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SIRPG promotes lung squamous
cell carcinoma pathogenesis via
M1 macrophages: a multi-omics
study integrating data and
Mendelian randomization
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Background: Squamous cell carcinoma of the lung (LUSC) is a severe and highly

lethal malignant tumor of the respiratory system, and its molecular mechanisms

at the molecular level remain unc\lear.

Methods: We acquired RNA-seq data from 8 surgical samples obtained from

early-stage LUSC and adjacent non-cancerous tissues from 3 different centers.

Utilizing Deseq2, we identified 1088 differentially expressed genes with |LogFC| >

1 and a p-value < 0.05 threshold. Furthermore, through MR analysis of Exposure

Data for 26,153 Genes and 63,053 LUSC Patients, incorporating 7,838,805 SNPs

as endpoints, we identified 213 genes as potential exposure factors.

Results: After intersecting the results, we identified 5 differentially expressed

genes, including GYPE, PODXL2, RNF182, SIRPG, and WNT7A. PODXL2 (OR 95%

CI, 1.169 (1.040 to 1.313)) was identified as an exposed risk factor, with p-values

less than 0.01 under the inverse variance weighted model. GO and KEGG

analyses revealed enhanced ubiquitin-protein transferase activity and activation

of pathways such as the mTOR signaling pathway and Wnt signaling pathway.

Immune infiltration analysis showed downregulation of Plasma cells, T cells

regulatory (Tregs), and Dendritic cells activated by the identified gene set,

while an enhancement was observed in Macrophages M1. Furthermore, we

externally validated the expression levels of these five genes using RNA-seq

data from TCGA database and 11 GEO datasets of LUSC, and the results showed

SIRPG could induce LUSC.
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Abbreviations: IQR, interquartile range; BMI, Body Mas

Cooperative Oncology Group; PS, Performance Status;
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Conclusion: SIRPG emerged as a noteworthy exposure risk factor for LUSC.

Immune infiltration analysis highlighted Macrophages M1 and mTOR signaling

pathway play an important role in LUSC.
KEYWORDS

squamous cell carcinoma of the lung, Mendelian randomization, RNA-seq, immune
infiltration, SIRPG
Introduction

Squamous cell carcinoma of the lung (LUSC) constitutes 25%-

30% of all non-small cell lung cancer (NSCLC) cases, presenting

predominantly as locally advanced or metastatic disease, posing

significant treatment challenges (1, 2). LUSC is characterized by its

genetic complexity, highmutation rates, and DNA damage, including

that associated with smoking (3–5). Unlike nonsquamous NSCLC,

LUSC has a low incidence of actionable driver mutations, limiting the

effectiveness of targeted therapies for most patients (1). Although

chemotherapy options are limited in this context (2, 6, 7), the

combination of chemotherapy and immunotherapy (IO) has

emerged as a new standard treatment approach (8, 9). However,

durable clinical benefits from IO treatment remain elusive for many

LUSC patients (8, 10, 11). The lack of novel treatments and reliable

biomarkers to predict durable responses highlights the unmet clinical

needs of the LUSC population (12–14).

Mendelian randomization (MR) is a methodology designed to

reduce measurement errors, reverse causation, and confounding

problems. It leverages genetically determined variations that are

randomly allocated at birth and have established associations with

modifiable risk factors to estimate the causal effects of these risk

factors on disease outcomes (5, 15). Compared to observational

studies, Mendelian randomization (MR) offers the advantage of

mitigating confounding factors and reverse causation by utilizing

genetic variations that are less influenced by external environmental

changes (16). Over the past few years, several genome-wide

association studies (GWAS) investigating plasma proteins have

identified numerous cis-variants known as protein quantitative

trait loci (pQTLs), which are linked to genes encoding plasma

proteins (17–21). Consequently, these cis-pQTLs have been widely

employed as genetic instruments to estimate the causal impact of

plasma proteins on complex diseases. Importantly, they satisfy the

three fundamental assumptions of MR: the relevance assumption,

independence assumption, and exclusion restriction assumption

(22). There have been numerous studies focusing on multi-omics

sequencing analysis of lung adenocarcinoma (23, 24). However, it

has been challenging to analyze the etiology of LUSC from an
s Index; ECOG, Eastern
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epidemiological perspective. By combining Mendelian

randomization (MR) with omics analysis, we aim to improve the

representativeness of the identified genes and gain insights into the

causal factors of LUSC.

In this multicenter study, we collected surgical tissue samples

from 8 LUSC patients, encompassing both tumor and adjacent non-

cancerous tissues, gathered from three different centers. RNA was

successfully extracted from these samples, and paired RNA-seq

analysis was performed to identify differentially expressed genes

associated with the initiation of lung cancer. Additionally, we

conducted Mendelian randomization analysis using GWAS

databases to investigate the exposure factors related to LUSC

endpoints. The significant exposure genes were then intersected

with the differentially expressed genes identified from the RNA-seq

analysis, followed by mechanistic analysis. Furthermore, the

findings were validated by utilizing LUSC data from the TCGA

database and 11 GEO datasets. Through this research, our objective

is to discover novel exposure factors and therapeutic targets for

understanding the etiology of LUSC.
Materials and methods

Patients

In this study, we analyzed data from 8 patients who were

diagnosed with early-stage LUSC and underwent surgical

procedures at three different hospitals: Dushu Lake Hospital

Affiliated to Soochow University, the First Affiliated Hospital of

Soochow University, and Sichuan Cancer Hospital. The study

duration ranged from August 3, 2021, to July 30, 2022, with LUSC

diagnoses confirmed through pathological assessment. The collected

data included patient parameters such as age, bodymass index (BMI),

gender, smoking status, staging, surgical procedure, and survival

outcomes. To classify the data, the median value was utilized as the

cutoff point. Patients is in the early to mid-stage who had not

undergone chemotherapy. Prior to the study, informed consent was

obtained from all patients or their immediate family members in

adherence to ethical standards. The research protocol strictly adhered

to the guidelines established by the Ethics Committee of Soochow

University and followed the principles outlined in the Declaration

of Helsinki.
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Sample collection and RNA-seq analysis

During the surgical procedure, LUSC patient samples were

collected and preserved by immersing them in an RNA-specific

storage solution.

Sample size and shape
Samples were carefully selected to ensure an optimal amount of

RNA for subsequent RNA sequencing. Typically, tissue samples

ranging from 100 mg to 500 mg were utilized. The shape of the

samples was chosen to facilitate ease of handling during the

sampling process, with rectangular or elliptical shapes

being preferred.

Quality
To maintain RNA integrity, samples were handled with utmost

care to keep them as fresh as possible. Immediately after sampling,

samples were either refrigerated or frozen to minimize RNA

degradation. Damaged or necrotic tissue was avoided to prevent

any adverse effects on RNAseq results.

Tissue type
Our sampling focused on tumor tissue containing a sufficient

number of cancer cells, in accordance with the study requirements.

In lung SCC patients, tumor tissue was the primary tissue of

interest. Efforts were made to minimize the inclusion of normal

tissue to mitigate potential interference with subsequent

RNAseq analysis.

Sampling procedure
Sampling procedures were carried out by experienced surgeons

to ensure accuracy and efficacy. Sterile techniques were employed

throughout the sampling process to prevent sample contamination.

All tools and materials used were thoroughly cleaned to maintain

sample integrity.

The cellular samples obtained provided around 20–30ng of

mRNA, which was used to generate RNA-seq libraries utilizing the

KAPA Stranded mRNA-Seq Kit compatible with the Illumina

platform. Subsequently, paired-end sequencing of the libraries

was performed on the Illumina HiSeq-PE150 instrument.
Transcriptomic data, and clinical
information of TCGA and GEO database

The transcriptome profiling dataset for RNA-seq analysis

consisted of 501 samples obtained from patients diagnosed with

LUSC. These samples were sourced from the TCGA database

(https://portal.gdc.cancer.gov/) on Dec 23, 2023. We also collected

803 cases of squamous cell carcinoma of the lung from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) for subsequent

validation analysis using RNA-seq data (GSE11969, GSE14814,
Frontiers in Oncology 03
GSE157011, GSE19188, GSE29066, GSE30219, GSE3141,

GSE37745, GSE41271, GSE42127, GSE50081 and GSE8894).
Mendelian randomization analysis

In the initial stage, we extracted single nucleotide polymorphisms

(SNPs) associated with LUSC as the endpoint from the GWAS data

(ebi-a-GCST004750), which demonstrated a significant genome-wide

impact (P < 5×10–8). To ensure the independence of instrumental

variables and mitigate any bias caused by linkage disequilibrium, we

conducted a linkage disequilibrium analysis using a threshold of

(r2 = 0.001, kb = 5,000). The strength of each SNP as an

instrumental variable was assessed through the F statistic (F > 10).

Mendelian randomization pleiotropy residual sum and outlier (MR-

PRESSO) were employed to identify and address outliers that may

contribute to horizontal pleiotropy. Before evaluating the causal effects,

we applied the Outlier-corrected method to remove outliers

from the instrumental variable set and correct for potential

horizontal pleiotropy.

The identified SNPs were then mapped to their respective genes

and intersected with the differentially expressed genes (DEGs) to

obtain intergenes. In single instrumental variable MR analysis, we

utilized theWald ratio. For scenarios involving two or more SNPs, we

employed the inverse-variance-weighted (IVW) method. Egger’s

regression and the weighted median methods were used as

reference approaches. Sensitivity analysis was performed through

leave-one-out analysis to assess the influence of individual SNPs on

the association between intergenes and LUSC outcome. Horizontal

pleiotropy was examined using the MR-Egger intercept, where a p-

value greater than 0.05 suggests an absence of horizontal pleiotropy.
Pathway and functional analysis

We employed the “Deseq2” package in R to identify

differentially expressed genes (DEGs) between the high- and low-

risk groups. Our DEG selection criteria were based on a log2 |fold

change| > 1 and a false discovery rate < 0.05. To gain a deeper

understanding of the biological functions and signaling pathways

associated with these DEGs, we utilized various R packages

including “clusterProfiler,” “org.Hs.eg.db,” and “enrichplot” to

conduct an exploration of the Gene Ontology (GO) terms as well

as the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways. By adopting this approach, we aimed to unravel the

underlying molecular mechanisms and functional implications of

the DEGs identified in our analysis.
Estimation of tumor-infiltrating
immune cells

To explore the relationship between the risk score and immune

cell infiltration, we utilized the single-sample gene set enrichment
frontiersin.org
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analysis (ssGSEA) algorithm in R. By employing this approach, we

were able to evaluate the levels of infiltration as well as the functional

characteristics of immune cells within the tumor microenvironment.

The outcomes of our analysis were then presented in the form of a

visually informative heat map, allowing for a comprehensive

visualization of the results. This methodology enabled us to gain

valuable insights into the potential link between the risk score and

immune cell infiltration, shedding light on the interplay between the

tumor and the immune system.
Statistical analysis

Statistical power is set at 0.90. Forest plots were employed to

present the significance of prognostic covariates. To perform functional

enrichment analysis of Gene Ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, we utilized

the “clusterProfiler” package. The generation of heat maps for cluster

analysis was accomplished using the “Pheatmap” package. For the

analysis of differences between two groups of quantitative data, we

applied the Wilcoxon rank-sum test. In order to establish a prognostic

risk model, statistical analyses were conducted using RStudio (R

version 4.3.2) and a variety of R packages such as “rms,” “ggplot2,”

“risk regression,” “PredictABLE,” and “survminer.” The logical

sequence of the statistical analysis performed in the article is

illustrated in Figure 1, as depicted in the flowchart. Through this

comprehensive approach, we aimed to ensure robust statistical analysis

while minimizing redundancy in our methodologies. We utilized the

CIBERSORT package in R to calculate immune infiltration scores and

estimate the abundance of different immune cell types in tumor tissues,

such as infiltrating T cells, B cells, macrophages, etc. For the statistical

analysis in Figures 2C, 3, when comparing immune infiltration scores

between different groups, we employed either the t-test or Wilcoxon

rank-sum test, depending on the distribution of the data and

assumptions of normality. These tests were chosen to assess the

significance of differences in immune infiltration levels between

experimental conditions.
Results

Clinical analysis

A total of 8 patients diagnosed with early-stage LUSC were

included in this study, covering a period from August 3, 2021, to

July 30, 2022. At the time of analysis, none of the patients had

succumbed to mortality. However, disease progression was

observed in 1 patient, accounting for 12.0% of the cohort. Among

the participants, there were 5 male individuals, representing 62.0%

of the sample. Additionally, 5 patients, or 62.0% of the group, were

over the age of 65. It is worth noting that a history of smoking was

reported by 6 individuals, constituting 75.0% of the cohort.

Moreover, 5 patients (62.0%) exhibited an ECOG performance

status score of 1. Surgical intervention was performed on all
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patients, with 6 individuals (75.0%) classified as stage I-II and the

remaining 2 patients (25.0%) classified as stage III-IV, as stated in

Supplementary Table S1.
Integration analysis of DEGs from RNA-seq
and Mendelian randomization for cross-
gene identification

Figure 4A presents the analysis of RNA-seq data from the

patients, and a heatmap was created to visualize the expression

levels of genes that exhibit differential expression. The findings

indicate notable variances in gene expression levels between tumor

tissue and adjacent non-tumor tissue in cases of squamous cell

carcinoma of the lung. We initially utilized the Deseq2 package in R

software, based on our previously established methods, to identify

differentially expressed genes (DEGs) with |LogFc| > 1 and a p-value

less than 0.05. We detected 709 up-regulated DEGs and 379 down-

regulated DEGs. Furthermore, we screened 213 genes associated

with the LUSC endpoint in the GWAS database. By conducting a

cross-tabulation analysis between the two databases, we identified 3

down-regulated genes (WNT7A, RNF182, GYPE) in Figure 4B and

2 up-regulated genes (SIRPG, PODXL2) in Figure 4C that were

common to both databases. The scatter plot displays the analysis of

SIRPG and PODXL2 genes as risk factors, and WNT7A, RNF182,

and GYPE genes as protective factors, in a Mendelian

randomization analysis for the endpoint of LUSC patients (n =

63,053) (Figure 4D). Even after excluding the SNPs located within

these genes from the analysis, consistent evidence of a causal effect

between these genes and the risk of developing LUSC was observed

(Figure 4E). In addition, we conducted sensitivity analysis on all

included genes. Please refer to the Supplementary Materials for

detailed information. The reported effect estimate represents the

effect of an increase in exposure level by one standard deviation

(SD), and the error bars represent the 95% confidence interval. We

also plotted the MR (Mendelian Randomization) effect size of the

five genes under the IVW (Inverse Variance Weighted) model, and

generated a funnel plot for the IVW analysis, demonstrating a

balanced distribution of variables (Supplementary Figures S1A, B).

We constructed forest plots for the OR values calculated by two

Mendelian randomization models, Weighted Median (WM) and

Inverse Variance Weighted (IVW), for these five genes. The results

showed that SIRPG (WM: OR(95%CI)=1.097 (1.008 to 1.194),

p=0.033; IVW: OR(95%CI)=1.091 (1.005 to 1.184), p=0.038) and

PODXL2 (WM: OR(95%CI)=1.174 (1.039 to 1.326), p=0.010; IVW:

OR(95%CI)=1.169 (1.040 to 1.313), p=0.009), WNT7A (WM: OR

(95%CI)=0.827 (0.691 to 0.989), p=0.037; IVW: OR(95%CI)=0.790

(0.662 to 0.944), p=0.009), RNF182 (WM: OR(95%CI)=0.933 (0.878

to 0.991), p=0.024; IVW: OR(95%CI)=0.939 (0.892 to 0.988),

p=0.015), and GYPE (WM: OR(95%CI)=0.939 (0.865 to 1.021),

p=0.139; IVW: OR(95%CI)=0.915 (0.848 to 0.987), p=0.021) were

associated with tumor risk based on their differential expression

patterns. (Figure 5A). SIRPG was detected by qPCR and the level was

increased in the LUSC group (Supplementary Figure S1E).
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Pathway enrichment analysis and genomic
enrichment analysis

To investigate the biological functions and pathways related to

these 5 differentially expressed genes (DEGs) (Figure 5B), we

initially presented their chromosomal locations (Supplementary

Figure S4) and conducted enrichment analyses using Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG). In terms of biological processes, the DEGs were

significantly enriched in various categories, including cerebellar

granular layer development, lens fiber cell development, and

protein localization to the presynapse. Within the cellular

component category, enrichment was observed in specific areas

such as Schaffer collateral - CA1 synapse, endocytic vesicle

membrane, and glutamatergic synapse. In relation to molecular

function, the DEGs exhibited significant enrichment in diverse

functions like glycosaminoglycan binding, G protein-coupled

receptor binding, and ubiquitin-protein transferase activity

(Figure 5C). Furthermore, the KEGG analysis revealed

associations with multiple signaling pathways, including the

mTOR signaling pathway, Hippo signaling pathway, and Wnt

signaling pathway (Figure 5D). Through this comprehensive

analysis, we aimed to gain insights into the potential biological

roles and underlying pathways associated with these DEGs while

minimizing repetition in the description of our findings. In

addition, we grouped these five genes based on their expression

levels and utilized the GSEA (Gene Set Enrichment Analysis)

method to analyze the pathways affected by upregulation and

downregulation of gene expression. We found that GYPE,
Frontiers in Oncology 05
PODXL2, and WNT7A all have regulatory effects on the JAK-

STAT pathway (Supplementary Figure S1C). Through our analysis

in Reactome, we have identified potential interactions between

SIRPG and CD47.
Prediction of intratumoral immune cell
infiltration and immunotherapy response

To investigate the disparities among these gene modifications,

we conducted GSVA analysis and immune infiltration analysis for

each patient. The overall findings demonstrated a decrease in T cell

activity and an increase in B cell activity within cancerous tissues

(Figure 2A). Moreover, we performed correlation analysis between

these five genes and pertinent immune cells. The outcomes revealed

that RNF182 and GYPE suppressed the function of T cells follicular

helper and Plasma cells, as well as T cells regulatory (Tregs) and

Dendritic cells. Furthermore, SIRPG stimulated the activity of

Macrophages M1 (Figure 2B). Furthermore, bar graphs were

utilized to compare the immune cell scores between tumor and

adjacent tissues. The results indicated an augmented activity of NK

cells and Mast cells within the LUSC group (Figure 2C).
External validation of TCGA and
GEO databases

For external validation, we obtained a total of 501 samples from

patients diagnosed with LUSC from the TCGA database on Dec 23,
FIGURE 1

Flowchart of the study design. We obtained RNA-seq data from 8 surgical samples of LUSC and adjacent non-cancerous tissues from 3 centers.
Using DESeq2, we identified 1088 differentially expressed genes with |LogFC| > 1 and p-value < 0.05. Additionally, MR analysis of Exposure Data for
26,153 Genes and 63,053 LUSC Patients with 7,838,805 SNPs as endpoints yielded 213 genes as potential exposure factors. After intersecting the
results, we identified 5 differentially expressed genes, namely GYPE, PODXL2, RNF182, SIRPG, and WNT7A. PODXL2 was identified as an exposed risk
factor, with p-values less than 0.01 under the inverse variance weighted model. GO and KEGG analyses revealed enhanced ubiquitin-protein
transferase activity and activation of pathways such as the mTOR signaling pathway and Wnt signaling pathway. Immune infiltration analysis
indicated downregulation of Plasma cells, T cells regulatory (Tregs), and Dendritic cells activated by the identified gene set, while an enhancement
was observed in Macrophages M1. Furthermore, we externally validated the expression levels of these five genes using RNA-seq data from TCGA
database and 11 GEO datasets of LUSC, and the results showed that SIRPG could induce LUSC.
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2023. Additionally, we collected an additional 803 cases of squamous

cell carcinoma of the lung from the GEO database. Supplementary

Table S2 displayed specific details of the data information. The results

showed that the expression levels of these five genes in the

progression/death group and survival group of lung cancer patients

were consistent with the overall trend observed in our center’s RNA-

seq sequencing. Among them, TCGA-LUSC, GSE15701, GSE42127,

GSE3141, GSE11969, and GSE8894 databases exhibited statistically

significant gene expressions (Figures 3A–L).
Frontiers in Oncology 06
Discussion

In this study conducted across multiple centers, we collected

RNA-seq data from 8 surgical samples of LUSC and adjacent non-

cancerous tissues. Differential gene expression analysis using

Deseq2 revealed 1088 genes that exhibited significant differences

(|LogFC| > 1, p-value < 0.05). Additionally, MR analysis using a

large dataset of exposure data and LUSC patient information

identified 213 potential exposure factors.
B

C

A

FIGURE 2

Analysis of intratumoral immune cell infiltration and correlation with intersecting genes. (A) provides a bar chart depicting the proportion of immune
cell infiltration in both cancerous and adjacent non-cancerous samples, offering insights into the differences in immune cell composition between
the two tissue types. (B) presents a heatmap illustrating the correlation between immune cell infiltration scores and the expression levels of
intersecting genes, providing information on potential associations between gene expression and immune cell infiltration. (C) compares the
expression levels of immune cell infiltration scores in cancerous and adjacent non-cancerous samples, highlighting any differences in immune cell
infiltration patterns between the two tissue types. These analyses contribute to our understanding of the interplay between intratumoral immune cell
infiltration and intersecting genes in the context of lung squamous cell carcinoma. *P<0.05.
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Further analysis by intersecting the results highlighted five

differentially expressed genes: GYPE, PODXL2, RNF182, SIRPG,

and WNT7A. Notably, PODXL2 was identified as an exposed risk

factor associated with LUSC progression [OR 95% CI, 1.169 (1.040

to 1.313)], demonstrating statistical significance under the inverse

variance weighted model (p < 0.01). Functional analyses, including

GO and KEGG, uncovered pathways such as the mTOR signaling

pathway and Wnt signaling pathway, along with enhanced

ubiquitin-protein transferase activity.

Based on the above results, SIRPG emerged as a significant risk

factor for LUSC. Immune infiltration analysis highlighted the role
Frontiers in Oncology 07
of Macrophages M1 and the mTOR signaling pathway in LUSC.

These findings suggest that immune cell infiltration patterns may

have prognostic significance in LUSC patients. Furthermore, the

study results may have implications for predicting the response of

LUSC patients to immunotherapy or other targeted treatments.

Moreover, immune infiltration analysis revealed downregulation

of Plasma cells, T cells regulatory (Tregs), and Dendritic cells

associated with the identified gene set, while Macrophages M1

exhibited enhanced infiltration.

To validate our findings, we performed external validation

using RNA-seq data from the TCGA database and 11 GEO
frontiersin.o
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FIGURE 3

Bar chart validating the expression levels between TCGA-LUSC and RNA-seq data (GSE11969, GSE14814, GSE157011, GSE19188, GSE29066,
GSE30219, GSE3141, GSE37745, GSE41271, GSE42127, GSE50081, and GSE8894) in terms of progression/death and survival groups (A-L). In this bar
chart, we compare the expression levels of the genes of interest between The Cancer Genome Atlas-Lung Squamous Cell Carcinoma (TCGA-LUSC)
dataset and various RNA-seq datasets representing different clinical outcomes, including progression/death and survival groups. The comparison
aims to validate the expression patterns observed in TCGA-LUSC across multiple independent datasets, providing robustness to our findings and
enhancing the reliability of the identified gene signatures associated with disease progression and patient survival. Each bar represents the mean
expression level of the genes in the respective dataset and clinical outcome group, with error bars indicating standard deviation or standard error
where applicable. *P<0.05, **P<0.01.
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datasets of LUSC, which consistently supported our initial results.

Mendelian Randomization (MR) is a powerful analytical

method used in genetic epidemiology. It leverages genetic

variants, which are determined randomly and fixed at conception,

as instrumental variables to study the impact of modifiable factors

on health and disease outcomes (15, 25). The increasing popularity

of genome-wide association studies (GWAS) has facilitated the

broader adoption of MR, offering several advantages that help

overcome limitations associated with observational studies in

nutritional epidemiology. By utilizing genetic markers that are

strongly associated with exposures, MR allows for the

examination of causal relationships between these exposures and

health or disease outcomes (26, 27). One key strength of MR is its

ability to mitigate confounding biases caused by behavioral or

environmental exposures and reverse causation (28). By using

genetic variants as proxies for exposures, MR provides a more
Frontiers in Oncology 08
reliable estimate of the true effects of these exposures on health

outcomes. This approach offers valuable insights into the potential

impact of modifiable factors on disease risk and can inform public

health strategies and interventions.

Our study utilized Mendelian Randomization analysis to

identify 213 genes and intersect them with the differentially

expressed genes in our center’s tissue samples, resulting in the

identification of effective differential genes associated with lung

squamous cell carcinoma (LUSC). Subsequent GSEA analysis based

on these findings revealed multiple genes that are involved in

regulating the JAK-STAT pathway. Numerous studies have

demonstrated the crucial involvement of JAK/STAT1, JAK/

STAT3, and JAK/STAT5 signaling pathways in tumor

progression. Aberrant expression and genetic mutations of JAK

family members have been linked to the development and

occurrence of lung cancer. Notably, Xu et al. (29) observed
B

D

E

A

FIGURE 4

Intersection of DEGs from RNA-seq analysis and effective exposure genes from MR. (A) Integrated heatmap of 8 LUSC patients with cancer and
adjacent non-cancerous tissues. (B) Venn diagrams of the intersection between DEGs upregulated and downregulated, as well as MR analysis.
(C) Scatter plot showing the intersection of 5 genes, which were analyzed for single nucleotide polymorphism (SNP) Mendelian randomization in
relation to the risk of LUSC (lung squamous cell carcinoma). (D) Leave one out plot demonstrates the influential outlier after excluding a specific
SNP. Consistent evidence for a causal effect of the exposure gene on the risk of LUSC was found even when this variant was excluded from the
analysis. Effect estimates are reported per standard deviation increase in the exposure variable, and error bars represent 95% confidence intervals.
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upregulation of JAK2 gene expression in tumor tissues, which

significantly correlated with lymph node metastasis. Elevated

JAK2 expression was found to enhance tumor cell proliferation,

metastasis, and invasion, while its downregulation yielded opposing

effects. Additionally, JAK2 gene mutations have been identified in

LUSC, suggesting an association between JAK2 mutations and lung

cancer progression, as well as poor prognosis and drug resistance.

Another investigation (30) highlighted the relationship between

JAK2/JAK3 mutations in lung cancer and the expression of

programmed cell death ligand-1 (PD-L1), implying potential

benefits of immunotherapy for patients harboring JAK3 gene

mutations. Furthermore, NSCLC patients exhibited significantly

increased phosphorylation levels of JAK1, and its high expression

correlated with unfavorable prognosis, emphasizing the utility of

phosphorylated JAK1 as a predictive marker for NSCLC treatment

(31). Our discovery of intersecting genes that modulate the JAK-

STAT pathway suggests their potential as therapeutic targets.

Our research also revealed that the intersecting genes obtained

showed a strong correlation with immune infiltration scores in the

samples. Specifically, these genes were found to have a significant
Frontiers in Oncology 09
regulatory effect on Regulatory T cells (Tregs), Macrophages M1

and plasma cells. Tregs are a type of immune inhibitory cell

population present in the tumor microenvironment (TME). They

express CD4 and the transcription factor forkhead box protein P3

(FoxP3) and play a crucial role in maintaining immune homeostasis

by regulating peripheral tolerance and suppressing autoimmune

diseases through diverse immunosuppressive mechanisms (32, 33).

Studies using mouse models have shown that Tregs can effectively

inhibit the response of antitumor effector T cells and impede the

elimination of tumors by endogenous tumor-specific effector T cells

(34, 35). In various murine and human cancers, the proportion of

Tregs among tumor-infiltrating lymphocytes (TILs) is generally

higher compared to normal tissues and blood. Additionally, recent

research has linked increased infiltration of Tregs expressing

specific genes to a poor prognosis in non-small cell lung cancer

(NSCLC) (36, 37). Despite multiple attempts, clinical approaches

aimed at selectively depleting or inhibiting Tregs in tumors have not

been successful, potentially due to the lack of Treg specificity or the

inability to target functionally relevant subsets of Tregs. Therefore,

gaining a comprehensive understanding of the phenotype and
B

C D

A

FIGURE 5

Risk and omics analysis of intersecting genes. (A) It shows forest plots of the risk estimates for the five intersecting genes obtained using both the
Mendelian Randomization-Egger (ME) and Inverse Variance-Weighted (IVW) models. (B) volcano plot to illustrate the Differentially Expressed Genes
(DEG), specifically highlighting the positions of the chosen genes. This plot, labeled as Figures 3B in our manuscript. Each point on the plot
represents a gene, with the chosen genes ‘GYPE’, ‘PODXL2’, ‘RNF182’, ‘SIRPG’, and ‘WNT7A’ indicated and labeled accordingly. (C, D) display barplots
representing the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms, respectively. These analyses
provide insights into the potential biological functions and pathways associated with the intersecting genes identified in our study.
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regulatory gene expression of Tregs within tumor-infiltrating

lymphocytes (TIL-Tregs) is critical for developing effective

immunotherapy strategies.

Macrophages can exhibit different phenotypes, including

classically activated type 1 (M1) macrophages and alternatively

activated type 2 (M2) macrophages. M1 macrophages are polarized

by lipopolysaccharide (LPS), interferon-gamma (IFN-g), or tumor

necrosis factor (TNF), leading to the secretion of pro-inflammatory

cytokines and the ability to eliminate microorganisms and tumor

cells. Notabl (38, 39)y, Dong et al. demonstrated that gamma-

aminobutyric acid (GABA), a neurotransmitter commonly found in

tumors, promotes the polarization of M2 macrophages through

JAK1/STAT6 activation while inhibiting M1 polarization via JAK2/

STAT3 inhibition, thus promoting tumor progression.

Furthermore, GABA enhances tumor neovascularization by

upregulating the expression of FGF2 in macrophages (40). Our

findings also suggest that both M1 macrophages and the JAK-STAT

pathway play regulatory roles in lung squamous cell carcinoma.

SIRPG plays a crucial role in regulating the progression of lung

cancer. It has been shown that SIRPG can modulate the activation

and function of macrophages by binding to its ligand. Specifically,

the binding of SIRPG to its ligand promotes the differentiation of

macrophages into the M1 phenotype. M1 macrophages exhibit pro-

inflammatory and anti-tumor effects, playing a significant role in

inhibiting tumor growth and metastasis in lung cancer. These

macrophages release various cytokines and effector molecules

such as IL-12, TNF-a, and NO, which suppress tumor cell

proliferation, induce apoptosis, and activate other anti-tumor

immune cells. Furthermore, SIRPG can also influence the
Frontiers in Oncology 10
development of lung cancer by regulating inflammation and

immune cell infiltration. It may regulate the production of

inflammatory fac tors and chemokines in the tumor

microenvironment, as well as the migration and infiltration of

immune cells, thereby impacting tumor growth and metastasis. It

is important to note that although there have been studies on the

role of SIRPG in regulating M1 macrophages in lung cancer, this

field is still evolving, and further research is needed to fully

understand the specific mechanisms involved (41). Moreover, this

study also demonstrated that the expression of this gene is

upregulated in lung cancer. Therefore, inhibitors targeting this

gene could potentially serve as targeted therapeutic agents for

lung cancer (41).

Based on our study results and previous literature, we

hypothesize the following: SIRPG activates M1 macrophages,

while RNF182 and GYPE inhibit plasma cells and T helper cells.

PODXL2 suppresses Treg and DCs. These cells, along with soluble

factors and chemokines, disrupt the JAK-STAT pathway,

promoting LUSC formation (Figure 6).

The methods of MR also have their limitations. Hardware

constraints: MR devices require powerful processors and batteries,

which limits their portability and introduces concerns about weight

and comfort. Dependency on external sensors: Many MR systems

rely on external cameras or sensors to track movement and

position, adding complexity and potentially limiting the user’s

freedom of movement. Interaction challenges: Interacting with

virtual objects in MR environments can be challenging, as current

input methods are not as intuitive or precise as physical

interactions. Limited content availability: Despite advancements,
FIGURE 6

SIRPG positively regulates M1 macrophages, while RNF182 and GYPE negatively regulate plasma cells and T helper cells, respectively. PODXL2
negatively modulates T regulatory cells and dendritic cells (DCs). These cells can collectively act on M1 macrophages, which are activated by soluble
factors such as IFN-g, IL-12, TNF-a, as well as chemokines like CCL2, CCL3, and CCL4. Under normal circumstances, stem cells undergo self-
renewal, proliferation, and differentiation into bronchial epithelial cells. However, under the influence of activated M1 macrophages, the JAK-STAT
pathway is disrupted, leading to the differentiation of stem cells towards LUSC, ultimately resulting in lung cancer.
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there is still a limited library of MR content available, which restricts

the variety and range of experiences users can have. Therefore, we

need more clinical real-world data for validation.
Conclusion

In conclusion, our study on early-stage LUSC identified

differentially expressed genes and potential exposure factors

associated with tumor progression. Among the five highlighted

genes, SIRPG was found to be an exposed risk factor for LUSC.

Functional analysis revealed relevant signaling pathways and

enriched activities. Immune infiltration analysis indicated

alterations in various immune cell populations. External

validation using multiple datasets consistently supported our

findings. These results provide valuable insights into the

molecular mechanisms and potential therapeutic targets in LUSC.
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