic roles. Integrin avb3 serves as a pivotal receptor that

mediates the interaction between Fg and angiogenesis, with

different fragments of Fg exhibiting distinct effects upon binding

to this receptor. Interestingly, while certain Fg fragments have been

associated with pro-angiogenic effects through integrin avb3
binding, others have been linked to the inhibition of tumor

angiogenesis. An intriguing find lies in the b43-63 region,

identified as a novel anti-tumor peptide due to its anti-angiogenic

activity mediated by integrin avb3 (106). Additionally, the gC
component and its truncation mutant (gC399tr) emerge as

determinants in the binding of Fg to endothelial cells via integrin

avb3. This interaction, in turn, contributes to endothelial cell

apoptosis and a reduction in tube formation (107) (Figure 2).

Moreover, certain fragments of Fg have been reported to be

linked to the inhibition of tumor angiogenesis. A key functional

fragment, Fg a1-24, known as alphastatin, exhibits inhibitory effects

on bFGF- and VEGF-induced migration, proliferation, and tubule

formation of microvascular endothelial cells (108). This inhibition

is mediated through the suppression of the JNK and ERK kinase
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pathways (109). Alphastatin’s localized effects extend to cellular

necrosis, thrombosis, and vessel rupture (110), collectively acting as

a potent inhibitor of angiogenesis and tumor growth (111). Notably,

the down-regulation of Fg E-fragment in tumors (112) hinted at its

detrimental impact on tumor growth. Subsequent investigations

propose that the Fg E fragment might be linked to the inhibition of

tumor angiogenesis.

Despite numerous studies reporting either promotion or

inhibition of angiogenesis by Fg and its fragments, there are also

studies indicating that Fg may not be significantly associated with

angiogenesis in certain contexts. Tumor analysis from Fg-deficient

mice and normal controls exhibited no genotype-dependent

variations in vessel density and pattern (113). In regions with

heightened Fg leakage, quantifying vascular density revealed no

alterations in blood vessel size or density, dissociating elevated

plasma Fg from angiogenesis (114).
2.5 Fg and metastasis

The coagulation cascade and platelet activation stand as pivotal

drivers of metastasis, orchestrating a multifaceted interplay in

tumor progression. Fibrinogen(Fg), a crucial constituent of the

tumor microenvironment, facilitates tumor metastasis via both

platelet-dependent and platelet-independent pathways.

Initially, Fg may foster tumor metastasis through platelet-

dependent mechanisms. Platelets, circulating in the bloodstream,

emerge as essential accomplices in facilitating tumor metastasis,

underscoring their intricate involvement in the metastatic cascade.

Platelet membranes host a myriad of adhesion molecules, including

integrin a6b1, avb3and aIIbb3, emerges as a critical mediator in
FIGURE 2

Fg RGD sequence(a572–574) with endothelial cells integrin avb3 provides survival signal for ECs and activates microvascular ECs, contributing to
angiogenesis; however, Fg gC399 and b43-63 induce apoptosis of ECs, which results in an anti-angiogenesis environment.
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platelet-tumor cell interactions, particularly through its facilitation

of integrin avb3 binding to tumor cells (115). Moreover, he

interaction between platelet integrin aIIbb3 and specific Fg

sequences, such as gA400-411 and arginine-glycine-aspartic acid

(RGD) (116), enhances cancer cell adhesion to endothelial cells,

fostering the dissemination of tumor cells (116, 117). Notably,

studies in mice lacking Fg and Gaq, a G protein pivotal for

platelet activation, showcased significantly reduced tumor cell

survival compared to control counterparts (118, 119). This

underscores the potential of Fg in bolstering platelet-tumor cell

interactions, thereby modulating the metastatic potential mediated

by platelets.

However, divergent perspectives exist regarding the role of Fg in

cancer metastasis independent of platelets. Fg b15-42 emerges as a

key player in augmenting vascular permeability and facilitating

tumor cell migration across endothelial cells by binding to VE-

cadherin (60). Furthermore, Fg serves as a mediator for matrix

metalloproteinase (MMP)-2 and MMP-9, pivotal enzymes involved

in tumor metastasis, by participating in extracellular matrix

remodeling (74). These findings underscore Fg’s intricate

involvement in regulating tumor cell migration during metastasis

by integrating into the ECM and modulating matrix composition

(120) (Figure 3).

Furthermore, Fg can directly interact with tumor cells, thereby

enhancing their metastatic potential. Fg plays a pivotal role in

fostering persistent adherence, survival of metastatic emboli post-

tumor cell intravasation, and contributes significantly to

spontaneous metastasis (25, 27). Interactions between cancer cells

and Fg, particularly in cases where cancer cells express ICAM-1,

expedite endothelial penetration for metastasis by forming Fg-
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dependent bridges (121). Furthermore, the citrullination of Fg by

lung endothelial cells promotes tumor cell aggregation and

enhances metastatic potential (122).

Insights derived from studies involving Fg-deficient mice

provide valuable illumination into the multifaceted role of Fg in

metastasis. These investigations have yielded evidence showcasing a

measurable reduction in lung micro-metastasis or overall tumor

burden in the absence of Fg (113, 123). Crucially, this quantitative

decline doesn’t correlate with observable changes in tumor stroma

development or the general growth pattern of tumors. It’s

noteworthy that the reduction in metastatic occurrences, though

significant, falls short of achieving complete elimination. This

intriguing observation was consistent across models involving

Lewis lung carcinoma and the B16-BL6 melanoma, indicating a

nuanced relationship between Fg and the metastatic process (124).

This nuanced interplay suggests that while Fg deficiency exerts a

discernible impact, it does not entirely eradicate metastatic events,

prompting a deeper exploration into the specific mechanisms and

contexts governing the complex interaction between Fg

and metastasis.

Contrastingly, evidence supporting an anti-metastatic role for

Fg and its fragments also exists. In a Met-1 breast cancer nude

mouse model injected with the gC truncation mutant (gC399tr),
reduced metastasis was observed compared to control mice,

indicating the potential of gC399tr in impeding tumor growth

(107). Additional findings revealed that in vivo subcutaneous

injection of fibrinogen Aa(FGA) knockout (KO) A549 cells into

immunodeficient BALB/c nude mice led to increased A549 cell

proliferation and colonization, suggesting an inhibitory role of Fg in

this context (125). Moreover, a unique perspective posits Fg’s anti-
FIGURE 3

In platelet dependent way, Fg acts as a bridge between the reaction between tumor cells and platelet, with adhesion to tumor integrin avb3 and
RGD sequence(a572-574, a95-97) binding to platelet integrin aIIbb3; in platelet-independent way, Fg may be together with matrix
metalloproteinase (MMP)-2 and MMP-9, promoting the epithelial-mesenchymal transition (EMT) and migration of tumor cells.
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metastatic influence in anatomical sites characterized by low Fg

concentrations, such as lymphatics and body cavities. Schneider

et al.’s hypothesis suggesting the suppression of tumor cell

migration by Fg, acting as a counterforce to free vitronectin, adds

a layer of complexity to our understanding of Fg’s diverse roles in

metastasis (126).

These multifaceted observations underscore the intricate and

context-dependent nature of Fg’s impact on metastatic processes,

warranting further exploration to decipher the nuanced interplay

between Fg and tumor metastasis.
2.6 Molecular pathways of Fg in regulation
of tumor progression

Currently, investigations into the relationship between

Fibrinogen (Fg) and tumors predominantly center around clinical

data analysis, with a limited number of studies delving into the

intricate molecular mechanisms at play. In diverse tumor

microenvironments, the molecular pathways involving Fg exhibit

variability, indicating the multifaceted role of Fg in tumorigenesis.

In the context of lung adenocarcinoma (LUAD), Fg typically

promotes tumor proliferation and metastasis, Fibrinogen Aa(FGA)
exerts inhibitory effects on tumor growth, metastasis, and invasion

while fostering apoptosis through the suppression of the PI3K-

AKT-mTOR pathway (125).

Shifting focus to esophageal squamous cell carcinoma (ESCC),

Fg demonstrates a distinctive impact. Here, Fg is implicated in the

promotion of cell migration and invasion, albeit without a

significant influence on proliferation. This nuanced effect is

achieved through the induction of Epithelial-Mesenchymal

Transition (EMT) via the p-AKT/p-mTOR pathway (8). In some

ESCC patients with elevated Fg, TP53, KMT2D, and NOTCH1

actionable gene variants were detected, but the specific signaling

pathways remain to be studied (20).

Moving to colon cancer, the interaction between Fg and tumor

cells is facilitated by the activation of Focal Adhesion Kinase (FAK),

concurrently inhibiting the tumor suppressor p53 and its

downstream targets, such as 14-3-3s and p21. This concerted

action promotes unbridled cell growth while inhibiting

senescence (67).

Within the intricacies of the hepatocellular carcinoma (HCC)

microenvironment, Fg emerges as a pivotal player, exerting its

influence through interactions with integrin avb5 and subsequent

activation of hepatic stellate cells (HSCs). This interaction

establishes a robust correlation with both the incidence and

recurrence of HCC in affected individuals (5). Fg’s impact extends

beyond mere association, actively promoting migration and

invasion of hepatocellular carcinoma cells. These pro-metastatic

effects are mediated through the activation of the PTEN/AKT/

mTOR pathway, coupled with the induction of epithelial-

mesenchymal transition (EMT) (127). Furthermore, in hepatoma

cell lines, the expression of Fg undergoes significant modulation.

This modulation is intricately linked to the degradation of signal

transducer and activator of transcription (STAT), providing a

glimpse into the regulatory mechanisms governing Fg expression
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(128). Significantly, the targeted inhibition of p38 MAPK

demonstrates a marked ability to downregulate Fg expression,

thereby illuminating a promising avenue for precision therapeutic

interventions (128). This finding underscores the potential interplay

between Fg and key signaling pathways, including JAK/STAT and

p38 MAPK, hinting at intricate regulatory mechanisms within the

cellular milieu. In addition, in HCC, fibrinogen Aa(FGA) can act as

a tumor suppressor with opposite effects. It has been shown that

FGA mutations can promote hepatocellular carcinoma

development by activating TYK2-STAT3 signaling and increasing

IL-6 expression (129). Additionally, FGA can impede AKT

phosphorylation and its downstream effectors, such as Bcl-2, by

binding to HBsAg, thereby diminishing pro-survival protein levels

while augmenting pro-apoptotic protein expression (130). The

intricate interplay of these molecular events highlights Fg’s

multifaceted role in shaping the aggressive behavior of

hepatocellular carcinoma.

Within gallbladder cancer (GBC) cells, Fg orchestrates a

multifaceted interplay, aggregating macrophages to propel

angiogenesis. This effect is mediated through the upregulation of

Intercellular Adhesion Molecule-1 (ICAM-1) expression (131).

Moreover, Fg induces a phenotypic shift in GBC cells, typified by

an increase in the mesenchymal marker vimentin, coupled with a

concomitant decrease in the epithelial marker E-cadherin. This dual

modulation strongly implies that Fg plays a contributory role in cell

migration and invasion, potentially through the induction of

Epithelial-Mesenchymal Transition (EMT) signaling (132).

Within the intricate milieu of ovarian cancer, Fg emerges as a

dynamic orchestrator, stimulating fibroblasts to enhance the

production of Type I alpha 1 collagen (COL1A1). Simultaneously,

Fg acts as a catalyst, activating the AKT signaling pathway (133).

These concerted actions contribute to the facilitation of cancer

metastasis, marking Fg as a key player in shaping the metastatic

landscape of ovarian cancer.

In breast cancer, the extracellular matrix, including Fg, plays a

pivotal role in modulating tumor cell behavior, particularly

proliferation and quiescence, through mechanical stimuli. Lower

mechanical forces stimulate the cytoskeleton/AIRE axis via integrin

b1/3 receptor activation, enhancing tumor cell potential.

Conversely, excessive mechanical forces activate DDR2/STAT1/

P27 signaling, inducing cell cycle arrest and transitioning stem

cell-like cancer cells into a quiescent state (134).

This nuanced understanding of Fg regulation offers valuable

insights into the potential synergies between different signaling

cascades (Figure 4), providing a foundation for the development of

targeted therapeutic strategies aimed at modulating Fg-mediated

pathways in disease states.
3 Discussion

The existing comprehension of the relationships between

Fibrinogen (Fg) and tumors primarily rests on clinical data,

consistently indicating that elevated plasma Fg levels serve as

independent predictors for an unfavorable prognosis across

various tumor types. A mounting body of evidence underscores
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Fg’s multifaceted role in promoting tumorigenesis, encompassing

pro-inflammatory, metastatic, and angiogenic effects that

collectively contribute to tumor progression.

Based on our thorough literature review, we anticipate

significant potential for further development in understanding the

relationship between Fg and tumors. Primarily, in clinical contexts,

Fg determination methods need not be confined solely to plasma

analysis, such as the traditional Clauss method; exploring liquid

biopsy (135) or salivary Fg detection (136) could shed light on Fg’s

prognostic implications for tumors. There is a pressing need for

more comprehensive studies on how Fg levels may interfere with

various chemotherapy regimens and impact the development of

therapy resistance. Furthermore, future investigations could delve

into the prognostic significance of plasma Fg ratios when combined

with other tumor prognostic markers, such as the fibrinogen-to-

albumin ratio (137, 138), F-NLR (fibrinogen and neutrophil-

lymphocyte ratio) (139), among others. Additionally, there is

scope for further exploration of the roles played by Fg fragments,

including FGA, FGB, and FGG, in the context of tumor prognosis.

In terms of basic research, while the prognostic significance of

plasma Fg in various tumors has been extensively investigated,

several areas warrant further exploration. These include elucidating

the mechanisms underlying the association between elevated Fg

levels prior to treatment and the subsequent poor prognosis of

cancer patients post-surgery or chemotherapy. Additionally, the

mechanisms governing Fg deposition within the microenvironment

of diverse tumor types, as well as its involvement in processes such

as inflammation, angiogenesis, and metastasis, require thorough

investigation. Future studies could focus on uncovering the intricate

molecular mechanisms through which Fg influences tumor

progression across different cancer types. This could involve
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identifying specific integrins that interact with Fg, elucidating

downstream effector molecules modulated by Fg, and assessing

the potential relevance of these Fg-mediated signaling pathways in

various human tumors. Furthermore, in terms of experimental

protocol development, research targeting Fg as a therapeutic

target has primarily been limited to a few tumor cell lines or

murine models, neglecting the broader spectrum of tumor types.

Given the challenges associated with Fg deficiency and its

implications for hemostasis, refining experimental protocols is

imperative. More precise methodologies are urgently needed to

facilitate in situ injection of cancer cell lines into Fg-knockout mice,

enabling a more comprehensive understanding of Fg’s role in tumor

biology. Lastly, there is scope to expand investigations into the

interactions between Fg-related fragments and tumors, which may

yield novel insights. Exploring these interactions could uncover

unexpected findings and contribute to a deeper understanding of

the complex interplay between Fg and tumorigenesis.

The translation of relevant research findings on Fg and tumors

into clinical applications is a promising endeavor that can

significantly impact tumor treatment protocols. Firstly, our review

findings suggest a strong association between elevated pretreatment

Fg levels and poor prognosis in most tumor patients. This

association can serve as a valuable guide for determining

treatment regimens and post-treatment management strategies

for cancer patients. Additionally, compared to current tumor

markers that often involve cumbersome testing steps like

immunohistochemistry, assessing Fg levels through pre-treatment

coagulation is more convenient, accessible, and provides a quicker

reference value. Secondly, Fg can serve as a tool for stratifying and

assessing individual tumor risk. Particularly in cases where tumors

lack precise and specific prognostic biomarkers, plasma Fg offers
FIGURE 4

Proposed model explaining Fg-driven tumor growth. COL1A1, type I alpha 1 collagen; EMT, epithelial to mesenchymal transition.
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significant clinical utility. Furthermore, specific fragments of Fg,

such as FGA, FGB, and FGG, may exert distinct effects on tumors

compared to intact Fg. For instance, FGA may function as an

inhibitory factor, presenting itself as a potential target for clinical

interventions and tumor treatments. Lastly, targeting Fg to mitigate

its role in promoting tumorigenesis and development holds promise

for innovative cancer treatments. Strategies like partial inhibition of

the Fg gene or blocking downstream signaling pathways activated

by Fg could prevent its involvement in tumor metastasis and

angiogenesis. These approaches offer new avenues for cancer

treatment and have the potential to enhance the effectiveness and

customization of therapeutic strategies.
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