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Cervical cancer is a prevalent and concerning disease affecting women, with

increasing incidence and mortality rates. Early detection plays a crucial role in

improving outcomes. Recent advancements in computer vision, particularly the

Swin transformer, have shown promising performance in image classification tasks,

rivaling or surpassing traditional convolutional neural networks (CNNs). The Swin

transformer adopts a hierarchical and efficient approach using shifted windows,

enabling the capture of both local and global contextual information in images. In this

paper, we propose a novel approach called Swin-GA-RF to enhance the

classification performance of cervical cells in Pap smear images. Swin-GA-RF

combines the strengths of the Swin transformer, genetic algorithm (GA) feature

selection, and the replacement of the softmax layer with a random forest classifier.

Our methodology involves extracting feature representations from the Swin

transformer, utilizing GA to identify the optimal feature set, and employing random

forest as the classification model. Additionally, data augmentation techniques are

applied to augment the diversity and quantity of the SIPaKMeD1 cervical cancer

image dataset. We compare the performance of the Swin-GA-RF Transformer with

pre-trained CNN models using two classes and five classes of cervical cancer

classification, employing both Adam and SGD optimizers. The experimental results

demonstrate that Swin-GA-RF outperforms other Swin transformers and pre-trained

CNN models. When utilizing the Adam optimizer, Swin-GA-RF achieves the highest

performance in both binary and five-class classification tasks. Specifically, for binary

classification, it achieves an accuracy, precision, recall, and F1-score of 99.012,

99.015, 99.012, and 99.011, respectively. In the five-class classification, it achieves an

accuracy, precision, recall, and F1-score of 98.808, 98.812, 98.808, and 98.808,

respectively. These results underscore the effectiveness of the Swin-GA-RF approach

in cervical cancer classification, demonstrating its potential as a valuable tool for early

diagnosis and screening programs.
KEYWORDS

image processing, image classification, image cancer classification, Swin Transformer,
CNN models, genetic algorithm, random forest
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1 Introduction

Cervical cancer poses a significant health burden for women

worldwide, with a rising incidence and mortality rate in recent years

Beckmann et al. (1). As the fourth most prevalent cancer according

to the World Health Organization (WHO), it accounted for 570,000

new cases and over 311,000 deaths in 2018 alone. These alarming

statistics can be attributed to various factors, including limited

awareness, inadequate early screening options, and a shortage of

skilled healthcare professionals Beckmann et al. (1).

Early diagnosis plays a crucial role in improving cervical cancer

outcomes and saving lives. Currently, several screening techniques

such as visual inspection, Pap tests, histopathology tests, and

human papillomavirus (HPV) testing are employed for cervical

cancer detection Chitra and Kumar (2). However, manual diagnosis

is prone to misdiagnosis due to inter and intra-observer variability.

For instance, Pap screening tests require extensive microscopic

examinations, which are not only costly but also timeconsuming.

Consequently, there is an urgent need to develop an advanced and

reliable model capable of providing accurate decision-making in

cervical cancer diagnosis Lellée and Küppers (3).

Medical imaging techniques, including magnetic resonance

imaging (MRI), computed tomography (CT) scans, and

ultrasound, offer detailed insights into infected tissues, and tumor

characteristics, and guide treatment decisions such as radiation

therapy and chemotherapy Sarhangi et al. (4). The integration of

artificial intelligence (AI) with medical imaging has emerged as a

promising approach to enhance the accuracy of cervical cancer

diagnosis systems Tripathi et al. (5).

Deep learning, a subset of AI, has revolutionized various

domains, including computer vision, natural language processing

(NLP) Saleh et al. (6), time series analysis Saleh et al. (7), and

continuous health monitoring Zhu et al. (8). There is research that

applied CNN and pre-trained CNN models to classify cervical

cancer. For example, In AlMubarak et al. (9), the authors

proposed a hybrid method based on hybrid images and DL

models. In Plissiti et al. (10), the authors conducted several

experiments using Support Vector Machines, Multi-layer

Perceptron (MLP), and CNN. In Alsubai et al. (11), the authors

proposed a deep CNN using four convolutional layers. These

studies just applied CNN models to classify cervical cancer. These

models have limitations that hinder their performance in medical

image analysis. These models often focus on local patterns, limiting

their ability to grasp the global context of the images Tripathi et al.

(5). To overcome these limitations, transfer learning has emerged as

a promising approach. Transfer learning leverages pre-trained deep

learning models, such as convolutional neural networks (CNNs)

Tripathi et al. (5), to transfer learned representations from one task

to another, thereby improving classification accuracy. In recent

years, researchers have introduced revolutionary approaches like

Swin Transformers Cao et al. (12), which utilize shifted windows

and self-attention mechanisms to process images hierarchically and

efficiently. These transformers excel in capturing both local and
Frontiers in Oncology 02
global contextual information, exhibiting superior scalability and

flexibility compared to traditional CNN models Cao et al. (12).

Other research was replace fully connected layers of simple CNN by

extreme gradient boosting (XGBoost) to improve classification

accuracy of X-ray Images Zivkovic et al. (13).

The main questions of our work are as follows:
• How can we develop an advanced and reliable model that

improves the accuracy of cervical cancer diagnosis and

overcomes the limitations of existing screening techniques?

• How can we extract local and global features?

• How can we reduce the complicity of feature representation?
To answer these questions, we propose a novel approach, Swin-

GA-RF, to enhance the classification performance of cervical cells in

Pap smear images. The Swin-GA-RF model combines the strengths

of the Swin Transformer, a genetic algorithm (GA) for feature

selection, and a random forest classifier. By leveraging the Swin

Transformer, we can effectively capture both local and global

contextual information from medical images. The GA is then

employed to reduce feature complexity and select the most

informative features extracted by the Swin Transformer. Finally,

the softmax classifier is replaced with a random forest to further

enhance the overall classification performance.

The primary contributions of this paper are as follows:
• Introducing the Swin-GA-RF approach, which combines

the Swin Transformer, GA-based feature selection, and a

random forest classifier for the classification of cervical cells

in Pap smear images.

• Leveraging the Swin Transformer to capture both local and

global contextual information frommedical images, thereby

improving the accuracy of classification.

• Employing genetic algorithms to reduce feature complexity

and select the most significant features extracted by the

Swin Transformer.

• Enhancing the classification performance by replacing the

softmax classifier with a random forest.

• Conducting comprehensive comparisons between the

proposed Swin-GA-RF model and other models,

including Swin Transformer and pre-trained CNN

models, using two optimizer methods (SDG and Adam)

in both two-class and five-class classification scenarios.

• Demonstrating the superior performance of the proposed

model compared to state-of-the-art methods using publicly

available cervical cancer datasets.
The remainder of this paper is organized as follows: Section 2

provides a comprehensive review of the relevant literature in the field.

In Section 3, we present the methodologies employed, including

details about the dataset used and a thorough explanation of the

proposed Swin-GA-RFmodel. The experimental results are discussed

in Section 4, followed by the conclusions drawn in Section 6.
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2 Background literature

The purpose of this section is to review relevant studies on

classifying cervical cancer and gaps in the literature.

There are studies have been AI models for classifying

cervical cancer.

In AlMubarak et al. (9), the authors proposed a hybrid method

based on hybrid images and DL models to classify cervical cancer.

The hybrid method improves upon the DL and imaging approaches

alone. In Plissiti et al. (10), the authors conducted several

experiments using Support Vector Machines, Multi-layer

Perceptron (MLP), and CNN to classify cervical cancer. CNN

performs better than MLP classifiers. In Alsubai et al. (11), the

authors proposed a CNN model using the SIPaKMeD dataset to

classify five classes of cervical cells. They used segmented Pap smear

images to create augmented images of cervical cells, which were then

processed by a deep CNN using four convolutional layers. In Li et al.

(14), the authors proposed hybrid models based on CNN and

Feature Pyramid Networks (FPN). In addition to the Region

Proposal Network (RPN), a global contextual aware module is

introduced to improve spatial correlation between the background

and the foreground. The results showed that the DGCA-RCNN

model achieved the highest performance. In Wu et al. (15), the

authors applied CNN with 3012 original images and 108432

augmented images. The results indicated that CNN performed

better on original images than on augmented ones. In Manna et al.

(16), the authors proposed an ensemble-based model based on fuzzy

rank-based fusion using InceptionV3, Xception, and DenseNet 169

to classify two and five classes of cervical cancer. Their proposed

model recorded the highest performance. In Pramanik et al. (17), the

authors proposed ensemble learning, which integrates the outputs of

InceptionV3, MobileNet V2, and Inception ResNet V2. Additionally,

they employed fuzzy distance-based measures and applied fuzzy

distance measures using the product rule to calculate the final

predictions. In Ghoneim et al. (18), the authors employed the

proposed CNN-ELM, which is based on convolutional neural

networks (CNN) and extreme learning machines (ELM). CNN

was utilized for feature extraction, while ELM was employed for

classifying normal and abnormal cervical cancer cases. CNN-ELM

demonstrated superior performance compared to Multi-Layer

Perceptron (MLP) and autoencoder (AE)-based classifiers. In Chen
Frontiers in Oncology 03
et al. (19), the authors proposed a hybrid loss function with label

smoothing to improve the distinguishing power of CNN. The results

showed that their proposed model achieved satisfactory accuracy. In

Tripathi et al. (5), the authors applied different pre-trained models:

InceptionResNetV2, VGG19, DenseNet201, and Xception, to classify

cervical images using the SIPaKMeD dataset. In Yaman and Tuncer

(20), the authors applied the pre-trained CNN models on the

SIPAKMED pap-smear image dataset to the assessment of

forthcoming classification techniques. The results showed that

ResNet-152 recorded the highest accuracy.

The related work primarily applied DL models and pre-trained

CNN models for cervical cancer classification, while others utilized

vision transformer models for the same purpose that recorded the

lowest performance. In this paper, we propose a novel approach

based on Swin Transformer and GA to improve the performance of

cervical cell classification. ViT Transformer is employed to capture

both local and global contextual information from images, while

GA is used to select optimal features from the representations

extracted by Swin. Furthermore, the softmax classifier is replaced

with a SVM classifier to further enhance performance.
3 Materials and method

The primary steps involved in classifying cervical cells are

depicted in Figure 1. The main objective of this study is to

propose a novel approach (Swin-GA-RF) aimed at enhancing

classification performance by leveraging a combination of

techniques, including the Swin Transformer, feature selection,

and Random Forest, to classify cervical cells in Pap smear images.
3.1 Dataset description

A dataset named SIPaKMeD1, provided by Plissiti et al. dat

(2018), is used to evaluate the proposed model (21). It is a balanced

dataset and it includes five classes of Pap smear images which are

superficial-intermediate (Superf), parabasal (Parab), koilocytes

(Koilo), dyskeratotic (Dysker), and metaplastic (Metapl). The

dataset includes 3644 images. The number of images in each class

is shown in Table 1.
FIGURE 1

The main steps of classifying cervical cancer detection.
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3.2 Image augmentation

Image augmentation involves making changes to an image in

terms of color and position. Positional manipulation is achieved by

altering the position of pixels, while color manipulation involves

changing the pixel values. Data augmentation aims to enhance the

visual characteristics of an image. It includes techniques such as

flipping, cropping, and resizing, Bao et al. (22). These techniques

contribute to improving the overall generalization performance of

the model by exposing it to a wide variety of images during the

training process. Example of images for each class as shown

in Figure 2.
3.3 CNN model

CNN consists of input, an output, and multiple hidden layers.
Fron
• The Convolutional layer is the first layer utilized to gather

different features, handling the majority of the processing

Rai and Rivas (23). Convolution occurs between the input

and a window filter by sliding the filter over the input and

calculating the dot product over the filter and the input

regarding the filter’s size Kuo (24).

• The Pooling layer’s primary goal is to lower the size of the

convolved feature map to lower computational

expenditures and the number of calculations performed

Bailer et al. (25). It summarizes the properties of a

convolution layer Nasr-Esfahani et al. (26) The feature

map is used to obtain the largest element in max pooling.
tiers in Oncology 04
• In fully connected layers, each neuron’s input is the

weighted sum of all the outputs from the neurons in the

layer above Basha et al. (27).
3.4 Pre-trained CNN models

DenseNet121, VGG16, ResNet18, and AlexNet are utilized for

the classification of cervical cancer.
• DenseNet is a special architecture of the CNN that was

developed to address the vanishing gradient problem and

improve feature extraction within the network Jaiswal

et al. (28).

• ResNet is a residual network that was developed to address

the challenges associated with degradation in deep neural

networks. ResNet tackles this problem by introducing

residual connections, which enable the network to learn

residual mappings instead of relying solely on the

underlying mappings Deng et al. (29).

• VGG (Visual Geometry Group) is an improved iteration of

convolutional neural networks renowned for its

effectiveness. The architecture of VGG comprises multiple

convolutional layers followed by fully connected layers.

• AlexNet is a deep neural network architecture composed of

eight layers, featuring five convolutional layers followed by

three fully connected layers. The success of this model can

be attributed to several key factors Alzubaidi et al. (30).

• MobileNet is CNN architecture for mobile and embedded

devices with minimal computing resources.
FIGURE 2

Example of images for SIPaKMeD1.
TABLE 1 The number of images in each class.

Class Category Category Abbreviation Totals

1 Abnormal Dyskeratotic Dysker 732

2 Abnormal Koilocytotic Koilo 742

3 Normal Metaplastic Metapl 714

4 Normal Parabasal Parab 708

5 Normal Superficial intermediate Superf 748
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These models are tuned for accuracy, minimal computational

complexity, and memory footprint Howard et al. (31). Depth-

wise separable and point-wise convolutions minimize

computational cost in MobileNet models. They are commonly

employed in mobile real-time image processing applications

Howard et al. (31).
3.5 Swin Transformer

Swin Transformer represents a particular type of deep learning

model proposed by academics from the Chinese University of Hong

Kong and other establishments Liu et al. (32). Swin Transformer’s

core principle is to separate the input image into non-overlapping

patches and analyze them hierarchically, resulting in a two-stage

architecture Liu et al. (33). In the first stage, the model applies self-

attention to each local patch to capture local dependencies. In the

second stage, the model applies self-attention across patches to

capture global dependencies. To handle images with a high

resolution efficiently, the Swin Transformer employs a shifted

window method Zhang et al. (34). Instead of moving the

fixedsized window across the image, the model shifts its position

recursively. This enables the model to efficiently capture

information at various spatial resolutions Wang et al. (35). The

Swin Transformer hierarchical processing mechanism performed

well on a variety of computer vision tasks, including picture

categorization and object detection, while using fewer

computation resources than competing methods Wang et al. (36).

Swin Transformer pairing local self-attention within shifted

windows in hierarchical processing to model both local and global

relationships in high-resolution images. Input images are first

separated into nonoverlapping patch tokens. The patches are then

projected linearly into a lower-dimensional embedding space. Swin

transforms the patches recursively into shifted windows, allowing

the model to gather data at various spatial resolutions Ma et al. (37).

The Swin Transformer employs a stack of Transformer encoder

blocks. Each encoder block is made up of two major components: a

shifting window self-attention module that captures local
Frontiers in Oncology 05
dependencies between patches inside a window, and a feed-

forward neural network that allows the model to record local

information within a patch Xiao et al. (38).

The Swin Transformer performs hierarchical processing by

stacking several Transformer encoder blocks. The output of one

block is used as the input for the next, allowing the model to capture

global dependencies across patches Zhou et al. (39). Finally, following

hierarchical processing, a classification head is attached to the Swin

Transformer to predict class labels for image classification tasks. The

classification head is often made up of one or more fully connected

layers, which are then activated using softmax Taslimi et al. (40). In

general, Swin Transformer has performed well on a variety of image

recognition benchmarks, demonstrating its ability to handle

enormous amounts of imagery effectively while reaching cutting-

edge accuracy and computational efficiency.

Figure 3 shows the general architecture of the swin transformer.

As shown in Figure 3, each swim transformer consists of

LayerNorm(LN) with multi head attention with 2 MLP layers.

Window-based multi-head attention (W MSA) and the shifted

Window-based multi-head attention (SW MSA). The swim

transformer block could be formulated as follows:

Zl = W −MSA (LN(Zl−1)) + Zl−1 1

Zl = MLP (LN(Z0l)) + Z0l 2

Z0+1 = SW −MSA (LN(Zl)) + Zl 3

Z0l+1 = MLP (LN(Z0l+1)) + Z0l+1 4
3.6 Genetic algorithm

The utilization of Genetic Algorithms (GAs) for feature

optimization has been extensively explored across various domains,

demonstrating their effectiveness in selecting informative features

that yield valuable insights Wang (41). In the context of feature
FIGURE 3

General architecture of swim transformer (32).
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optimization, GAs treat each feature as a gene within the population,

forming chromosomes that represent potential solutions comprising

specific subsets of features. Evaluating the quality of these solutions is

achieved through the fitness function, which assesses their

performance based on predefined criteria Reeves (42) El-Rashidy

et al. (43).

The GA process initiates by randomly selecting an initial

solution from the feature space. Through iterative steps of

selection, crossover, and mutation, the process continues, refining

the solutions over generations. Solutions with higher fitness values,

indicating better performance, have an increased likelihood of being

selected for subsequent iterations. GAs have proven to be

particularly effective in handling high-dimensional data and

supporting multi-objective feature optimization Reeves (42). The

strength of GAs lies in their ability to treat each feature as a gene,

allowing for comprehensive exploration of the feature space. By

iteratively evaluating and evolving solutions through selection,

crossover, and mutation, GAs guide the search toward promising

subsets of features that improve the classification performance. This

capability is especially valuable when dealing with high-

dimensional data, enabling the identification of relevant and

influential features that contribute to superior classification

accuracy Sivanandam et al. (44).
3.7 The proposed model

In our pursuit of building a classifier that achieves exceptional

performance, we have devised a groundbreaking model that

integrates the Swin transformer, genetic algorithm, and RF. This

fusion of techniques allows us to leverage the strengths of each

component to create a robust and accurate classifier. The process of

constructing this high-performance classifier follows a meticulously

designed sequence, encompassing the following steps as shown

in Figure 4.
Fron
• The images are initially divided into small non-overlapping

patches, where each patch represents an isolated token.

• All patches are then flattened into 2D tokens, which serve as

input for the transformer.
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• The Swin transformer incorporates positional information

by adding it to the spatial information.

• Window-based positions are utilized to transform the

shifted window into the position embedding scheme. This

approach enables the Swin transformer to capture both

local and global information.

• The Swin transformer processes the aggregated features

using stage-wise processing, which includes multiple stages

with transformer layers. This strategy enhances processing

performance by reducing token resolution in earlier stages

and subsequently improving it in subsequent layers.

• Each stage in the transformer consists of multiple layers,

with each layer incorporating self-attention and feed-

forward layers. The self-attention layers enable the model

to capture contextual relationships and relevant patches.

• After processing each window, all tokens are fused to

reintegrate the information, facilitating the capture of

both local and global information.

• Feature representations are extracted from the layer

preceding the softmax layer. Genetic Algorithms (GA) are

then applied to reduce feature complexity and select the

most significant features. Finally, in the last layer, SoftMax

is replaced with a random forest to enhance results.
3.8 Evaluation models

The models are evaluated using evaluation metrics, as shown in

Equations 1–4. Where True positive (TP)— is the result of the

correctly classified positive class. True negative (TN)—the results of

the correctly classified negative class. False-positive (FP)—the

results of the incorrectly classified positive class. False-negative

(FN)—the results of the incorrectly classified negative class.

Accuracy =
TP + TN

TP + FP + TN + FN
5

Recall =
TP

TP + FN
6

FIGURE 4

The proposed model.
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Precision =
TP

TP + FP
7

F1 − score = 2 � precision � recall
precision + recall

8

4 Experiments results

This section presents the results of comparing the proposed

model (Swin-GA-RF), the Swin Transformer, CNN, and pre-

trained CNN models for classifying cervical cells in two

classification scenarios: binary and five classes.
4.1 Experimental setup

The models were implemented using Python, PyTorch, and the

Monai library. The sklearn-genetic library is used to implement

genetic feature selection methods Calzolari (45) The image dataset

was divided into 70% for training, 10% for validation, and 20% for

testing. The number of images in each set is shown in Table 2. We

conducted experiments using both the Adam and SGD optimizers.

The cross-entropy loss function was employed for models. The

hyperparameters of Swin, CNN models, and the pre-trained CNN

models were CrossEntropy as loss function, epochs=70, and batch

size=30. The hyperparameters of RF are Max depth=10, min

samples split=2, bootstrap=True, and criterion=gini. A summary

of the GA parameters for selecting the best features can be found

in Table 3.
4.2 The results of applying models with
five classes

4.2.1 The results of Adam optimizer
Table 4 presents the results of each class obtained from different

models, including CNN, DenseNet121, VGG16, ResNet18,

AlexNet, Swin Transformer, and Swin-GA-RF using Adam to
Frontiers in Oncology 07
classify five classes of Cervical Cancer with Adam optimizer. We

can see that, CNN records the highest precision, recall, and F1-score

at 94.44, 96.84, and 95.62, respectively for the Parab class. CNN

records the lowest results for the Koilo and Metapl classes.

DenseNet121 consistently demonstrates high precision, recall, and

F1-score for Parab, achieving a high recall at 99.37. It particularly

excels in the Dysker and Parab classes but struggles with the Koilo

class, indicating challenges in accurate classification. VGG16

records the highest precision, recall, and F1-score at 98.70, 96.20,

and 97.44, respectively for the Parab class, it faces difficulties in

accurately classifying the Koilo class, exhibiting relatively lower

precision and recall rates. ResNet18 showcases notable

improvements in classification performance, achieving an F1-

score of 98.73 for Parab. It demonstrates considerable

enhancement in the Dysker, Superf, and Parab classes. However,

it encounters challenges in accurately classifying the Koilo class,

where its recall rate is comparatively lower. AlexNet records the

highest precision, recall, and F1-score at 94.44, 96.84, and 95.62,

respectively for the Parab class. The Swin Transformer emerges as a

significant improvement over CNN and the pre-trained CNN

models, achieving an F1-score of 99.37 for the Parab class.

It exhibits significant enhancements in all classes, with notable

improvements in the Parab class, where it achieves a precision of

93.90, recall of 93.33, and F1-score of 93.62 with the Koilo class.

Finally, the proposed Swin-GA-RF model outperforms all other

models, recording the highest overall performance. It records the

highest precision of 100, recall of 100, and F1-score of 100 for the

Superf class, The Swin-GA-RF model showcases perfect precision,

recall, and F1-score, highlighting its ability to accurately classify this
TABLE 2 The number of images in set.

Class Category Category Abbreviation Training set (70) Validation
set (10)

Testing set (20)

1 Abnormal Dyskeratotic Dysker 569 81 163

2 Abnormal Koilocytotic Koilo 577 83 165

3 Normal Metaplastic Metapl 555 79 159

4 Normal Parabasal Parab 550 79 158

5 Normal Superficial
intermediate

Superf 581 83 167
TABLE 3 Parameters of GA.

Parameters Values

Crossover rate 0.5

Mutation rate 0.2

Population Size 100

Iteration number 100

population 100
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type of cervical cancer. These improvements can be attributed to the

utilization of the GA for feature selection and the Random Forest

classifier, which reduces feature complexity and enhances the

overall performance of the model.
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Figure 5 presents the average accuracy, precision, recall, and F1-

score of CNN, pre-trained CNN models, Swin Transformer, and

Swin-GA-RF models for five classes using Adam optimizer. We can

see that the Swin transformer achieves the highest results compared

to pre-trained models. Furthermore, the improved version of the

Swin transformer, referred to as Swin-GA-RF, records the highest

performance with the highest accuracy, F1-score, and improved

results at 1.5. This enhancement is attributed to the reduction in

feature complexity by the Genetic Algorithm (GA) and Random

Forest (RF). Both DenseNet121 and VGG16 exhibit identical

results, with accuracy above 92 and recall above 92.308. The

third-highest performance is recorded by ResNet18. To compare

these results, we conducted a detailed comparison between the Swin

transformer and Swin-GA-RF models in each class, as illustrated in

Figure 6. Swin-GA-RF improved TP by 8% compared to the Swin

transformer for the Koilo class.
4.2.2 The results of SGD optimizer
Table 5 presents the results of each class obtained from different

models, including CNN, DenseNet121, VGG16, ResNet18, AlexNet,

Swin Transformer, and Swin-GA-RF using SDG to classify five

classes of Cervical Cancer with Adam optimizer. CNN records the

highest precision, recall, and F1-score at 91.00, 91.09, and 92.60,

respectively for class Parab. DenseNet121 consistently demonstrates

high precision, recall, and F1-score across various classes, achieving a

precision of 97.37 for the Parab class. VGG16 records the highest

precision, recall, and F1-score at 91.00, 91.09, and 92.60, respectively

for class Parab. ResNet18 showcases notable improvements in

classification performance, achieving an average F1-score of 92.57.

It demonstrates considerable enhancement in the Dysker and Parab

classes, with a precision of 98.70, recall of 96.20, and an F1-score

exceeding 97. However, it encounters challenges in accurately

classifying the Koilo class, where its recall rate is comparatively

lower. VGG16 records the highest precision, recall, and F1-score

for the Parab and Superf classes, and the lowest results for Koilo and

Metapl classes. ResNet18 showcases notable improvements in

classification performance, achieving an F1-score of 98.73 for

Parab. AlexNet records the highest precision, recall, and F1-score at

94.44, 96.84, and 95.62, respectively for the Parab class. The Swin

Transformer emerges as a significant improvement over CNN and

the pre-trained CNN models, achieving an F1-score of 99.37 for the

Parab class. It exhibits significant enhancements in all classes, with

notable improvements in the Parab class, where it achieves a

precision of 93.90, recall of 93.33, and F1-score of 93.62 with the

Koilo class. Finally, the proposed Swin-GA-RF model outperforms all

other models, recording the highest overall performance. It achieves

notable improvements in the Dysker, Koilo, and Metapl classes,

demonstrating enhanced precision, recall, and F1-score compared

to the Swin Transformer. The Swin-GA-RF model showcases perfect

precision, recall, and F1-score in the Parab class, highlighting its

ability to accurately classify this type of cervical cancer. These

improvements can be attributed to the utilization of the Genetic

Algorithm (GA) for feature selection and the Random Forest

classifier, which reduces feature complexity and enhances the

overall performance of the model.
TABLE 4 The results of each class for the models to classify five classes
of cervical cancer with Adam optimizer.

Models Classes Precision Recall F1-score

CNN

Dysker 91.72 95.09 93.37

Koilo 80.95 82.42 81.68

Metapl 84.39 91.82 87.95

Parab 94.44 96.84 95.62

Superf 93.57 78.44 85.34

DenseNet121

Dysker 90.64 95.09 92.81

Koilo 87.27 87.27 87.27

Metapl 93.46 89.94 91.67

Parab 93.45 99.37 96.32

Superf 96.13 89.22 92.55

VGG16

Dysker 94.44 93.87 94.15

Koilo 85.37 84.85 85.11

Metapl 85.55 9308 89.16

Parab 98.70 96.20 97.44

Superf 97.48 92.81 95.09

ResNet18

Dysker 96.89 95.71 96.30

Koilo 93.63 89.09 91.30

Metapl 91.18 97.48 94.22

Parab 98.73 98.10 98.41

Superf 97.01 97.01 97.01

AlexNet

Dysker 95.03 93.87 94.44

Koilo 88.82 86.67 87.73

Metapl 89.88 94.97 92.35

Parab 97.47 97.47 97.47

Superf 96.34 94.61 95.47

Swin
transformer

Dysker 98.11 95.71 96.89

Koilo 93.90 93.33 93.62

Metapl 94.55 98.11 96.30

Parab 99.37 99.37 99.37

Superf 99.40 98.80 99.10

Swin-GA-RF

Dysker 97.56 98.77 98.16

Koilo 100 91.57 95.60

Metapl 95.18 100 97.53

Parab 97.53 100 98.75

Superf 100 100 100
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Figure 7 presents the average accuracy, precision, recall, and F1-

score of CNN, pre-trained CNN models, Swin Transformer, and

Swin-GA-RF models for five classes using Adam optimizer. The

Swin Transformer achieves the highest results compared to the pre-

trained models. Furthermore, the improved version of the Swin

Transformer, referred to as Swin-GA-RF, demonstrates the highest

performance with the highest accuracy, F1-score, and improved

results at 1.5. The third-highest performance is recorded by

ResNet18, with accuracy, precision, recall, and F1-score at 95.813,

95.887, 95.813, and 95.785, respectively. To compare these results,

we conducted a detailed comparison between the Swin Transformer

and Swin-GARF models in each class, as illustrated in Figure 8.

Swin-GA-RF improved TP by 3% compared to the Swin

Transformer for the Metapl class. Additionally, it records 100 TP

for Parab and Superf classes.
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4.3 The results of applying models with
two classes

4.3.1 The results of Adam optimizer
Table 6 presents the results of each class obtained from different

models, including CNN, DenseNet121, VGG16, ResNet18,

AlexNet, Swin Transformer, and Swin-GA-RF using Adam to

classify two classes of Cervical Cancer with Adam optimizer. We

can see that, CNN records the highest recall, and F1-score at 94.44,

96.84, and 95.62, respectively for the normal cells class. CNN

records the lowest recall for the abnormal cells class.

DenseNet121 records the highest precision, and F1-score at 96.79,

96.84, and 95.17, respectively for normal cells class. VGG16 records

the lowest recall at 88.72 for abnormal cells class. ResNet18 records

the highest results compared to CNN DenseNet121, VGG16, and
FIGURE 5

The average of results for models with Adam optimizer for five classes.
FIGURE 6

Confusion matrix of Swin and Swin-GA-RF with Adam optimizer for five classes.
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AlexNet. The Swin Transformer emerges as a significant

improvement over CNN and the pre-trained CNN models, the

proposed Swin-GA-RF model outperforms all other models,
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recording the highest overall performance and exhibits significant

enhancements in all classes. It records the highest precision, recall,

and F1-score above 99 for each class.

Figure 9 presents the average of accuracy, precision, recall, and

F1-score pre-trained CNN models, Swin Transformer, and Swin-

GA-RF models using Adam to classify two classes: abnormal cells

and normal cells. The Swin Transformer achieves the highest results

compared to the pre-trained models. Furthermore, the improved

version of the Swin Transformer, referred to as Swin-GA-RF,

records the highest performance with the highest accuracy, F1-

score, and improved results at 2.5. Specifically, it achieves 99.012

accuracy, 99.555 precision, 99.61 recall, and an F1-score of 99.58.

The third-highest performance is recorded by ResNet18. To further

compare these results, we conducted a detailed comparison between

the Swin Transformer and Swin-GA-RF models in each class, as

illustrated in Figure 10. Swin-GA-RF improved TP by 4% compared

to the Swin Transformer for abnormal cells and normal cells.
4.3.2 The results of SDG optimizer
Table 7 presents the results of each class obtained from different

models, including CNN, DenseNet121, VGG16, ResNet18,

AlexNet, Swin Transformer, and Swin-GA-RF using SDG to

classify two classes of Cervical Cancer with Adam optimizer. We

can see that, CNN records the highest recall, and F1-score at 92.08,

92.87, and 92.47, respectively for the normal cells class. CNN

records the lowest recall for abnormal cells class. DenseNet121

records the highest precision, and F1-score at 93.88, 94.66, and

94.96, respectively for normal cells class. VGG16 records the lowest

recall at 90.86 for the abnormal cells class. ResNet18 records the

highest results compared to CNN DenseNet121, VGG16, and

AlexNet. The Swin Transformer emerges as a significant

improvement over CNN and the pre-trained CNN models. It

exhibits significant enhancements in all classes, the proposed

Swin-GA-RF model outperforms all other models, recording the

highest overall performance. The Swin-GA-RF model showcases

perfect precision, recall, and F1-score, highlighting its ability to

accurately classify this type of cervical cancer.

Figure 11 presents the average of accuracy, precision, recall, and

F1-score pre-trained CNN models, Swin Transformer, and Swin-

GA-RF models using SDG to classify two classes: abnormal cells

and normal cells. We can observe that the Swin Transformer

achieves the highest results compared to the pre-trained models.

Furthermore, the improved version of the Swin Transformer,

referred to as Swin-GA-RF, achieves the highest performance

with the highest accuracy, F1-score, and improved results at 1.5.

It records an accuracy of 98.06, a precision of 98.240, a recall of

98.400, and an F1-score of 98.06. Both DenseNet121 and AlexNet

exhibit identical results, with accuracy at 93.605, and 93.88,

respectively. The third-highest performance is recorded by

ResNet18. To compare these results, we conducted a detailed

comparison between the Swin Transformer and Swin-GA-RF

models in each class, as illustrated in Figure 12. Swin-GA-RF

improved TP by 3% compared to the Swin Transformer for

abnormal cells and normal cells.
TABLE 5 The results of each class for the models to classify five classes
of cervical cancer with SDG optimizer.

Models Classes Precision Recall F1-score

CNN

Dysker 89.11 89.57 89.13

Koilo 85.16 85.88 85.49

Metapl 83.48 80.38 80.07

Parab 91.00 91.09 92.6

Superf 87.19 88.62 88.39

DenseNet121

Dysker 93.90 94.48 94.19

Koilo 87.01 81.21 84.01

Metapl 87.04 88.68 87.85

Parab 96.88 98.10 97.48

Superf 88.95 91.62 90.27

VGG16

Dysker 94.48 94.48 94.48

Koilo 89.33 81.21 85.08

Metapl 83.89 94.97 89.09

Parab 97.37 93.67 95.48

Superf 96.41 96.41 96.41

ResNet18

Dysker 95.97 98.16 97.56

Koilo 95.71 87.09 90.74

Metapl 91.18 95.48 92.22

Parab 99.00 98.73 99.36

Superf 97.22 97.40 97.81

AlexNet

Dysker 93.45 96.32 94.86

Koilo 88.96 87.88 88.41

Metapl 88.55 92.45 90.46

Parab 97.35 93.04 95.15

Superf 96.95 95.21 96.07

Swin
transformer

Dysker 97.53 96.93 97.23

Koilo 92.77 93.33 93.05

Metapl 96.20 95.60 95.90

Parab 98.11 98.11 98.11

Superf 97.81 97.40 97.1

Swin-GA-RF

Dysker 98.14 96.93 97.53

Koilo 95.57 91.52 93.50

Metapl 94.58 98.74 96.62

Parab 100 100 100

Superf 98.82 100 99.40
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4.4 Discussion

4.4.1 The best models
We conducted various experiments to compare the proposed

model with different models, including Swin Transformer and pre-

trained CNN models, using two optimization methods: SGD and

Adam. Additionally, we classified cervical cells in Pap smear images

into two classes (abnormal cells and normal cells) and five classes

(Dysker, Koilo, Metapl, Parab, and Superf). From Figure 13 and

Figure 14, we can observe that the proposed model (Swin-GA-RF)

records the highest performance compared to other models. Also,

the results using Adam Optimizer have better performance

compared to SDG optimizer. Figure 14 shows a comparison of

the best models between two optimizers for five classes. We can see

that Swin-GA-RF achieves the highest accuracy at 98.808 with the
Frontiers in Oncology 11
Adam optimizer, while DenseNet121 has the lowest accuracy at

90.764 with the SGD optimizer. The Swin transformer records the

second-highest accuracy at 97.044 for the Adam optimizer.

4.4.2 Statistical analysis
To ensure a rigorous and comprehensive statistical analysis, we

employed well-established methodologies in our study. We utilized

The Friedman test, Derrac et al. (46), which was chosen due to its

suitability for comparing multiple related samples. This non-

parametric test allowed us to thoroughly evaluate the presence of

significant variations among the models, enabling us to determine

whether there were noteworthy differences based on the observed

data. The test shows if there is a significant difference between the

observed data. Following the Friedman test, we conducted the

Nemenyi test as a post-hoc analysis to extract the ranks of each
FIGURE 7

The average of results for models with SDG optimizer for five classes.
FIGURE 8

Confusion matrix of Swin and Swin-GA-RF with SDG optimizer for five classes.
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model. This additional step provided a deeper understanding of the

differences between the models by facilitating multiple comparisons

Brown and Mues (47).

Specifically, the Nemenyi test allowed us to identify specific

pairs of models that exhibited statistically significant differences in

their performance, providing valuable insights into their relative

strengths and weaknesses. The Nemenyi test represents the
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difference in terms of critical difference. To enhance the

interpretability of the results, we created a critical difference

diagram (CD diagram) as depicted in Figure 15. The CD

diagram, a widely utilized visualization tool in multiple

comparison analyses, played a crucial role in highlighting the

significant differences among the models. By displaying the

average ranks of the models, it provided a clear and concise

representation of their performance disparities. Notably, the CD

diagram helped identify which pairs of models showed statistically

significant differences, further aiding in the comprehensive

understanding of their relative performances. The CD diagram

offers a concise way to interpret the results of multiple

comparison analyses.

4.4.3 Comparison with existing state-of-the-
art methods

In this study, we proposed Swin-GA-RF to classify cervical

cancer. Table 8 provided a comparison to the existing studies and

the proposed model for classifying cervical cancer. As can be seen,

studies are based on different CNN architectures, ViT transformers

and do not use Swin transformer and optimization feature

extraction methods. We can see that the Swin-GA-RF achieved

the highest accuracy in each class case. The authors in AlMubarak

et al. (9) Plissiti et al. (10) Alsubai et al. (11) Manna et al. (16)

Pramanik et al. (17) Chen et al. (19) to classify five classes of cervical

cancer. In AlMubarak et al. (9), the authors applied a hybrid

method and recorded an accuracy of 80.72. In Plissiti et al. (10),

SVM was utilized, resulting in an accuracy of 94.44. In Alsubai et al.

(11), CNN achieved an accuracy of 91.13.

Some authors used advanced methods of DL and ensemble

learning. For example, ensemble learning models applied in Manna
TABLE 6 The results of each class for the models to classify two classes
of cervical cancer with Adam optimizer.

Models Classes Precision Recall F1-
score

CNN
abnormal_cells 94.53 89.63 92.02

normal_cells 93.21 96.49 94.82

DenseNet121
abnormal_cells 90.99 95.43 93.15

normal_cells 96.79 93.60 95.17

VGG16
abnormal_cells 96.36 88.72 92.38

normal_cells 92.75 97.73 95.17

ResNet18
abnormal_cells 93.99 95.43 94.70

normal_cells 96.87 95.87 96.37

AlexNet
abnormal_cells 92.99 93.43 94.70

normal_cells 93.87 93.87 92.37

Swin
transformer

abnormal_cells 98.12 95.73 96.91

normal_cells 97.15 98.76 97.95

Swin-GA-RF
abnormal_cells 99.32 99.69 99.50

normal_cells 99.79 99.53 99.66
FIGURE 9

The average of results for models with Adam optimizer for two classes.
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et al. (16) Pramanik et al. (17) Win et al. (48). In Manna et al. (16),

an ensemble-based model achieved an accuracy of 98.55. In Win

et al. (48), a bagging ensemble method achieved an accuracy of

98.27. In Win et al. (48), a bagging ensemble method attained an

accuracy of 94.09. In Manna et al. (16) Pramanik et al. (17),

ensemble-based models recorded accuracies of 97.55 and 96.96,

respectively. Other applied ViT transformer Pacal and Kılıcarslan

(50) recorded 91.93 accuracy. Hybrid models such as ViT-CNN

ensemble based on VIT and CNN recorded 97.65 accuracy Maurya

et al. (52). SE-ResNet152 is transformer learning that was optimized

by DHO and recorded 97.68 accuracy Ravindran et al. (51). In Li

et al. (53), VTCNet mobed that combined CNN-SPPF and ViT and

recorded 98.02 accuracy. In Deo et al. (49), CerviFormer achieved

an accuracy of 93.70. In Chen et al. (19), CNN with loss recorded an

accuracy of 96.18. In Ghoneim et al. (18), CNN-ELM achieved
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an accuracy of 91.20. We can see that the Swin-GA-RF achieved the

highest accuracy in each class case.
5 The practical implications and
potential applications of the
proposed methodology

The proposed methodology in our research study has several

practical implications and potential applications in the field of

cervical cancer diagnosis and beyond. Some of these implications

and applications include:

Improved Cervical Cancer Diagnosis: The primary practical

implication of our methodology is the potential for significantly

improving the accuracy of cervical cancer diagnosis. By leveraging

the advanced features of the Swin Transformer, genetic algorithm-

based feature selection, and a random forest classifier, our model

can effectively classify cervical cells in Pap smear images.

Enhanced Screening Efficiency: Our methodology has the

potential to enhance the efficiency of cervical cancer screening

programs. This targeted approach can optimize the utilization of

healthcare resources and reduce the burden on healthcare systems.

Support for Healthcare Professionals: The proposed

methodology can serve as a valuable tool for healthcare

professionals involved in cervical cancer diagnosis. By providing a

reliable and automated classification system. This support can lead

to improved workflow management and better allocation

of resources.

Generalizability to Other Medical Imaging Tasks: The

combination of the Swin Transformer, genetic algorithm-based

feature selection, and a random forest classifier has the potential

to be extended to other medical imaging domains. The

methodology can be applied to various image-based diagnostic

tasks, such as the classification of different types of cancer cells or

the detection of other diseases. thereby benefiting a wider range of

diagnostic processes.

Finally, it is important to note that while our study focuses on

cervical cancer diagnosis, the practical implications and potential

applications of our methodology extend beyond this specific

domain. The combination of advanced deep learning techniques,
FIGURE 10

Confusion matrix of Swin and Swin-GA-RF with Adam optimizer for two classes.
TABLE 7 The results of each class for the models to classify two classes
of cervical cancer with SDG optimizer.

Models Classes Precision Recall F1-
score

CNN
abnormal_cells 90.83 90.68 90.25

normal_cells 92.08 92.87 92.47

DenseNet121
abnormal_cells 93.52 92.38 92.94

normal_cells 93.88 94.66 94.27

VGG16
abnormal_cells 90.70 92.12 90.86

normal_cells 94.58 93.39 94.96

ResNet18
abnormal_cells 95.58 94.82 95.69

normal_cells 95.53 95.73 95.13

AlexNet
abnormal_cells 93.81 92.33 94.60

normal_cells 93.95 95.25 92.75

Swin
transformer

abnormal_cells 96.91 97.65 97.77

normal_cells 97.70 96.49 97.09

Swin-GA-RF
abnormal_cells 98.13 98.04 98.07

normal_cells 98.35 98.76 98.05
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feature selection algorithms, and classification models can be

adapted and applied to other medical imaging tasks.
6 Conclusion

Women’s cervical cancer is frequently fatal, so early detection is

crucial to reducing the number of cases. This paper proposes a novel

approach to enhancing classification performance by leveraging a

combination of techniques, including Swin Transformer, GA

feature selection, and replacing the softmax layer with Random

Forest. To propose Swin-GA-RF, the Swin Transformer is

employed to capture both local and global contextual information

from images. Then, we extracted feature representation from the

Swin transformer, then A genetic algorithm-based feature selection

was used to determine the best feature set from the extracted

features, then the SoftMax classifier was replaced by random
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forest to enhance accuracy. we applied different image

augmentation including flipping, cropping, and resizing to

enhance the quality of the images. Through extensive

experiments, we compared the performance of the proposed

Swin-GA-RF model with other models, including the Swin

Transformer, CNN, and pre-trained CNN models, using two

optimizer methods, SGD and Adam. The results demonstrate that

Swin-GA-RF, particularly when utilizing the Adam optimizer,

achieved the highest performance in both binary and five-class

classification tasks. For binary classification, it achieved an

accuracy, precision, recall, and F1-score of 99.012, 99.015, 99.012,

and 99.011, respectively. In the five-class classification, it achieved

an accuracy, precision, recall, and F1-score of 98.808, 98.812,

98.808, and 98.808, respectively.

While the proposed Swin-GA-RF approach shows promising

results, it is essential to acknowledge its limitations. Firstly, The

detection and classification were performed at the cell level, which
FIGURE 11

The average of results for models with SDG optimizer for two classes.
FIGURE 12

Confusion matrix of Swin and Swin-GA-RF with SDG optimizer for two classes.
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may not fully represent the complexity of cancerous lesions at the

tissue or organ level. Additionally, the dataset used in the study is

large and contains various classes that are closely related, posing

challenges in accurately distinguishing between them. The

overlapping features among classes can lead to misclassifications

or lower accuracy rates, particularly in distinguishing closely related

types of cervical cancer. Future work in this area could focus on

expanding the dataset to include a broader range of cervical cell

abnormalities, exploring additional optimization techniques for the

Swin-GA-RF model, and conducting further comparative analyses
FIGURE 13

Best models for binary classes.
FIGURE 14

Best models for five classes.
FIGURE 15

Critical difference diagram.
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with other state-of-the-art approaches. Additionally, efforts can be

made to address the practical limitations by improving dataset

collection, and data preprocessing techniques, and optimizing the

model for efficient deployment in real-world scenarios.
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Papers Models classes Swin Transformer Optimized Feature extraction Performance

AlMubarak et al. (9) hybrid method Five NO NO 80.72

Plissiti et al. (10) SVM Five NO NO 94.44

Alsubai et al. (11) CNN Five NO NO 91.13

Win et al. (48) bagging ensemble Five NO NO 94.09

Manna et al. (16) ensemble-
based model

Five NO NO 97.55

Pramanik et al. (17) ensemble-
based model

Five NO NO 96.96

Deo et al. (49) CerviFormer Five NO NO 93.70

Chen et al. (19) CNN with loss five NO NO 96.18

Ghoneim et al. (18) CNN-ELM Two NO NO 91.20

Manna et al. (16) ensemble-
based model

Two NO NO 98.55

Win et al. (48) bagging ensemble two NO NO 98.27

Pacal and
Kılıcarslan (50)

ViT transformer Five No No 91.93

Yaman and Tuncer (20) ResNet-152 Five No No 94.89

Ravindran et al. (51) SE-ResNet152 – No Yes 97.68

Win et al. (48) RF Five NO NO 95

Win et al. (48) RF two NO NO 97

Maurya et al. (52) ViT-CNN Five NO NO 97.65

Li et al. (53) VTCNet Five NO NO 98.02

Our work Swin-GA-RF Five NO NO 98.808

Our work Swin-GA-RF Two NO NO 99.012
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