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Tokat Gaziosmanpaşa University, Türkiye
Lorenzo Faggioni,
University of Pisa, Italy

*CORRESPONDENCE

Kunhua Wu

khcgz@sina.com

Hongjiang Zhang

zhj200614001@163.com

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed equally to
this work

RECEIVED 05 March 2024

ACCEPTED 28 May 2024
PUBLISHED 13 June 2024

CITATION

Yang J, Bi Q, Jin Y, Yang Y, Du J, Zhang H
and Wu K (2024) Different MRI-based
radiomics models for differentiating
misdiagnosed or ambiguous pleomorphic
adenoma and Warthin tumor of the parotid
gland: a multicenter study.
Front. Oncol. 14:1392343.
doi: 10.3389/fonc.2024.1392343

COPYRIGHT

© 2024 Yang, Bi, Jin, Yang, Du, Zhang and Wu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 13 June 2024

DOI 10.3389/fonc.2024.1392343
Different MRI-based radiomics
models for differentiating
misdiagnosed or ambiguous
pleomorphic adenoma and
Warthin tumor of the parotid
gland: a multicenter study
Jing Yang1†, Qiu Bi1†, Yiren Jin2, Yong Yang1, Ji Du1,
Hongjiang Zhang1*‡ and Kunhua Wu1*‡

1Department of MRI, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of
Kunming University of Science and Technology, Kunming, Yunnan, China, 2Department of Radiation,
The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University,
Kunming, Yunnan, China
Purpose: To evaluate the effectiveness of MRI-based radiomics models in

distinguishing between Warthin tumors (WT) and misdiagnosed or ambiguous

pleomorphic adenoma (PA).

Methods: Data of patients with PA and WT from two centers were collected. MR

imageswere used to extract radiomic features. The optimal radiomicsmodel was found

by running nine machine learning algorithms after feature reduction and selection. To

create a clinical model, univariate logistic regression (LR) analysis and multivariate LR

were used. The independent clinical predictors and radiomics were combined to create

a nomogram. Two integrated models were constructed by the ensemble and stacking

algorithms respectively based on the clinical model and the optimal radiomics model.

The models’ performance was evaluated using the area under the curve (AUC).

Results: There were 149 patients included in all. Gender, age, and smoking of

patients were independent clinical predictors. With the greatest average AUC

(0.896) and accuracy (0.839) in validation groups, the LR model was the optimal

radiomics model. In the average validation group, the radiomics model based on

LR did not have a higher AUC (0.795) than the clinical model (AUC = 0.909). The

nomogram (AUC = 0.953) outperformed the radiomics model in terms of

discrimination performance. The nomogram in the average validation group

had a highest AUC than the stacking model (0.914) or ensemble model (0.798).
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Conclusion: Misdiagnosed or ambiguous PA and WT can be non-invasively

distinguished using MRI-based radiomics models. The nomogram exhibited

excellent and stable diagnostic performance. In daily work, it is necessary to

combine with clinical parameters for distinguishing between PA and WT.
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1 Introduction

Up to 80% of parotid tumors are benign with the two most

common types being pleomorphic adenoma (PA) and Warthin

tumor (WT) (1, 2). Compared with WT, PA exhibits a higher

potential for malignant transformation and recurrence, so the

surgical approaches and prognosis are completely different (3, 4).

Hence, for the purpose of precisely and individually treating

patients with benign parotid tumors, it is crucial to accurately

distinguish between PA and WT.

At present, the preoperative diagnosis of PA or WT relies on

fine needle aspiration cytology (FNAC) and radiological images.

However, FNAC is not always conclusive because of sampling

difficulties and the experience of pathologist (5, 6). Furthermore,

FNAC is invasive, which may lead to hemorrhage (7), inflammation

(8), and dissemination of tumor cells along the needle route (9).

Patients with similar clinical factors may have varying outcomes,

and it is often difficult to definitively distinguish between WT and

PA based solely on clinical factors. In comparison to CT and needle

biopsy, MRI offers several advantages such as non-invasiveness,

absence of radiation, and excellent soft tissue resolution (10). In the

evaluation of parotid tumors, MRI can provide information about

the size, location, shape, and characteristics of the tumor, which can

help guide treatment decisions (11, 12). Nonetheless, conventional

MRI differential diagnosis has not always been adequate because of

the substantial overlap in morphological features between PA and

WT. In addition, conventional MRI diagnosis may have a subjective

component and depend on the expertise and experience of

radiologist (13).

Radiomics can extract high throughput of quantitative features

by converting images into amenable data, and the analyzing these

data for decision support (14). Radiomics can provide much more

comprehensive information from medical images than human

eyes (15). In recent years, radiomics has been widely used for

preoperative diagnosis of parotid tumors (16–18). Some previous

studies have tried to discriminate benign and malignant parotid

tumors using radiomics (19, 20), but only a few of them have

analyzed the differentiation of PA from WT (21, 22). However,

there is no research focused on differentiating misdiagnosed or

ambiguous PA and WT using radiomics.
02
Therefore, we use a variety of machine learning methods to

establish different MRI-based radiomics models and determine the

optimal radiomics models for identifying misdiagnosed or ambiguous

PA and WT. By integrating a variety of models combining radiomics

and clinical parameters, we evaluate the effect of multimode combined

application in differential diagnosis of the disease, so as to improve the

accuracy of diagnosis of the disease.
2 Materials and methods

2.1 Study population

The ethical approval of two clinical centers approved this

retrospective study. The informed consent was waived. All the

enrolled patients with PA or WT were from centers A and B

between January 2015 and June 2022. The inclusion criteria were as

follows: (1) patients with WT or PA confirmed by operation and

pathology; (2) PA and WT were diagnosed as misdiagnosed or

ambiguous on Picture Archiving and Communication Systems

(PACS); (3) complete clinical data; patients with satisfactory

image quality; (4) underwent MR examination no more than 7

days before surgery. The exclusion criteria were as follows: (1)

underwent parotid puncture, surgery, or chemoradiotherapy before

MR examination; (2) PA and WT were identified on the PACS; (3)

image quality unsatisfactory due to motion artifacts or false teeth

artifacts, etc.; (4) absence of enhanced images. A total of 126

patients (76 PA, 50 WT) were assigned to training group (88

patients) and internal verification group (38 patients) and center

B (23 patients) as external verification group according to 4:1. A

follow diagram of the study population is shown in Figure 1. The

clinical characteristics included gender, age, smoking history, lesion

mobility, and lesion hardness were collected.
2.2 MRI image acquisition

All MR examinations were performed using 1.5/3.0-T scanners

(Philips 1.5 T, Siemens Aera 1.5T, and Siemens Prisma 3.0T, GE Signa

HDxt (3.0T). All patients underwent a preoperative MR examination
frontiersin.org

https://doi.org/10.3389/fonc.2024.1392343
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2024.1392343
using parotid scan protocol. Parameter details are shown in Table 1.

The contrast-enhanced images were obtained after administered (0.1

mmol/kg) at a rate of 2.0 mL/s via the elbow vein.
2.3 Conventional MRI features

The MRI features were assessed by two radiologists (reader 1 with

8 years of experience in neck MRI and reader 2 with 6 years of
Frontiers in Oncology 03
experience in neck MRI). The radiologist was blinded to the clinical

data and the histological results. The MRI features were as follows: (1)

tumor location (left side or right side, superficial lobe or deep lobe of

parotid); (2) tumor diameter (craniocaudal, transverse, and

anteroposterior diameter); (3) lobulated appearance, cystic

degeneration and capsule (absent or present) (13), (4) tumor

margin (clear or unclear) (23); (5) “hamming sign,” which means

tumor margin thin band or petal high signal on T2-weighted imaging

(T2WI), more than 1/4 of the circumference of the same layer (24);
TABLE 1 The parameter details of primary sequences.

Sequence Repetition
time (ms)

Echo
time (ms)

Field of
view (mm2)

Acquisition
matrix (ms)

Slice
thickness (mm)

Slice
gap (mm)

Philips 1.5 T T2WI 2,000 90 240×240 268×200 4 1

T1WI Shortest Shortest 240×200 268×200 4 −2

CE-T1WI Shortest Shortest 240×220 268×220 4 −2

Siemens Aera
1.5 T

T2WI 5,600 80 240×240 224×320 5 1

T1WI 7.11 2.39 240×240 240×320 3 0.6

CE-T1WI 7.11 2.39 240×240 240×320 3 0.6

Siemens
Prisma 3.0 T

T2WI 4,800 83 220×220 240×320 4 1

T1WI 6.18 2.46 220×220 259×288 3 1

CE-T1WI 6.18 2.46 220×220 256×320 3 0.6

GE Signa
HDxt 3.0T

T2WI 4,740 68 260×260 288×224 5 1

T1WI 5.7 1.4 260×260 240×224 4 1

CE-T1WI 5.7 1.4 260×260 264×224 4 1
T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; CE-T1WI, contrast-enhanced T1-weighted imaging.
FIGURE 1

Flowchart for selecting the study population. PA, pleomorphic adenomas; WT, Warthin tumors.
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(6) tumor homogeneity on T1-weighted imaging (T1WI), T2WI, and

contrast-enhanced T1-weighted imaging (CE-T1WI) (24, 25).
2.4 Image segmentation

MRI images of axial T2WI, T1WI, and CE-T1WI were stored in

Digital Imaging and Communications in Medicine (DICOM)

format and uploaded into 3D Slicer 4.11.0 software (https://

www.slicer.org/). The segmentation of the tumors was performed

by two radiologists (reader 1 and reader 2), who were blinded to the

clinical information and histopathological results. The region of

interest (ROI) of the lesion was manually delineated layer by layer

to cover the whole tumor as largely as possible (including cystic and

necrotic areas) but avoiding normal tissue to form a three-

dimensional (3D) volume of interest (VOI). Reader 1 draws the

ROI. Two months later, two readers (reader 1 and reader 2) had a

brief review in the same case.
2.5 Image preprocessing and
feature extraction

Pyradiomics (https://pypi.org/project/pyradiomics/) is an open-

source Python software that was used for image preprocessing and

feature extraction. The voxel size of 1 × 1 × 1 mm3 was resampled in

order to improve the comparability of the MRI gray-level values

(26). To standardize image intensity, the gray-level values in the

photographs were spread across the range of 0–600. There were

5,343 radiomics features obtained for every patient out of the total

1,781 features that were extracted from each MRI sequence. Z score

was used to standardize all of the aforementioned features.
2.6 Feature selection

The training group’s patient datasets for WT and PA were

balanced by the application of the synthetic minority oversampling

technique. For every feature, the intraclass correlation coefficient

(ICC) was computed. Selection was made of features with ICC

values ≥0.75 for both observers within and between. In order to

determine whether features were redundant, Pearson correlation

coefficients were obtained. When two features had a correlation

coefficient of less than 0.9, the feature with the highest

mean absolute correlation was eliminated. To find the most

representative features, we employed a least absolute shrinkage

and selection operator (LASSO) regression model and 10-fold

cross-validation (27).
2.7 Models’ construction

2.7.1 Clinical model
The differences in clinical parameters and conventional MRI

features between PA and WT in the training group were compared
Frontiers in Oncology 04
using univariate analysis, and the clinical factors and MRI features

with significant difference were determined. The univariate logistic

regression (LR) analysis and multivariate LR were used to construct

clinical model and find out clinical predictors.

2.7.2 Radiomics model
In this study, nine mainstream machine learning algorithms

were used to build radiomics models for distinguishing PA andWT,

which included logistic regression (LR), K-nearest neighbor (KNN),

support vector machine (SVM), random forest (RF), stochastic

gradient descent (SGD), extremely randomized trees (ET),

decision tree (DT), eXtreme Gradient Boosting (XGBoost), and

Light Gradient Boosting Machine (LightGBM). In both the internal

and external validation groups, the nine machine models’

diagnostic performances were assessed based on sensitivity,

specificity, accuracy, and the area under the curve (AUC) of the

receiver operating characteristic curve (ROC). The radiomics model

with the highest average AUC was chosen as the optimal model. A

radiomics score (radscore) was calculated for each patient.

2.7.3 Fusion model
A nomogram integrating independent clinical parameters and

the radscore was constructed using multivariate LR analysis.

Using a meta-regression model to integrate many models, the

stacking model, which is an ensemble learning technology that

increases the accuracy of result prediction, was employed. A two-

tier stacking model was used to calculate. The first tier used the

predicted results of the clinical model and the optimal radiomics

model, and the second tier used the results of the first tier as the

input of the multivariate LR. These input properties were integrated

using the meta-regressor to achieve model fusion (28).

Utilizing super learner, an integrated technique, the ensemble

algorithm is developed (29). By employing the weighted average

approach to derive the anticipated values from both the clinical

model and the optimal radiomics model, the new output was

ultimately utilized as the outcome.

The Python (https://www.python.org/getit/) was used to

perform the above model building, and Figure 2 illustrates the

detailed process of model structure. To evaluate the effectiveness

and goodness of fit of each model, metrics such as sensitivity,

specificity, accuracy, and the area under the curve (AUC) of the

calibration curve and receiver operating characteristic curve (ROC)

were employed.
2.8 Clinical application of the models

To diagnose PA and WT in the training and validation groups,

one radiologist solely reviewed the MR images while being blind to

the histological results and clinical information. The radiologist’s

AUC, accuracy, specificity, and sensitivity were calculated. The

clinical usefulness and net benefit of the radiologist and various

models were estimated using the net reclassification index (NRI),

integrated discrimination index (IDI), and clinical decisive

curve (CDC).
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2.9 Statistical analyses

Statistical analysis was conducted with SPSS 26.0 (IBM, New

York, USA), R software 4.1.2 (https://www.r-project.org/), and

Python 3.9.7 (https://www.python.org/). The mean value ±

standard deviation and counts were used to express categorical

variables and continuous data, respectively.

The continuous data distribution was examined for normalcy

using the Kolmogorov–Smirnov test. One-way ANOVA or the
Frontiers in Oncology 05
Kruskal–Wallis test was used to evaluate continuous variables,

whereas the Chi-square test or Fisher’s exact test was used to

investigate categorical variables. Both univariate and multivariate

LR analyses were employed in the model building and clinical

predictor filtering processes. At p < 0.05, statistical significance was

established. Pearson correlation analysis was used to evaluate the

correlations between continuous variables, whereas Spearman

correlation analyses were used to investigate the relationships

between continuous variables and ranking data. It is considered
FIGURE 2

Workflow of this study.
TABLE 2 Clinical and conventional imaging characteristics for patients.

Training group Internal validation group External validation group p-value

Total number 88 38 23

Age 46.09 ± 13.91 50.13 ± 15.52 52.43 ± 14.14 0.11

Gender Female 31 (35.2%) 10 (26.3%) 4 (17.4%) 0.21

Male 57 (64.8%) 28 (73.7%) 19 (82.6%)

Smoking Yes 43 (48.9%) 19 (50.0%) 15 (65.2%) 0.37

No 45 (52.1%) 19 (50.0%) 8 (34.8%)

Pian Yes 1 (1.14%) 1 (2.63%) 2 (8.7%) 0.14

No 87 (98.9%) 37 (97.4%) 21 (91.3%)

Lesion mobility Yes 61 (69.3%) 23 (60.5%) 20 (87.0%) 0.09

No 27 (30.7%) 15 (39.5%) 3 (13.0%)

Lesion consistency Soft 7 (9.95%) 4 (10.5%) 5 (21.7%) 0.19

Hard 81 (92.0%) 34 (89.5%) 18 (78.3%)

Side Right 50 (56.8%) 22 (57.9%) 12 (52.2%) 0.90

Left 38 (43.2%) 16 (42.1%) 11 (47.8%)

(Continued)
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to be correlations between the variables if p < 0.05. DeLong test was

used to compare the prediction performance of different models. At

p < 0.05, statistical significance was established.
3 Results

3.1 Clinical parameters

The MRI characteristics and basic demographic information of

the patients are given in Table 2. Age, gender, and smoking may be

utilized to predict WT and PA, according to univariate logistic

regression analysis. Multivariate LR analysis showed that gender,

age, and smoking remained as independent predictors in the clinical

factor model.
3.2 Feature selection and performance of
different machine learning models

Out of all the extracted features, 3,836 features were excluded

due to the ICC values less than 0.75 either between or within
Frontiers in Oncology 06
observers. Following the completion of the Pearson correlation

analysis, 605 features were retained. There were then 20 features

identified by the LASSO classifier (Supplementary Material 1).

Table 3 displays the AUC, accuracy, sensitivity, and specificity of

radiomics models building by nine machine learning algorithms.

Figures 3A–C show broken line graphs of AUC for various

algorithms in the training, internal validation, and external

validation groups. With an AUC of 0.896, and an accuracy of

0.839 in the average validation groups, the LR algorithm was the

best radiomic model. Consequently, it was thought that the LR

algorithm was the best option for building radiomics models.

The coefficients and intercepts derived from the LR model were

used to calculate the radscore. Figure 3D displays the selected

features and weights.
3.3 Different fusion models: performance
and clinical applications

The radscore and the clinical predictive characteristics

(smoking, age, and gender) were used to construct a nomogram

(Figure 3E). The diagnostic performance of each model is presented
TABLE 2 Continued

Training group Internal validation group External validation group p-value

Location Superficial
lobe

87 (98.9%) 38 (100%) 23 (100%) 1.00

Deep lobe 1 (1.14%) 0 (0.00%) 0 (0.00%)

Lobulated border Yes 39 (44.3%) 13 (34.2%) 10 (43.5%) 0.56

No 49 (55.7%) 25 (65.8%) 13 (56.5%)

Cystic degeneration Yes 42 (47.7%) 21 (55.3%) 6 (26.1%) 0.08

No 46 (52.3%) 17 (44.7%) 17 (73.9%)

Margin Clear 83 (94.3%) 37 (97.4%) 23 (100%) 0.60

Unclear 5 (5.68%) 1 (2.63%) 0 (0.00%)

Capsule Present 83 (94.3%) 37 (97.4%) 23 (100%) 0.60

Absent 5 (5.68%) 1 (2.63%) 0 (0.00%)

“Hemming Sign” Present 26 (29.5%) 11 (28.9%) 2 (8.70%) 0.12

Absent 62 (70.5%) 27 (71.1%) 21 (91.3%)

T1WI homogeneity Yes 65 (73.9%) 28 (73.7%) 14 (60.9%) 0.45

No 23 (26.1%) 10 (26.3%) 9 (39.1%)

T2WI homogeneity Yes 28 (31.8%) 18 (47.4%) 10 (43.5%) 0.21

No 60 (68.2%) 20 (52.6%) 13 (56.5%)

CE-T1WI homogeneity Yes 15 (17.0%) 6 (15.8%) 10 (43.5%) 0.05

No 73 (83.0%) 32 (84.2%) 13 (56.5%)

Craniocaudal diameter 2.72 ± 1.15 2.92 ± 1.28 3.13 ± 1.09 0.29

Transverse diameter 2.23 ± 0.94 2.32 ± 0.90 2.56 ± 0.83 0.31

Anteroposterior
diameter

2.21 ± 0.85 2.18 ± 0.97 2.14 ± 0.62 0.91
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in Table 4. ROC curves and calibration curves of different models

are shown in Figures 4A–F. In the training group, the clinical,

radiomics, nomogram, stacking, and ensemble models’ AUCs were

0.940, 1.00, 0.990, 1.00, and 1.00. They were, in order, 0.942, 0.939,

0.971, 0.936, and 0.936 in the internal validation group. They were,

in order, 0.862, 0.854, 0.915, 0.885, and 0.885 in the external

validation group. They were, in the average validation group,

0.909, 0.795, 0.953, 0.914, and 0.798, in that order. The AUC of

the nomogram was the highest in the average validation group. To
Frontiers in Oncology 07
perform the Delong test in the average validation group, we merged

the data from the external and internal validation group. The

DeLong test showed that the prediction performance of the

nomogram was significantly better. There was a statistical

difference between nomogram and ensemble model, and between

nomogram and radiomics model (P < 0.05). There was no statistical

difference between nomogram and stacking model (P = 0.075), as

well as nomogram and clinical model (P = 0.163) (Supplementary

Material 2).
A B C

D E

FIGURE 3

Different model building. Broken line graphs of the area under the curve (AUC) for different machine learning algorithms in the training group (A), the
internal validation group (B), and the external validation group (C). Bar chart of feature weight for the logistic regression model (D). Nomogram of
the training group (E).
TABLE 3 The performance of various machine learning algorithms.

Training group Internal validation group External validation group Average
validation groups

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

LR 1.000 1.000 0.939 0.895 0.854 0.783 0.896 0.839

SVM 1.000 1.000 0.942 0.895 0.807 0.782 0.875 0.839

SGD 1.000 1.000 0.919 0.842 0.762 0.696 0.840 0.769

KNN 0.997 0.955 0.910 0.895 0.765 0.696 0.838 0.795

DT 1.000 1.000 0.780 0.790 0.719 0.696 0.749 0.743

RF 1.000 1.000 0.935 0.895 0.823 0.696 0.879 0.795

ET 1.000 1.000 0.936 0.921 0.835 0.696 0.885 0.809

XGBoost 1.000 1.000 0.930 0.895 0.854 0.652 0.892 0.773

LightGBM 1.000 1.000 0.942 0.921 0.877 0.609 0.909 0.765
AUC, area under the curve; LR, logistic regression; SVM, support vector machine; SGD, stochastic gradient descent; KNN, K nearest neighbor; DT, decision tree; RF, random forest; ET, extremely
randomized trees; XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine.
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TABLE 4 Diagnostic efficiency and clinical benefit of different models.

Models AUC Accuracy Sensitivity Specificity NRI IDI

Training group Clinical model
Radiomics model
Nomogram
Stacking model
Ensemble model

0.940
1.000
0.990
1.000
1.000

0.909
1.000
0.989
0.989
0.989

0.914
1.000
0.971
0.971
0.971

0.906
1.000
1.000
1.000
1.000

0.545
0.545
0.523
0.522
0.523

0.528
0.783
0.714
0.743
0.655

Internal
validation group

Clinical model
Radiomics model
Nomogram
Stacking model
Ensemble model

0.942
0.939
0.971
0.936
0.936

0.942
0.894
0.895
0.921
0.921

1.000
0.867
0.933
0.933
0.933

0.739
0.913
0.870
0.913
0.913

0.474
0.316
0.368
0.368
0.368

0.237
0.413
0.383
0.379
0.307

External
validation group

Clinical model
Radiomics model
Nomogram
Stacking model
Ensemble model

0.862
0.854
0.915
0.885
0.885

0.826
0.783
0.826
0.696
0.739

0.846
0.692
0.846
0.615
0.615

0.800
0.900
0.800
0.800
0.900

0.869
0.782
0.869
0.695
0.695

1.301
1.294
1.334
1.272
1.227

Average
validation group

Clinical model
Radiomics model
Nomogram
Stacking model
Ensemble model

0.909
0.795
0.953
0.914
0.798

0.623
0.311
0.902
0.885
0.361

0.536
0.286
0.964
0.929
0.429

0.697
0.333
0.848
0.848
0.303

0.933
0.319
1.513
0.692
0.977

0.215
0.001
0.668
0.564
-0.053
F
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AUC, area under the curve; NRI, net reclassification index; IDI, integrated discrimination index.
A B C

D E F

G H I

FIGURE 4

Receiver operator characteristic (ROC) curves (A-C), calibration curves (D-F), and clinical decision curves (CDCs) of different models in the training
group (A, D, G), the internal validation group (B, E, H), and the external validation group (C, F, I).
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Figures 4G–I displays the CDCs for each model, whereas

Table 4 presents the NRI and IDI. The nomogram model had a

highest NRI (1.513) and IDI (0.668) than other models in the

average validation group. It shows that nomogram had good ability

for the differentiation of PA and WT than the other models.
4 Discussion

We found that gender, age, and smoking were clinical

independent predictors for the differential diagnosis of PA and

WT. The LR algorithm model, which was based on nine popular

machine learning algorithms, was the best radiomics model with the

highest accuracy and AUC. The fusion models—nomogram,

stacking, and ensemble—also demonstrated superior diagnostic

performance and produced a good net clinical benefit when

compared with the clinical model. In comparison with the best

radiomics model, the nomogram showed a better AUC. It also

outperformed stacking and ensemble models in terms of superior

generalization ability and more consistent discrimination efficiency.

Previous studies have reported that gender, age, and smoking

history of patients had significance in the identification of PA and

WT (30, 31). Our results were similar to those studies. Some studies

suggested that duration of smoking was a strong risk factor (32).

Because male smokers were more prevalent, WT was more

common in men. The pathogenesis may relate to the fact that

tobacco contains chemical irritants such as benzopyrene, arsenic,

and N-nitrosoguanidine (31).. These irritants leading to secondary

tumor change was a lengthy phenomenon, so WT occurred in

middle or old age. Some studies suggested that the comparatively

significantly greater incidence of WT in men might indicate a

hormone dependence, and progesterone receptors have been

found in WT (33). The evidence of progesterone receptor in WT

implicated a potential role of endocrine factors in the development
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of this tumor, which might explain the predominance of the male

sex regarding this disease (34).

PAs are also known as mixed tumors due to histological

heterogeneity, which also suggests that it is represented by

various imaging findings (23). When PA has fewer cellular

components of mucoid tissue, high signal intensity on T2WI

images decreases, which reduces the rate depending on the

proportion of cellular components (35).The tumor signal

expression of WT depends mainly on the cystic component of the

tumor, and as the size of the cystic component increases, the

internal structure looks bright at T2WI images that may simulate

PA (36). When PA andWT showed similar imaging manifestations,

it was difficult to distinguish PA from WT based on conventional

MR imaging (Figure 5). The radiologists only paid attention to the

imaging manifestations of the tumor while ignoring the clinical

characteristics, which was more likely to be misdiagnosed.

Radiomics is a non-invasive technique that builds models from

digitized medical images and uses clever computation to convert

them into high-dimensional, quantitative data that can be used to

improve medical decision-making and provide useful diagnoses

(14). Liu et al. (37) reported that there were no appreciable

variations between MRI and CT in radiomics characteristics for

diagnosing parotid malignancies. In this study, the diagnostic

efficacy of the radiomics model was not as good as that of the

clinical model. Potential explanations for these results included the

subjective impact of individual clinical experience as well as a single

imaging index. T2WI provided the vital features for the optimal

radiomics model. PA contains mucoid tissue and usually shows a

high signal on T2WI (38). In comparison, WT are epithelial tissues

with lymphoid hyperplasia that contain cystic components of

approximately 30% protein liquids or viscous colloids, and they

usually show a hypointense/with hyperintensity signal on T2WI

(36). Additionally, this study found that GLCM features could help

discriminate between PA and WT, similar to the results of
A B

FIGURE 5

(A) Warthin tumors (arrows) in the right parotid gland of a 52-year-old man. T2-weighted image (axial plane) shows a markedly high-intensity tumor;
a partition is visible within it. (B) Pleomorphic adenoma (arrows) in the left parotid gland of a 26-year-old man. T2-weighted image (axial plane)
shows a slightly hypointense tumor. There are irregular areas of high intensity in the upper part of the tumor.
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Gabelloni (39). The coarseness of the texture was represented by the

zone percentage of GLCM features, which may more accurately

capture the heterogeneity of various tumor types.

Recognizing the best machine learning techniques for radiomics

models is essential (40). Thus, we employed nine common

classification algorithms in model construction. LR outperformed

other classifiers, which were consistent with the results of Lu et al.

(41). More training samples may have been needed for sophisticated

models, which could be the cause (42). The optimal radiomics

model based on LR did not have a higher AUC than the clinical

model. This result also illustrates that when there is a problem with

the observation of traditional imaging, radiologists should combine

clinical data. Evidence-based clinical decision support systems can

be produced with accuracy and dependability by combining

radiomics features with clinical parameters and other pertinent

data (43). In this study, the clinical or radiomics model did not

perform as well in terms of diagnostic performance and clinical net

benefits as the nomogram, stacking model, and ensemble model,

which are instances of fusion models constructed utilizing clinical

parameters and radiomics features. Additionally, the nomogram

exhibited a highest AUC when compared with the other models.

Zheng et al. (44) constructed a radiomics nomogram based on MRI

that had good prediction efficiency in distinguishing PA from WT,

obtaining a similar conclusion as this research. The ensemble

strategy has the advantage of being able to reduce the variance

and bias of the model while also enhancing its robustness and

generalization in classification and prediction, by using a strong

majority voting or group average method (45). A recent report had

proposed that the stacking ensemble model obtained excellent

diagnostic performance and showed good stability of the

calibration plot (46). While AUCs for the ensemble and stacking

models were less than those of the nomogram in the current study,

their diagnostic performance in the average validation groups was

comparable with and superior to that of the radiomics models. As a

result, the nomogram demonstrated better and more consistent

differential diagnosis efficiency with superior reproducibility and

reliability when compared with stacking and ensemble models.

This study’s limitations were the fact that it only included

participants from two centers, and the sample of external test

data was relatively small. Additional patients from more centers

must be included to expand the universality in clinical applications,

in the future. Second, this was a retrospective study, which might

cause potential selection bias. In the future, prospective validation

will be performed. Third, there were variations in the MRI scanner

and parameters, which could have an impact on the models’ output.

We performed the N4 bias field correction. Fourth, we only studied

conventional MRI sequences, with limited interpretability. Other

quantitative functional MRI sequences, such as DWI and DCE-

MRI, still need to be further explored.
5 Conclusions

The MRI-based radiomics models can be accomplished to

preoperatively differentiate misdiagnosed or ambiguous PA and

WT, and the LR algorithm-established model is the optimal
Frontiers in Oncology 10
radiomics model. The nomogram is an effective tool for

preoperative and non-invasive distinguishing PA and WT, which

can be challenging for radiologists and surgeons to ascertain prior

to surgery. In daily work, it is necessary to combine with clinical

parameters such as gender, age, and smoking when radiologists are

difficult to distinguish PA from WT.
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