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Host-gut microbiota derived
secondary metabolite mediated
regulation of Wnt/b-catenin
pathway: a potential therapeutic
axis in IBD and CRC
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Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science-
Pilani Hyderabad Campus, Hyderabad, Telangana State, India
The intestinal tract encompasses one of the largest mucosal surfaces with a well-

structured layer of intestinal epithelial cells supported by a network of underlying

lamina propria immune cells maintaining barrier integrity. The commensal

microflora in this environment is a major contributor to such functional

outcomes due to its prominent role in the production of secondary

metabolites. Of the several known metabolites of gut microbial origin, such as

Short Chain Fatty Acids (SCFAs), amino acid derivatives, etc., secondary bile acids

(BAs) are also shown to exhibit pleiotropic effects maintaining gut homeostasis in

addition to their canonical role in dietary lipid digestion. However, dysbiosis in the

intestine causes an imbalance in microbial diversity, resulting in alterations in the

functionally effective concentration of these secondary metabolites, including

BAs. This often leads to aberrant activation of the underlying lamina propria

immune cells and associated signaling pathways, causing intestinal inflammation.

Sustained activation of these signaling pathways drives unregulated cell

proliferation and, when coupled with genotoxic stress, promotes

tumorigenesis. Here, we aimed to discuss the role of secondary metabolites

along with BAs in maintaining immune-gut homeostasis and regulation of

inflammation-driven tumorigenesis with emphasis on the classical Wnt/b-
Catenin signaling pathway in colon cancer.
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1 Introduction

Inflammatory Bowel Diseases (IBD) are a collection of chronic

inflammatory disorders associated with the gastrointestinal tract

consisting of Crohn’s Disease (CD) and Ulcerative Colitis (UC) (1).

The presence of IBD also increases the risk of development of colon

cancer by 20% at later stages of life (2). Prolonged inflammation,

along with other epigenetic factors and a dysregulated immune

system, can contribute to the development of Colorectal Cancer

(CRC) (2). According to WHO, CRC is the third most prevalent

cancer worldwide after breast and lung cancer until 2020 (3). More

than 50% of new cases of CRC were reported in Asia, followed by

Europe and North America. It is predicted that if the situation

persists, then the estimated number of cases will increase from 1.88

million in 2020 to 2.94 million in 2040 globally (4).

Current CRC treatment regimens include chemotherapy, T-cell

boosting therapeutics, oncolytic viral treatments, and non-coding

RNA therapy. However, these improved treatments did have long-

term side effects that can affect quality of life. Up to 85% of survivors

treated with Oxaliplatin develop some degree of sensory neuropathy

(5). Another survey found that around 20% of patients undergoing

chemotherapy experienced grade 3/4 severe toxicities. A smaller

percentage (<1%) suffers fatal toxicity, resulting in severe diarrhea,

neutropenia, thrombocytopenia, or cardiac symptoms (6). The

increased resistance to non-coding RNA therapy over time also

poses a major challenge (7). Therefore, despite the developments in

biologics, surgery remains one of the major treatment strategies for

CRC patients, implying the need for alternative therapies with

minimal to no side effects.
2 The gut microbiome as a regulator
of intestinal health: a quick overview

The intestinal microbial composition is closely associated with

human health and disease. The human gut contains two

compartments, the intestinal lumen and lamina propria, separated

by the intestinal epithelial barrier. The luminal cavity is colonized by

over 1000 species of microbes belonging to the domains Archaea,

Bacteria, and Eukarya, which share a commensal relationship with

cells of the host. The gut microbiome aids in various biological

functions of the host system, such as fermentation of food, vitamin

production, secondary metabolite synthesis, and regulation of

immune responses (8). It has been reported that certain gut

microbiota-derived secondary metabolites influence innate immune

cells and non-hematopoietic components of the gut to maintain

barrier integrity (9).

Prolonged disease conditions, a change in lifestyle and diet, and

imprudent consumption of antibiotics result in gut microbial

dysbiosis, subsequently disrupting intestinal homeostasis (9). The

modern diet includes calorie-dense and nutritionally deficit options.

Additionally, the increased consumption of ultra-processed foods

(UPF) is also one of the leading factors contributing to the onset of

IBD by reducing gut microbial diversity. Patients suffering from IBD,
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or gastrointestinal illness, along with medications, are often suggested

a strict diet and healthy lifestyle. An appropriate dietary intervention

can help in enhancing the effectiveness of the medication. Some

dietary strategies have been found effective in improving disease

activity and supporting clinical remission; however, some need

further prospective evidence (10). For example, in a clinical study

conducted in 2015, children suffering from Crohn’s disease were

subject to a specific carbohydrate diet for 12-52 weeks. They showed

reduced severity of the disease with respect to the Harvey-Bradshaw

Index from 3.3 +/- 2.0 to 0.6 +/- 1.2 post-treatment (11).

In a healthy individual, the intestinal epithelial cell barrier can

prevent the transmission of pathogens, proinflammatory substances,

and antigens from the lumen to the internal environment (8).

However, an imbalance in intestinal microbiota alters the tight

intercellular junctions that allow pathogens and toxins (bacterial

lipopolysaccharides, LPS) to cross the intestinal barrier, contributing

to the activation of Pattern Recognition Receptors (PRRs) on lamina

propria immune cells (12, 13). The intracellular signaling cascades

triggered by these PRRs, which include Toll-like receptors (TLRs),

RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and C-type

lectin receptors (CLRs), upregulates the expression of inflammatory

modulators. These modulators orchestrate the elimination of

pathogens and affected cells. However, aberrant activation of this

system also leads to the overproduction of immuno-oncogenic signals

initiating tumorigenesis (13).

Cumulative studies illustrate that NLRs can negatively regulate

cell differentiation and proliferation via the Wnt pathway in various

cancers, including CRC (14). Similarly, TLR activation negatively

regulates mesenchymal stem cell proliferation by disrupting

canonical Wnt signaling by interrupting the expression of Wnt2,

Wnt3, Wnt3a, and Wnt8 along with Frizzled Receptors (10). Wnt

signaling is involved in the modulation of immune responses during

inflammation, providing us with a potential drug target for CRC

(12, 15). Therefore, through this review, we aim to shed light on

the possible non-invasive methods to treat chronic intestinal

inflammation and modulate the Wnt pathway using naturally

occurring secondary metabolites of host gut-microbial origin.
3 Wnt signaling cascade and its role in
intestinal cancer progression

CRC may result from one or more mechanisms such as

chromosomal instability (CIN), CpG island methylator phenotype

(CIMP), and microsatellite instability (MSI). The most studied mode

of mechanistic progression is chromosomal instability, initiated by

adenomatous polyposis coli (APC) mutations. Approximately 80% of

CRC cases are a result of APCmutation. This mutation activates Wnt

signaling mechanisms, increasing the transcription of several

oncogenes (16) An interesting study conducted in 2020 revealed

APC is also imperative for controlling Wnt-induced beta-catenin

destruction complex recruitment in colonocytes to prevent aberrant

cell proliferation and tumorigenesis (17), suggesting the involvement

of Wnt signaling in CRC progression.
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The Wnt/b-catenin pathway, Wnt/Ca2+ pathway, Wnt planar

cell polarization pathway, and intracellular pathway that regulates

spindle direction and asymmetric cell division are four major Wnt

signaling pathways (18). The Wnt/b-catenin pathway displays a

duality while modulating inflammation, possessing anti- and

proinflammatory potential (14). In IBD’s pathophysiology, Wnt

ligands secreted by activated immune cells bind to the Frizzled

(Fzd), a G-protein coupled receptor, producing a proinflammatory

tumor microenvironment (14, 19). Once Wnt ligands bind to

membrane receptor Fzd and Lipoprotein-receptor related protein

5/6 (LRP5/6), they destabilize the b-Catenin degradation complex

(GSK-3-b-APC-AXIN- b-Catenin). Accumulated b-Catenin
translocates to the nucleus and triggers the TCF-4/LEF-1 (T cell

factor/lymphoid enhancer factor) transcription factors to induce

the expression of genes involved in cell cycle function and promote

cell growth, differentiation, and metastasis (19).

A higher concentration of the Wnt ligands causes greater

activation of the Wnt/b-Catenin signaling pathway, leading to

increased cell proliferation. This uncontrolled cell proliferation or

hypertrophy is followed by hyperplasia, causing an Epithelial-to-

Mesenchymal (20) transition and increased cell motility, metastasis,

and other related properties of cancer cells (21). Studies show that

Wnt3a is the primary ligand involved in oral carcinogenesis, Wnt5a

in breast tissue carcinogenesis, and Wnt3 is responsible for colon

cancer proliferation (15, 21–23). Additionally, multiple types of

cancer are known to be driven by uncontrolled expression of b-
Catenin. b-Catenin expression is directly proportional to the depth

of tumor infiltration (20). A swelling body of evidence suggests that

b-Catenin inhibition suppresses tumor progression and recurrence.

During the clinical treatment of CRC, Wnt inhibitors are a

common mode of therapy (24). The transcription factor

SP1 (Specificity protein 1) is a crucial factor expressed in cell

proliferation pathways (25). The direct interaction of SP1 with b-
Catenin prevents the association of SP1 with degrading factors,

thereby contributing to its stabilization (25). Interestingly, a study

found suppression of the transcription factor SP1 by siRNAs truncated

the growth of colon cancer stem cells (CCSCs) (21). Another

transcription factor that promotes the proliferation of Wnt-driven

colon cancer cells is SOX9. The regulation of gene expression by the

Wnt/b-Catenin pathway results from the formation of a b-Catenin
complex with the transcription factor TCF7 (T cell factor). TCF7 and

SOX9 interact through nonDNA-contacting residues to produce a

synergistic effect that encourages cancer cell proliferation (26).

Inhibition of such factors can be a potential means of CRC

therapeutics. These studies indicate that uncovering molecular

targets within the Wnt/b-Catenin pathway will be capable of down-

regulating CRC and related predisposing conditions such as IBD.
4 Gut microbiota derived secondary
metabolites and their therapeutic
potential in CRC

Culture-based studies show the dominance of Bacteroidetes and

Firmicutes in the healthy gut, while Actinobacteria, Proteobacteria,
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and Verrucomicrobia are found in minor constituents. Reduction in

diversity within the Firmicutes phylum is a major contributor to gut

microbial dysbiosis causing IBD (8). Molecular cues of gut

microbial origin regulating intestinal cell function are attributed

to diversified small molecule metabolites (24). These metabolites are

the intermediate or end products of host-gut bacterial metabolic

processes. They are known to play a significant role in maintaining

intestinal barrier integrity and intestinal immune homeostasis. Gut

microbiota is widely involved in the metabolism of carbohydrates to

generate SCFAs (27). Other majorly explored metabolites include

tryptophan and indole derivatives, followed by primary and

secondary BAs (27, 28).

Drastic imbalances in the composition of these metabolites have

been observed in IBD and CRC patients. IBD patient fecal samples

have a lower proportion of SCFA-producing bacteria, whereas

mucolytic and pathogenic bacteria are found in abundance.

Similarly, an increase in the population of sulfate-reducing

bacteria, such as Desulfovibrio, is also found in IBD patient’s fecal

samples. This increases the production of hydrogen sulfate, induces

mucosal inflammation, and causes damage to the intestinal

epithelial barrier (10). Moreover, IBD and IBD-associated cancers

are known to cause malabsorption and reduction in the conversion

of primary BAs to secondary BAs, thereby disrupting BA pool

composition. Such changes pose a higher risk of infection as the

mucosal integrity gets compromised (29).

Thus, their ability to behave as biomarkers and regulate

metabolism and other homeostatic mechanisms makes them

potential non-invasive therapeutic targets. (Supplementary Table 1).
4.1 Short chain fatty acids

Short Chain Fatty Acids (SCFAs) are crucial in maintaining

intestinal barrier integrity, gut homeostasis, and colon health (30).

These microbiota-derived SCFAs are the primary energy source for

intestinal epithelial cells (IEC) in the digestive tract. The imbalance

in SCFAs is known to contribute to intestinal inflammation and

associated diseases (30). These SCFAs include butyrate, propionate,

and acetate.

One of the significant SCFAs, butyrate, is produced by

Faecalibacterium prausnitzii , Clostridium leptum, and

Eubacterium rectaleand, among others, displays superior

inhibitory efficacy against CRC proliferation (30). It is essential

for human health as it is the primary energy source for colonocytes

(31). Additionally, butyrate regulates CRC by inhibiting HDAC 1

and 3 in colon cancer cells and suppressing intestinal inflammation

and ROS production (32). Butyrate activates GPR109A and inhibits

Protein Kinase B and NF-kB signaling pathways to reverse

intestinal epithelium barrier dysfunction (33). Furthermore,

evidence shows that butyrate plays a vital role in controlling

intestinal inflammation by stimulating the differentiation of Treg

cells (34) and promoting an anti-tumor effect (35). It was also

reported that C. butyricum species indirectly upregulates butyrate

production, reduces the levels of b-Catenin, and regulates the Wnt

pathway (36).
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A study reported that butyrate facilitates M2 macrophage

polarization. It was shown that ERK1/2 activation or blockade of

Wnt secretion suppressed the beneficial effect of butyrate-primed

macrophages on goblet cell function. Adoptive transfer of

butyrate-induced M2 macrophages in a dextran sulfate sodium

(DSS)-induced mice model of colitis showcased a significant

improvement in mucosal layer integrity, mucus secretion, and

goblet cell regeneration (37). It is also known that Butyrate

stimulates bone formation via T Regulatory cell-mediated

regulation of WNT10B expression (38).

A study by Beatrice et al. showed that butyrate inhibits CRC

proliferation by autophagy-mediated degradation of b-Catenin.
Apart from modulating cancer cell proliferation, the treatment

with butyrate plays a significant role in autophagy. Interestingly,

the study showed that butyrate promoted the binding between LC3

and b-Catenin, causing its sequestration. The ability of butyrate to

inhibit the Wnt/b-Catenin pathway represents a new frontier of

targeted cancer therapies (39).

Similarly, propionate, produced by Veillonella parvula,

Bacteroides eggerthii, and Bacteroides fragilis in the gut, regulates

intestinal homeostasis by promoting turnover of the epithelial cells

and promoting barrier integrity (40). As a result, stem cells in

intestinal crypts differentiate through the Wnt signaling pathway to

replenish lost cells. The absence of propionate results in intestinal

disbalance, triggering the unregulated proliferation of IECs (30).

Valproic acid (VPA) was able to stimulate the differentiation of

neuronal stem cells by activating Wnt3a and b-Catenin (18, 41).

The fatty acid acetate aids in the acetylation of b-catenin, reducing
the Wnt inhibitor SOX-1 and potentially increasing cell
Frontiers in Oncology 04
proliferation (14). Recently, another study showed b-
hydroxybutyrate is capable of suppressing cancer, by inhibiting

EMT via the Wnt/b-Catenin pathway (42). (Figure 1A).
4.2 Amino acid metabolites

Numerous amino acid metabolites, including hydrogen sulfide

(H2S) and indole metabolites, are produced due to the fermentation

of proteins by the gut microbiota (28). Several studies have shown

that tryptophan (Trp), mainly produced by E. coli, can

downregulate cell proliferation by suppressing the Wnt signaling

pathway, implying targeting tryptophan metabolism is a method of

CRC treatment (42, 43). A clinical study was conducted on 117

participants comprising 79 CRC patients and 38 age- sex-and body

mass index (BMI) matched healthy controls. It was observed that

the indole/tryptophan ratio in fecal matter positively correlated to

the mRNA expression of tight junction proteins like Zona

Occuladins-1 in colon tissue samples collected from the respective

participants, suggesting the involvement of Trp metabolites in the

tumorigenesis of CRC in humans (43). Several studies have

highlighted the role of wnt signaling in shaping immune cell

functions. One of the key mechanisms by which Wnt-b-catenin
signaling in DCs promotes immune suppression is through the

induction of an immunoregulatory enzyme, IDO, thereby causing

the degradation of the essential amino acid tryptophan into

kynurenines (44). A study found that 1-Methyl-D-tryptophan

Reduces Tumor CD133+ cells, Wnt/b-catenin and NF-kbp65 in

Murine Pancreatic Adenocarcinoma.1-Methyl-D-tryptophan
A B C

FIGURE 1

Effect of gut microbiota-derived metabolites on Wnt-mediated cancer progression. (A) Short-chain Chain Fatty Acids include Butyrate, Propionate,
and Acetate. Excess butyrate treatment can promote proteasomal degradation of Wnt ligand b-Catenin mediated by autophagy marker LC3. When
propionate synthesis reduces, cell differentiation and polarization diminish, leading to a lower cell turnover and increased aberrant intestinal cell
growth. Acetate-mediated acetylation of b-Catenin facilitates a decrease of SOX-1, allowing unchecked Wnt-mediated cell proliferation. (B) Lower
tryptophan metabolism impairs the integrity of tight junctions and regulates Wnt metabolism by targeting Wnt 3 and b-Catenin. H2S nourishes
aberrant cell proliferation via the Wnt pathway. (C) Bile Acids bind to the FXR receptor, resulting in the inhibition of the Wnt/b-Catenin pathway.
However, few direct co-relations exist between BAs and Wnt signaling ligands and receptors. *Created in BioRender.com).
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significantly modulates the regulatory cytokines in the tumor

microenvironment, which significantly inhibited tumor growth

and tumor immune escaping potency (45).

Studies indicate another predominant amino acid metabolite,

H2S, an energy source for the metabolism of the colonic epithelium

(46). H2S is produced by the action of Desulfovibrio, Escherichia,

Bilophila, Porhyromonas, Prevotella, Corynebacterium, Veillonella,

Helicobacter, and Clostridium on amino acids (27). Cell culture

studies in HT 29 cells discovered the cytotoxic and genotoxic effects

of H2S produced by sulfate-reducing bacteria. However, there has

been conflicting data on the inhibitory and stimulatory effects of

H2S on the proliferation and inflammation of CRC cells (47). Upon

further analysis in Human Colon Cancer cell line SW480, the study

found that the Wnt/b-Catenin pathway regulates Cystathionine-g-
lyase (CSE) on a transcriptional level, upon secretion responsible for

increasing H2S liberation. Furthermore, when tumors were

xenografted into nude mice models with a CSE/H2S knockdown,

their tumor growth was reduced, implying that H2S plays a role in

increasing colon cancer (48) (Figure 1B).
4.3 Bile acids

Another well-known host-gut microbiota-derived metabolite of

interest are secondary BAs with numerous unknown functions other

than role in dietary lipid digestion. BAs are the end-product of

cholesterol metabolism generated in the liver by a chain of

enzymatic reactions organized in two main metabolic pathways,

known as “classic” and “alternative” (49). These liver pathways

generate mainly two primary BAs, i.e., cholic acid and

chenodeoxycholic acid (CA and CDCA). In hepatocytes, these

primary BAs are conjugated with glycine (G) or taurine (T), giving

rise to the bile salts. Conjugated BAs are secreted in the intestine,

becoming the substrate of an array of bacterial enzymes (49). 7a-
dehydroxylation of the OH in the C7 position, a reaction mediated by

7a-hydroxylase expressing bacteria such as Clostridium and

Eubacterium, gives rise to two secondary BAs, i.e., mono-

hydroxylated BAs like LCA from CDCA, and 3a-12a-di-
hydroxylated BAs like DCA from CA. Additionally, the C7 b-
epimerization of CDCA by Bacteroides, Clostridium, Escherichia,

Eubacterium, and others originates the 7b epimer of CDCA, i.e., the

3a,7b-dihydroxy-5b-cholanoic acid, known as ursodeoxycholic acid

(UDCA) (47, 48). The large majority of BA species that reach the

terminal ileum are reabsorbed by the intestinal epithelial cells (IEC)

and transported back to the liver through the portal vein, completing a

cycle in the so-called “entero-hepatic circulation” (49).

4.3.1 Therapeutic potential of BAs
BAs regulate mucosal homeostasis and inflammation by

interacting directly with a family of receptors known as bile acid-

activated receptors or bile acid receptors (BAR), which include

Takeda G protein-coupled receptor 5 (TGR5) and nuclear receptors

that include the Farnesoid X Receptor (FXR) and Vitamin D

Receptor (VDR) (50). BA signaling is known to suppress the

proinflammatory phenotype of intestinal cells by the reduced
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release of TNF-a, IL-1b, IL-6, or IL-12. Studies have also

reported that BA stimulates the production of anti-inflammatory

cytokines, promoting epithelial barrier renewal (28).

A study reported that secondary BAs, such as LCA’s derivatives,

regulate the differentiation of Treg cells, contributing to the

suppression of inflammation, maintaining immune homeostasis,

and hence, predisposing stages of cancers like CRC (51). LCA is

reported to activate VDR on CaCo-2 cells and significantly reduce

IL-1b -induced IL-8 secretion by blocking NF-kB inflammatory

signaling (52). Kubota et al., in their studies, found VDR mediated

the attenuation of Dextran Sulfate Sodium (DSS) induced Colitis in

mice fed with LCA (53). Oral administration of LCA suppressed

histological injury in an early phase of DSS-induced Colitis in Vdr

+/- mice, whereas no significant impact was observed on Vdr-/-

mice, suggesting the physiological role of the LCA–VDR axis in

intestinal homeostasis (53). Additionally, LCA-dependent PXR

activation in epithelial cells promotes TGFb expression and

reduces TLR4-dependent proinflammatory cytokines production

by diminishing TLR4 mRNA stability (54). TGR5 is one of the

receptors activated by multiple BAs, with LCA being its most potent

natural agonist (55). A study found that LCA-induced activation of

TGR5 reduces adaptive immune response as there is increased

recruitment of NK cells. Another study found that LCA stimulated

intestinal epithelial growth in an organoid, as indicated by the

increased expression of an intestinal stem cell marker. However,

this improved barrier regeneration was lost when LCA was

administered to a Tgr5-/- organoid, indicating that LCA-

associated TGR5 activation is crucial for barrier integrity (55).

Multiple studies have reported the therapeutic role of another

secondary BA, UDCA, in Colitis and colitis-associated cancer.

UDCA exerts anti-inflammatory and cytoprotective effects in the

AOM-DSS-induced colitis mouse model (55). UDCA has also been

shown to prevent colon inflammation in rats treated with 2,4,6-

trinitrobenzene sulfonic acid (56). Interestingly, deficiency

or absence of the TGR5 receptor significantly reduces the

modulatory effect of UDCA, both in vitro and in vivo. He et al.

and other studies highlight that UDCA treatment can contribute to

intestinal homeostasis by enhancing the intestinal mucosal layer,

maintaining epithelial cell integrity, modulating the gut

microenvironment, and attenuating intestinal inflammation (55).

The collective observation suggests that elucidating the relationship

between UDCA and the gut microbiome can be a novel therapeutic

strategy for inflammation and inflammation-driven cancer.

DCA has been known to play a significant role in the induction of

CRC development. In vivo experiments with APCmin/+ mice suggested

that DCA contributes to CRC tumorigenesis by activating EGFR to

promote a hyperproliferative effect on colorectal mucosa in DCA-fed

mice (57). Ji-Yao et al. reported that oral administration of DCA to

germ-free mice increased colonic Rspo3 mRNA levels, which function

as ligands for LGR4 and LGR5 and potentiate the activation of theWnt

pathway. In primary myofibroblasts, DCA increases Rspo3 mRNA via

TGR5 and mediates high-fat diet-induced intestinal epithelial

proliferation (58). However, the impact of therapeutic BAs like

UDCA and LCA and its derivatives on wnt regulation are largely

unexplored. (Figure 1C).
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4.3.2 The cross-talk between Wnt/b-catenin and
bile acids

Recent evidence indicates that the Wnt/b-catenin pathway

regulates bile homeostasis, including bile synthesis, modification,

and transport. Cholesterol synthesis occurs predominantly in

periportal hepatocytes (59). CYP7A1 and CYP27, crucial rate-

limiting enzymes of BA synthesis, are localized in the perivenous

zone of the liver lobule and coincident with b-catenin activation.

The close relationship between the two processes was seen in b-
catenin KO mice subjected to a methionine and choline-deficient

diet, identified by macro vesicular steatosis and fibrosis. Liver-

specific b-catenin deletion resulted in increased steatosis, higher

hepatic cholesterol accumulation, and jaundice, likely due to defects

in cholesterol to bile conversion mechanism and the bile export

system. Additionally, conditional b-catenin KO had higher hepatic

total BA levels on methionine and choline-deficient and control

diets, indicative of basal abnormalities in bile metabolism without

b-catenin (60).

Chromatin immunoprecipitation (ChIP) assays showed that

CYP27 is a transcriptional target of b-catenin. Similarly, b-catenin
KO and LRP5/6 KOmodels had significantly suppressed expression

of CYP7A1, suggesting the involvement of b-catenin in BA

metabolism. Interestingly, further studies have found that the b-
catenin interacts with FXR, a nuclear receptor that regulates the

expression of CYP7A1 and BA efflux transporters. FXR deficiency

increases epithelial permeability to luminal bacteria, thereby

promoting Wnt/b-catenin signaling, and increasing intestinal

inflammation (61).

The crosstalk between Wnt/b-catenin ligands and members of

the nuclear receptor (NR) family has been considered a clinically

and developmentally important research area of cancer biology.

Mao J. et al., in their study, demonstrated that FXR knockdown

promotes b-catenin/TCF4 complex formation and, subsequently,

its binding ability to the corresponding promoter. Their data

indicates a novel mechanism through which FXR expression is

mediated during tumor progression, involving the Wnt pathway.

Additionally, hepatic bile acid synthesis is downregulated by the

activation of the FXR-FGF15/19 signaling pathway (62). Thus, FXR

represents a novel Wnt signaling pathway modulator and a

potential Wnt signaling cascade molecular target that may be

exploited to achieve anti-tumor effects (63).
5 Conclusion/discussion

The role of Wnt signaling in tumorigenesis is predominantly

studied in colorectal cancer, where several studies suggest targeting

Wnt/b catenin to regulate tumor progression. However, a

therapeutic treatment targeting the canonical Wnt pathway

achieving efficacy and safety remains a major challenge.

Considering the role of FXR in Wnt regulation and the ability of

some BAs to activate FXR, understanding the downstream

mechanism opens doors to promising hypotheses exploring the

impact of BAs via the BAR in regulating pathogenic Wnt signaling

and immune modulation in the intestinal inflammation and
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associated cancers. As new studies describing such processes and

our understanding of signaling mechanisms deepen, we must screen

for direct interactions between BAs andWnt pathways with the goal

of maintaining intestinal homeostasis. Overall, the development of

novel combinatorial therapeutics of natural origin capable of

reducing the risk of side effects and improving the treatment

outcome in CRC and predisposing IBD is an essential stride.
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