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Introduction: Immune infiltration within the tumor microenvironment (TME)

plays a significant role in the onset and progression of hepatocellular carcinoma

(HCC). Machine learning applied to pathological images offers a practical means

to explore the TME at the cellular level. Our former research employed a transfer

learning procedure to adapt a convolutional neural network (CNN) model for cell

recognition, which could recognize tumor cells, lymphocytes, and stromal cells

autonomously and accurately within the images. This study introduces a novel

immune classification system based on the modified CNN model.

Method: Patients with HCC from both Beijing Hospital and The Cancer Genome

Atlas (TCGA) database were included in this study. Additionally, least absolute

shrinkage and selection operator (LASSO) analyses, along with logistic regression,

were utilized to develop a prognostic model. We proposed an immune

classification based on the percentage of lymphocytes, with a threshold set at

the median lymphocyte percentage.

Result: Patients were categorized into high or low infiltration subtypes based on

whether their lymphocyte percentages were above or below the median,

respectively. Patients with different immune infiltration subtypes exhibited

varying clinical features and distinct TME characteristics. The low-infiltration

subtype showed a higher incidence of hypertension and fatty liver, more

advanced tumor stages, downregulated immune-related genes, and higher

infiltration of immunosuppressive cells. A reliable prognostic model for

predicting early recurrence of HCC based on clinical features and immune

classification was established. The area under the curve (AUC) of the receiver

operating characteristic (ROC) curves was 0.918 and 0.814 for the training and

test sets, respectively.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1391486/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1391486/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1391486/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1391486/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1391486/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1391486&domain=pdf&date_stamp=2024-05-17
mailto:jhaisong2003@126.com
mailto:xuefei.li@siat.ac.cn
https://doi.org/10.3389/fonc.2024.1391486
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1391486
https://www.frontiersin.org/journals/oncology


Tan et al. 10.3389/fonc.2024.1391486

Frontiers in Oncology
Discussion: In conclusion, we proposed a novel immune classification system

based on cell information extracted from pathological slices, provides a novel

tool for prognostic evaluation in HCC.
KEYWORDS

hepatocellular carcinoma, pathological images, tumor microenvironment, early
recurrence, prognostic model
1 Introduction

Liver cancer ranks as the fourth most common cause of cancer-

related deaths and the sixth most frequently diagnosed cancer globally,

with its highest incidence in East Asia and Africa and a rising

occurrence worldwide (1). Hepatocellular carcinoma (HCC) stands

as a predominant form of primary liver cancer, encompassing 75–85%

of all cases (2). Patients diagnosed with early-stage HCC derive benefit

from hepatic resection or transplantation, boasting a 5-year survival

rate of 70%. Nonetheless, HCC exhibits a notable intrahepatic

recurrence rate, with recurrence within 2 years affecting 50–70% of

patients, signifying a poor prognosis (3). Recent advancements in

systemic therapies have further enhanced overall survival rates (4, 5).

A combination strategy of anti-angiogenesis agents with

immunotherapy, bevacizumab plus atezolizumab, has been approved

as the first-line treatment for patients with unresectable HCC, other

anti-angiogenesis agents including regorafenib and cabozantinib have

been proven to improve overall survival (OS) as second-line treatment

(6). The various systemic therapies pose a new challenge for surgeons

and oncologists in terms of selecting optimal personalized treatment

strategies, and the study of the immune microenvironment of HCC

provides evidence for addressing this challenge.

Previous studies have revealed that early recurrence of HCC is

associated with both clinical and tumor traits, such as male gender,

high levels of bilirubin and alpha-fetoprotein (AFP), tumor size, and

microvascular invasion. Prediction models have been established based

on these traits (7, 8). Advances in genomics and transcriptomics have

further unveiled correlations between the tumor microenvironment

(TME) and early recurrence at the molecular level (9, 10), while

radiomics offers a different perspective on tumor traits (11). In

addition to clinical characteristics and multiomics, pathological

images also contain abundant information that has been

insufficiently explored. HCC consists of a mixture of cell types,

including malignant hepatocytes, immune cells, and stromal cells.

Pathological images of HCC are commonly used to classify and

grade tumors based on the degree of differentiation, satellite nodules,

microvascular invasion, and other histological features. However,

recognizing and annotating the types of individual cells in these

images, and exploring the interactions among them, may provide

more comprehensive information.

Lymphocytes constitute most immune cells in HCC, and studies

indicate that abundant lymphocyte infiltration in HCC is associated
02
with a better prognosis (12). Previous studies of lymphocyte

infiltration primarily relied on the technique of genomics and

transcriptomics, which required complicated examination and

additional cost. Our previous study employed image processing

techniques and adapted a convolutional neural network (CNN)

initially designed for lung cancer to establish a novel cell recognition

model suitable for patients with HCC (13), which classified cells

autonomously and accurately in pathological images into three

types: tumor cells, lymphocytes, and stromal cells (14). The cell

recognition model provides a more efficient and available method to

evaluate lymphocyte infiltration in the HCC landscape, reducing

both time and financial cost.

Patients from the Beijing Hospital and the Liver Hepatocellular

Carcinoma (LIHC) cohort in The Cancer Genome Atlas (TCGA)

database were included. Given the crucial role of lymphocytes in

tumor elimination and evasion, we categorized patients into high

and low immune infiltration groups based on lymphocyte levels

(15). Furthermore, we analyzed differences in clinical features,

prognosis, and TME between these subtypes. We observed

distinct disease-free survival (DFS) among different subtypes in

both the Beijing Hospital and TCGA cohorts. To predict potential

early recurrence of HCC (defined as DFS less than 1 year) (16), we

developed a novel prognostic model based on clinical features and

immune subtypes. Additionally, we created a nomogram to aid in

clinical decision-making.

Our study primarily focused on individual cells within

pathological images of HCC and proposed a novel immune

subtype based on lymphocyte levels. These findings could offer

new insights into the pathology of HCC and contribute to

personalized post-operative treatment strategies.
2 Methods

2.1 Data collection and preprocessing

We examined patients who underwent surgical resection or

liver transplantation between 2013 and 2019 at Beijing Hospital.

Patients included in this study had to meet the following criteria: (a)

be at least 18 years old; (b) have a pathological diagnosis of HCC; (c)

not receive any preoperative treatment; (d) have no history of prior

malignancy, autoimmune disease, or immune deficiency disease;
frontiersin.org
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and (e) provide well-preserved formalin-fixed paraffin-embedded

(FFPE) slides with hematoxylin-eosin (H&E) staining. Patients with

incomplete clinical information were excluded. Ultimately, 64

patients were included in the study.

To analyze the TME of HCC and validate the prognostic model,

pathological images, clinical information, and RNA-sequencing

data were retrieved from the TCGA-LIHC database via Genomic

Data Commons (http://gdc.cancer.gov/). Data preprocessing was

conducted to enhance the quality of data and ensure the reliability

of further analysis. The gene expression RNAseq data were

normalized, duplicated values and missing values were eliminated.

Patients without complete survival data or pathological images were

excluded. Finally, 198 patients were included.
2.2 Pathologic images processing pipeline

Our prior study proposed a reliable and effective pathological

images processing pipeline (14). Each image was digitally captured

at 40× magnification and labeled as a region of interest (ROI),

defined as the major malignant region, using the ImageScope

annotation tool. Subsequently, we randomly sampled 20 patches

within each ROI and calculated the number of tumor cells,

lymphocytes and stromal cells within these patches.
2.3 Immune infiltration classification

To categorize tumors into distinct immune phenotypes, we initially

determined the percentage of lymphocytes and the ratio of

lymphocytes to tumor cells in each image. Subsequently, we

conducted a test for normality to identify the parameter with the

least dispersion, selected based on the interquartile range (IQR), for

further analysis (15). Patients were then stratified into two subtypes

based on immune infiltration levels: high and low. This categorization

was determined using the median lymphocyte percentage as the

threshold. Finally, we compared clinical features and prognosis

between these two subtypes.
2.4 Functional enrichment analysis

We identified differentially expressed genes (DEGs) among various

subtypes using the DESeq2 R package, employing criteria of a base

mean > 10, log2 Fold Change > 1, and adjusted P value < 0.05 (17).

Subsequently, we conducted Gene Ontology (GO) functional pathway

enrichment analysis using the clusterProfiler R package, with

significance determined at a P value < 0.05 (18). Furthermore, we

obtained HALLMARK- and KEGG-related gene datasets from the

Gene Set Enrichment Analysis (GSEA) official website. We then

performed GSEA utilizing the GSEA algorithm (19) and Gene Set

Variation Analysis (GSVA) employing the GSVA R package (20).
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2.5 Evaluation of immune features

The ESTIMATE (Estimation of STromal and Immune cells in

Malignant Tumor tissues using expression data) analysis was

performed to assess the level of immune infiltration, utilizing the

estimate R package (21). Additionally, Cell type Identification By

Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)

analysis was employed to determine the relative abundance of 22

different immune cell types within the tumor tissue (22). Furthermore,

Tumor Immune Dysfunction and Exclusion (TIDE) analysis was

carried out to evaluate the potential for tumor immune escape,

utilizing the TIDE website (http://tide.dfci.harvard.edu/) (23).
2.6 Prognostic model establishment
and validation

To further investigate the prognostic value of immune

classification, we categorized patients into two groups: a good

prognosis group and a poor prognosis group, defined as having a

DFS > 1 year (16). From the Beijing Hospital cohort, we collected 55

variables comprising clinical and pathological features. We then

developed Receiver Operating Characteristic (ROC) curves for each

variable using the pROC R package and extracted the Area Under the

Curve (AUC) for evaluation (24). Variables with an AUC exceeding 0.6

were selected, and Least Absolute Shrinkage and Selection Operator

(LASSO) analysis was employed to reduce the number of variables in

the risk model using the Glmnet R package (25). A 20-fold cross-

validation was conducted to identify the optimal lambda value.

“Lambda.1se” was utilized to determine the minimum number of

independent variables required for a well-performing model.

Subsequently, we employed the Beijing Hospital cohort as the

training set and 58 patients from the TCGA-LIHC database, who

provided complete clinical information, as the test set. Logistic

regression was then applied to establish a prognostic model, and

ROC curves were generated for both the training and test sets.

Finally, a nomogram was constructed based on the prognostic model.
2.7 Statistical analysis

OS was defined as the period between the day of pathological

diagnosis and the day of death, while DFS was defined as the duration

between the day of pathological diagnosis and the occurrence of tumor

recurrence, metastasis, or death. Patients who remained free of

recurrence were censored at the final follow-up. Survival analysis was

conducted using Kaplan–Meier (K-M) analysis employing the Survival

and Survminer R packages. Categorical and non-normally distributed

measurement variables were compared using the Wilcoxon test,

whereas normally distributed measurement variables were compared

using the t-test. All statistical analyses were performed using R software

(version 4.1.3).
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3 Results

3.1 Cell type recognition and immune
subtype classification

Our prior research had developed an adapted CNN model to

recognize cells autonomously and accurately in pathological images

of patients with HCC, with classification accuracies of 95.7%, 92.3%,

and 77.6% for tumor cells, lymphocytes, and stromal cells,

respectively (14).

The adapted CNN model was utilized in this study, applied to

both the Beijing Hospital and the TCGA cohort. Analysis of cell

type percentages revealed no significant disparities between the two

cohorts (Figure 1A). Lymphocyts, stromal cells and tumor cells

account for 6.26%, 38.76% and 70.52% in the Beijing Hospital

cohort, and 5.56%, 37.70% and 66.44% in the TCGA

cohort respectively.

Lymphocyte percentage and lymphocyte/tumor cell ratio were

computed as potential parameters for further analyses, the

parameter with a lower degree of dispersion serves as the basis

for subsequent grouping. Both parameters constituted non-

normally distributed continuous variables, with the dispersion of

lymphocyte percentage being less pronounced (IQR 0.07 vs. 0.14 in

the Beijing cohort, 0.04 vs. 0.09 in the TCGA cohort, as depicted in

Figure 1B), so that the lymphocyte percentage was selected as the

parameter for stratification (26). Images with lymphocyte

percentages above or below the median were categorized as

having high or low immune infiltration (median = 0.039 in the

Beijing cohort, median = 0.011 in the TCGA cohort). Lymphocyte

percentages falling 1.5 times below Q1 or exceeding 1.5 times above

Q3 were identified as outliers, 2 outliers in Beijing cohort and 14

outliers in TCGA cohort were excluded.
3.2 Patients in different immune subtypes
presented variant clinical features
and prognosis

We categorized the patients into high- and low-immune cell

infiltration subtypes based on the threshold described above. For

patients in the Beijing Hospital cohort, we collected data on 17

parameters, including epidemiological factors, indicators of liver

function, medical history, tumor stage, and pathohistological
BA

FIGURE 1

(A) Percentage of different types of cells in Beijing Hospital and TCGA cohorts. (B) Central tendency for lymphocyte percentage and lymphocyte/tumor
cell ratio.
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TABLE 1 Clinical and pathological characteristics of patients in the
2 subtypes*.

Characteristic Low infiltration
(n = 35)

High infiltration
(n = 29)

P
value

Male 29 (82.8) 23 (79.3) 0.968

Age, Mean ±
SD, years

61.94 ± 14.97 57.17 ± 12.21 0.165

Alb*, Median (Q1,
Q3), g/L

40 (39.5, 41) 41 (40, 43) 0.101

TB*, Median (Q1,Q3),
mmol/L

12 (8.7, 15.15) 11.5 (9.3, 14.1) 0.914

PT*, Mean ± SD, s 11.47 ± 1.11 11.39 ± 0.94 0.770

AFP* (≥400 ng/ml) 12 (34.2) 3 (10.3) 0.051

Diabetes 11 (31.4) 3 (10.3) 0.084

Hypertension 18 (51.4) 5 (17.2) 0.010

Alcohol 11 (31.4) 8 (27.6) 0.952

Hepatitis 26 (74.3) 24 (82.8) 0.608

Liver cirrhosis 24 (68.6) 21 (72.4) 0.952

Fatty liver 9 (25.7) 1 (3.4) 0.017

MVI* 0.389

M0 20 (57.1) 20 (69.0)

M1 10 (28.6) 4 (13.8)

M2 5 (14.3) 5 (17.2)

Tumor size, Median
(Q1,Q3), cm

5.0 (3.5, 9.5) 4.5 (2.5, 7.0) 0.048

Vascular invasion,
n (%)

8 (22.9) 4 (13.8) 0.546

Satellite nodules,
n (%)

12 (34.3) 3 (10.3) 0.051

TNM Stage, n (%) 0.050

Stage 1 16 (45.7) 20 (69.0)

Stage 2 15 (42.9) 5 (17.2)

Stage 3 2 (5.7) 4 (13.8)

Stage 4 2 (5.7) 0 (0)
frontiersin.
*Values are numbers of patients (percentages) unless otherwise indicated; Alb for albumin; TB for
total bilirubin; PT for prothrombin time; AFP for alpha-fetoprotein; MVI for microvascular invasion,
M0 means no MVI, M1 means less than 5 MVI occurred within 1 cm from the tumor, M2 means
more than 5 MVI or MVI occurred 1 cm away from the tumor.
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features of the tumor, and compared the two subtypes (refer to

Table 1). The low-infiltration subtype exhibited a higher incidence

of hypertension (51.4% vs. 17.2%, p = 0.010) and fatty liver (25.7%

vs. 3.4%, p = 0.017), and displayed a larger tumor diameter (median

5.0 vs 4.5, p = 0.048). Additionally, the low-infiltration subtype

demonstrated a higher incidence of satellite nodules, elevated AFP

levels, and a more advanced TNM stage, but showed no statistical

significance. These findings suggest that lower immune infiltration

may be associated with a history of metabolic syndrome and may

promote tumor progression.

We further performed K-M analysis on both the Beijing

Hospital and TCGA cohorts to assess the prognostic value of

immune classification. In the Beijing Hospital cohort, patients

with the high-infiltration subtype exhibited a favorable prognosis

in terms of DFS (p=0.013), but no significant difference was

observed in OS (Figures 2A, B). In the TCGA cohort, the high

infiltration subtype demonstrated a favorable prognosis in both OS

and DFS (Figures 2C, D, p=0.012 for OS, p=0.026 for DFS).
3.3 Different immune subtypes present a
distinct TME

RNA sequencing data were gathered from the TCGA-LIHC

database. We identified the DEGs between the two subtypes using

the DESeq2 R package and annotated genes associated with

immune pathways according to the KEGG database (Figures 3A,

B). The analysis revealed that most of the immune-related genes

were down-regulated in the low infiltration subtype. To delve

deeper into the discrepancies in cellular function between the
Frontiers in Oncology 05
subtypes, we performed functional enrichment analyses utilizing

the GO, GSEA, and GSVA methodologies (Figures 3C, D, E). The

top 10 pathways enriched in the GO analysis (sorted by qvaule,

increased) were all linked to immune function. Meanwhile, the top

two pathways enriched in the GSEA analysis (ranked by absolute

NES, decreased) were the chemokine and cytokine signaling

pathways. The extent of immune infiltration was quantified using

ESTIMATE analysis, and the estimated immune and stromal scores

were compared between the two subtypes using the Wilcoxon test

(Figure 3F). The high-infiltration subtype exhibited higher scores,

indicating a greater degree of immune cell infiltration in the TME.

Subsequently, CIBERSORT analysis was performed to assess

immune cell abundance in the two subtypes (Figure 3G). The

findings revealed that the low-infiltration subtype manifested a

higher level of type 2 macrophages (M2), monocytes, and resting

natural killer (NK) cells, suggesting a propensity towards immune

suppression. Finally, TIDE analysis was employed to evaluate the

potential for tumor escape, indicating no significant difference

between the two subtypes (Figure 3H).
3.4 Establishment and validation of the
prognostic model based on immune
subtypes and clinical features

Patients with a DFS shorter or longer than 1 year were classified

into poor or good prognosis groups. A total of 55 variables, including

clinical and pathological features, were collected from the patients in

the Beijing Hospital cohort. ROC curves were developed for each

variable to evaluate their predictive value, and variables with an AUC
B

C D

A

FIGURE 2

(A, B) K-M survival analysis of OS and DFS for the Beijing Hospital cohort. (C, D) K-M survival analysis of OS and DFS for the TCGA cohort.
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greater than 0.6 were listed (Figure 4A). The immune classification

ranked 8 (AUC = 0.67), while other variables with high rankings

were mostly tumor features, such as TNM stage, microvascular

invasion (MVI), and serum AFP level, which were consistent with

previous findings (7, 8). To develop a prognostic model for patient

outcomes, we used all patients from the Beijing Hospital cohort as

the training set and 58 patients from the TCGA cohort with

complete clinical information as the test set. We performed
Frontiers in Oncology 06
LASSO analysis and cross-validation to reduce the number of

variables and determine the minimum number of variables needed

for a model with favorable performance (Figure 4B). Finally, five

variables were included in the logistic regression analysis: immune

classification, age, AFP level, vascular invasion, and TNM stage, and

a nomogramwas developed (Figure 4C). ROC curves were generated

for both the training and test sets, with AUCs of 0.918 and 0.814,

respectively (Figure 4D).
B

C D

E F

G

H

A

FIGURE 3

(A, B) Differentially expressed genes between the two subtypes, DEGs related to immune pathways were annotated. (C) GO enrichment, biological
process (BP). (D) Top 2 pathway enriched in GSEA analysis. (E) GSVA enrichment according to the KEGG database. (F) ESTIMATE scores between the
two subtypes, *** p<0.001, **** p<0.0001. (G) Abundance of different immune cells between the two subtypes, * p<0.05, ** p<0.01, NS for not
significant. (H) TIDE scores between the two subtypes, NS for not significant.
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4 Discussion

Benefiting from advanced genomics and transcriptomics

technologies, the TME of HCC has been extensively explored in

recent years. This exploration has revealed impressive immune

heterogeneity, fueling the development of immune therapies for

HCC, such as PD1/PDL1 inhibitors. Apart from immune

heterogeneity, spatial heterogeneity also significantly influences

tumor progression and metastasis (27). While studies on spatial

heterogeneity have primarily focused on the gene or molecular level

using techniques like single-cell RNA sequencing and spatial
Frontiers in Oncology 07
transcriptomics (28, 29). Examining the spatial distribution of

different cell types within the TME could offer a novel perspective.

Pathological images serve as the gold standard for tumor diagnosis,

containing vast amounts of information that warrant further

investigation. Traditional pathological research methods, such as

immunohistochemistry and fluorescence in situ hybridization,

operate at the molecular level and often require additional

experiments. Hence, a method that directly extracts cellular

information from H&E-stained pathological images could prove

more efficient. The primary challenge lies in accurately and efficiently

recognizing and classifying cells within these images. Previous studies
B

C D

A

FIGURE 4

(A) ROC curves and ranked AUC of clinical and pathological features. (B) LASSO regression and cross-validation for variable selection.
(C) Nomogram for predicting early recurrence; Subtype, 0/1 means low/high infiltration subtype; AFP, 0/1 means the level of AFP less than 400 ng/
ml or not; Vascular invasion, 0/1 means no/any type of vascular invasion; TNM stage, 1/2/3/4 means stage I/II/III/IV respectively. (D) ROC curves for
training set and test set.
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on lung cancer have successfully developed reliable deep-learning

models capable of identifying different cell types in pathological

images of lung adenocarcinoma and non-small cell lung cancer (30–

32). However, such models have seen limited application in HCC (33).

Our previous study proposed an effective pathological image

processing pipeline and adapted a CNN model to classify the cells in

the pathological images of patients with HCC.

Based on the modified CNN model, we have proposed a novel

immune classification based on the percentage of lymphocytes in the

images. We hypothesize that this novel immune classification holds

potential prognostic value. Upon dividing patients into high and low

immune infiltration groups, we observed that the low-infiltration

subtype exhibited a higher incidence of hypertension and fatty liver.

This suggests that metabolic disturbances may impact immune

infiltration in the TME. Further analysis of RNA sequencing data

from the TCGA dataset confirmed the reasonability and reliability of

our novel immune classification system. The next objective of our study

was to establish a prognostic model based on this novel immune

classification. We utilized the Beijing Hospital cohort as the training set

and the TCGA cohort as the test set. Patients were divided into poor/

good prognosis groups according to DFS. We conducted LASSO

analysis and logistic regression on 55 variables and developed a

nomogram for prognosis prediction. The AUC of the ROC curves

was 0.918 and 0.814 for the training set and the test set, respectively.

The variables included in the nomogram were immune classification,

age, AFP level, TNM stage, and vascular invasion status. Except for

immune classification, all other variables were available in the process

of HCC treatment. Our modified CNN model also facilitated the

determination of immune classification. With this nomogram, we can

conveniently evaluate the risk of early recurrence in patients diagnosed

with HCC who undergo surgical resection or liver transplantation. For

patients at high risk of early recurrence, more intensive follow-up and a

more proactive postoperative treatment strategy are warranted.

This study is a single-center retrospective study, and only 64

patients were included in the Beijing Hospital cohort, which

inevitably limits the reliability of its results and the prognostic value

of the proposed model. The utilization of lymphocyte percentage as the

sole parameter for immune classification appears insufficient. To

address these limitations, a multi-center prospective study design is

necessary, along with more comprehensive investigations exploring the

spatial relationships among various cell types. Furthermore, the

predictive value of our novel immune classification in response to

various immunotherapy strategies merits further exploration. Our

future research efforts will be focused on addressing these challenges.

An unexpected finding of this study was the observation that patients

with different immune infiltration subtypes exhibited distinct histories of

metabolic syndrome. This discovery underscores the importance of

investigating the correlation and interaction between metabolic and

immune pathways in the TME, a topic that warrants further exploration.

Overall, our study proposed a novel immune classification system

based on a reliable cell recognition model and demonstrated favorable

prognostic value. The novel prognostic model and nomogram,

developed from clinical features and immune classification, could

serve as practical tools for evaluating the risk of early recurrence in

patients with HCC. Moreover, they could provide reliable suggestions

for postoperative clinical decision-making.
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