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Bargalló, Villalba, Martı́nez-Ricarte, Trompetto,
Marinelli, Sacchet, Bartrés-Faz, Abellaneda-
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Primary brain neoplasms are associated with elevated mortality and morbidity

rates. Brain tumour surgery aims to achieve maximal tumour resection while

minimizing damage to healthy brain tissue. Research on Neuromodulation

Induced Cortical Prehabilitation (NICP) has highlighted the potential, before

neurosurgery, of establishing new brain connections and transfer functional

activity from one area of the brain to another. Nonetheless, the neural

mechanisms underlying these processes, particularly in the context of space-

occupying lesions, remain unclear. A patient with a left frontotemporoinsular

tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory
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non-invasive neuromodulation (rTMS and multichannel tDCS) over a language

network coupled with intensive task training. Prehabilitation resulted in an

increment of the distance between the tumour and the language network.

Furthermore, enhanced functional connectivity within the language circuit was

observed. The present innovative case-study exposed that inhibition of the

functional network area surrounding the space-occupying lesion promotes a

plastic change in the network’s spatial organization, presumably through the

establishment of novel functional pathways away from the lesion’s site. While

these outcomes are promising, prudence dictates the need for larger studies to

confirm and generalize these findings.
KEYWORDS
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Introduction

Brain tumours are characterized by high mortality rate, severe

disability, and burden for the healthcare system. A systematic

analysis from the Global Burden of Disease Study outlined that,

in 2016 alone, the global incidence of primary brain and central

nervous system tumours was 330,000 new cases and 227,000 deaths

(1). The overall 5-year survival rate for malignant brain tumours is

36% (2), despite advancements in the field of neurosurgery,

radiotherapy, and chemotherapy. Patient’s survival is associated

with both the extent of tumour resection and postoperative

neurological deficits, so that the best outcomes are expected for

patients with gross total resection and no worsening of symptoms

(3, 4). However, massive resection and preserved functionality are

often conflicting goals, posing neurosurgeons in the dilemma of

finding a cost-benefit compromise.

One promising approach is Neuromodulation-Induced Cortical

Prehabilitation (NICP) (5). NICP aims at leveraging neuroplastic

changes before surgery, by performing conditioning sessions over

several consecutive days or weeks. This neuroplasticity-based

paradigm holds the potential to modulate brain connectivity and

activity, facilitating the transfer of functional activity from one brain

region to another. The goal of this process is to broaden safe

functional margins for excision, to maximize tumour eradication

while at the same time preserving neurological status. So far,

publications on NICP account for four case reports and one case

series, totalling only eight patients (6–10). A common element of all

NICP studies is a two-step process, the first step being the ‘virtual

lesion’ of areas considered at risk of being compromised during

neurosurgery; and the second step being the promotion of brain

activity of alternative brain resources, while the targeted area has

been inhibited.

The accomplishment of the first step (i.e., virtual lesion), can be

performed invasively, by means of extra-operative continuous high-

frequency cortical electrical stimulation (7–9), or non-invasively,
02
for instance, by transcranial magnetic stimulation (TMS) (6, 10).

Invasive neuromodulation has been investigated in two case reports

(7, 9) and a case series (8), showing consistent patterns of neural

reorganization studied through functional magnetic resonance

imaging (fMRI). However, invasive techniques required two

surgeries and came at the cost of high rate of complications such

as infections and seizures (8). Non-invasive neuromodulation was

investigated in two case reports by Barcia et al. (6) and Dadario et al.

(10). However, task-evoked brain reorganizations were not

significant (6) or not reported (10).

The second step (i.e., enhancement of activity for alternative

brain areas) is achieved by training the function at risk of being

compromised. Such intervention is performed during and/or

immediately after inhibition of targeted peritumoural areas, in a

condition where the brain is supposedly constrained to recruit

alternative pathways within the same functional network. Type

and amount of training varied greatly among protocols, from no

training (10) up to six hours a day (9).

Given the limited number of studies, the complex nature of the

interventions, and the diversity of protocols, the impact of non-

invasive NICP interventions at the neuroimaging level, as well as the

underlying neurobiological mechanisms responsible for these

changes, remains largely unknown. To this end, the present study

was designed to capitalize on distinct fMRI modalities (11), utilizing

tb-fMRI to investigate the topographical brain changes induced by

NICP, while simultaneously using rs-fMRI to explore the

connectivity modulations induced in the circuits of interest.

During the last decades, tb-fMRI has been a widely used

approach for investigating task-related networks implicated in

various cognitive and motor processes (12–14). More recently, rs-

fMRI has emerged as a valuable tool for investigating brain

functioning in the absence of any specific task engagement (15).

Particularly, rs-fMRI has been extensively utilized to explore brain

functional connectivity, which refers to the temporal correlation

between neurophysiological measurements obtained from distinct
frontiersin.org
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brain regions (16, 17). These patterns of temporally correlated

oscillations observed during rest underlie the activity of the so-

called resting-state networks (18, 19). Notably, Smith et al.

demonstrated that these resting-state networks correspond to the

same set of regions that form ‘networks,’ and are activated and/or

deactivated during task performance, and provide additional means

to explore further features of these neural systems (20). Remarkably,

rs-fMRI data has proven valuable in predicting tb-fMRI evoked

responses (21), even in pre-surgical patient populations with

conditions such as tumour, epilepsy, and vascular lesions (22).

Furthermore, pre-operative rs-fMRI BOLD signal is significantly

affected by tumours affecting motor and language function, and

associated with functionality (23). In particular, for patients with

tumour near the inferior frontal gyrus, Liouta et al. found a

significantly decreased rs-fMRI BOLD signal in patients with

aphasia, as compared with non-aphasics, and a strong positive

correlation between rs-fMRI BOLD signal and phonological fluency

performance (23).

The present case report was investigated to internally validate

the protocol for a subsequent (ongoing) research trial

(ClinicalTrials.gov Identifier NCT05844605) (24), to verify (1)

whether brain functional patterns at risk, as evidenced by tb-

fMRI, could be modified through a non-invasive intensive

plasticity-induction protocol; and (2), to explore the potential role

of functional connectivity, assessed during rs-fMRI, as a mechanism

underlying the observed changes in tb-fMRI brain activity. The

main hypothesis is that the proposed neuroplasticity-promoting

intervention would facilitate the establishment of new functional

connections within the modulated brain system, thus facilitating the

emergence of novel brain activity patterns in language network

regions more distant from the tumour site. Clinically, such dualistic

phenomenon (concurrent inhibition of targeted areas and enhanced

recruitment of alternative resources within the same network)

would result in unaltered language and cognitive performance.
Methods

Case description

The patient is a right-handed adult in the 40s with past medical

history reporting episodic alterations of consciousness, suggestive of

epileptic seizures. During such episodes there was no relaxation of

sphincters, and the patient recovered ad integrum after each

episode; symptomatology presented for approximately three years.

By the time of enrolment in the study protocol, no focal

neurological symptoms nor clinically relevant sensorimotor or

cognitive deficits were evidenced. Brain MRI demonstrated a large

infiltrative lesion in the left frontobasal, temporal, and insular

regions (See Figure 1A). At this stage, the patient was referred to

Institut Guttmann (Guttmann Barcelona, Spain) from the

Neurosurgery Department of Vall d’Hebron Hospital (Barcelona,

Spain) to be enrolled as a voluntary participant in the

PREHABILITA feasibility trial (see individualized prehabilitation

description at paragraph 4.3). At the end of NICP protocol, based

on clinical and MRI outcomes, a left frontotemporoparietal
Frontiers in Oncology 03
craniotomy was performed, and a resection of the left

frontotemporoinsular space-occupying lesion (transcortical

approach) was carried out without complications. Considering

the size of the tumour and consequent mass effect, the

neurosurgeon (F.M.R.) planned initially a two-step approach:

during the first surgery intratumoural debulking was performed

with the patient under general anaesthesia. Intraoperative

monitoring included continuous recording from a grid of

electrodes placed over the motor cortex, and by monopolar

stimulation to identify the motor pathway at cortical-subcortical

level. Intraoperative neuroimaging comprised neuronavigation,

cerebral echography and neuronavigated echography. As planned,

subtotal resection was performed, the two most limiting factors

being the tumour size and associated mass effect, and the infiltration

of basal ganglia at the level of perforating arteries. Based on

postsurgical histopathology results (diagnosis of a grade IV

frontotemporoinsular glioma with an IDH mutation), the

neurosurgeon decided to cancel the second surgery (with patient

awake, for further tumour removal), and instead opted for

conservative patient’s management including radiotherapy and

oral chemotherapy.

All procedures from the present study were performed in

accordance with the Helsinki declaration. The study was

approved by the Research Ethical Committee of Fundació Unió

Catalana d’Hospitals (approval number: CEI 21/65, version 1, 13/

07/2021).
Assessment protocol

According to the study protocol, the patient received a

comprehensive clinical, neurophysiological (i.e., TMS) and

neuroimaging assessment. The same assessment was conducted at

baseline (TP1, before NICP), at the end of the prehabilitation

intervention (TP2, after NICP), and after neurosurgical

intervention (TP3, after surgery). The feasibility of the

intervention was assessed at TP2 by considering adherence to

planned sessions, absence of adverse events attributable to the

intervention, and patient’s satisfaction of the treatment received

(PATSAT questionnaire) (25). The current case report is focused on

neuropsychological and neuroimaging procedures.

To ensure transparency and reproducibility of the methods, full

protocol description have been previously published (24). Further

details of clinical evaluations, neuroimaging acquisition and specific

processing for the present case report are available as

Supplementary Materials.
Individualized prehabilitation intervention

Figure 1 shows the timeline of interventions (A),

neuromodulation targets with respect to tb-fMRI cortical

activation clusters (B), and multifocal tDCS pattern (C).

Figure 2A illustrates structural MRI of lesion distribution.

The patient performed a total of 20 sessions of NICP within 12

days, primarily organized with a first session in the morning (from
frontiersin.org
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9:00 to 11:00) and a second session in the afternoon (from 14:00 to

16:00). This schedule was designed to reach the goal of at least 10

and maximum 20 sessions of NICP. Each NICP session consisted of

neuromodulation coupled with intensive behavioural training. For

this specific case, the function at risk of being compromised was

language production. Therefore, the goal of NICP was to inhibit

eloquent areas associated with language function (by means of

neuromodulation) while at the same time promoting the activation

of alternative nodes of the same network (by means of intensive

language and cognitive training).

The neuromodulation strategy was designed to induce twofold

objectives. The first aim was to achieve a focal disruption of the

maximum representativity within the semantic language activation

cluster identified by fMRI. The second objective was to achieve

widespread inhibition across the entire semantic fMRI circuit in the

left hemisphere, using parameters effective in inducing language

network changes in healthy subjects and patients with aphasia (26,

27). Each morning session consisted of low frequency rTMS (1800

pulses, 1 Hz, 90% RMT) (28, 29) over the peak fMRI activation

(MNI coordinates: -56, 12, 8) of the targeted cluster for semantic
Frontiers in Oncology 04
decision task, followed by one hour of intensive training of language

and h igh cogn i t i v e func t ions wi th an exper i enced

neuropsychologist (A.R.V.). The rationale for target selection was

that, among the three language-related fMRI tasks, semantic

decision showed the largest activation cluster, which was also the

closest one to the tumour; hence, peak fMRI activation for this

cluster was considered as target because of both its functional

relevance and the risk of compromission by neurosurgery.

Notably, if only one session per day were performed, this

morning protocol was applied. Each afternoon session consisted

of multifocal tDCS (30, 31) (F3: -400 mA; T7: -300 mA; P3:-300 mA;
C4: 1000 mA). The main goal was to promote a widespread left

inhibition over the representation of language related clusters. The

total duration of tDCS sessions was 30 minutes. After the first five

minutes at rest, for the remaining 25 minutes the patient received

tDCS while performing intensive cognitive training by means of a

dedicated online platform (Guttmann NeuroPersonalTrainer®,

GNPT) (32). At the end of tDCS the patient performed other 30

minutes of cognitive training with GNPT, totalling approximately

one hour of training. At the end of the last daily NICP session, the
B C

A

FIGURE 1

Outline of the methodology for the case report. (A) Study timeline, where neuroimaging assessments are depicted in green for baseline (TP1: day 0),
after NICP (TP2: day 32), and after surgery (TP3: day 70). NICP (azure) consisted of 20 consecutive sessions performed between day 15 and day 30.
Clinical assessments and TMS motor and language mapping (yellow) were performed at day 13, 34, and 69. Neurosurgery was performed at day 36.
Previous timepoints are initial symptoms, MRI scan and diagnosis at day -106, previous MRI scan at day -46. Referral by neurosurgeon to be
included in the NICP protocol was six days before baseline. (B) Brainsight curvilinear brain (grey) and activation clusters (derived from tb-fMRI
analyses) overlay for semantic decision (violet), with targets for TMS (peak fMRI for semantic decision, in violet) and multichannel tDCS (azure)
corresponding to F3, P3, T7, C4 EEG electrodes. (C) Map of multichannel tDCS project on Neuroelectrics software.
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patient performed a High Intensity Interval Training (HIIT)

protocol on a stationary bike, with the following protocol: 5

minutes warm-up, first HIIT bout (30 seconds all-out + 30

seconds rest, 10 times), 5 minutes rest, second HIIT bout (same

as the first bout), 5 minutes cool-down. The goal of intensive

aerobic training after cognitive training was to foster skill learning

encoding and consolidation (33–35).
Results

Neuropsychological results

There were no significant alterations detected in any of the

language tasks, which was the cognitive function of interest, at the

three distinct time points pre-intervention, post-intervention, and

at follow-up (i.e., TP1, TP2 and TP3; Table 1). Notwithstanding,

during the comprehensive cognitive evaluation, a decrease in

attentional, delayed memory and executive functions performance

was observed, yielding clinically significant findings (which were

not significant in the baseline NICP assessment). Processing speed,

immediate memory and some executive function tasks were below

expectation from baseline considering age and education (see

Supplementary Table 1).
Language tb-fMRI results

Prehabilitation resulted in an increment of the distance between

the tumour (Figure 2A) and the nearest activation cluster during the

semantic language fMRI task by 15.9 mm, returning to a similar

distance as baseline after surgery (Figures 2B, C). Further, the

volume of the closest activation fMRI cluster decreased after

prehabilitation in 12.4 mm3, also showing a subsequent

increment to a certain degree following surgery (Figures 2B-D).
Language rs-fMRI network results

There was a noteworthy increase in the resting-state functional

connectivity within the language network. This enhancement was

particularly prominent between the left inferior frontal gyrus (IFG

L, the nearest network node to the target of NICP

neuromodulation) and the remaining regions of the language

network. Remarkably, this pattern on increased connectivity

persisted following the surgical procedure (Figure 3). In addition,

an increase of functional connectivity was observed also for the right

inferior frontal gyrus (IFG R), though to a lesser extent. Notably, no

comparable network reconfigurations were observed within the

control visual network (Supplementary Figure 1).

In terms of feasibility, the patient attended all planned sessions and

did not report any adverse event during the whole intervention period.

Results from questionnaire about patient’s satisfaction were excellent.
Frontiers in Oncology 05
TABLE 1 Language tasks from neuropsychological assessment.

Language
domain

Before
NICP

After
NICP

After
Surgery

Spontaneous language

Conversation

Narrative speech

Picture description

8 8 8

6 6 6

6 6 6

Informative content of language

Fluency and grammar

Content of language

10 10 10

10 10 10

Verbal repetition

Words

Syllables

Pseudowords

Sentences

10 10 10

8 8 8

8 8 8

60 60 60

Verboverbal Naming

Confrontation naming

Responsive naming

6 6 6

6 6 6

Verbal comprehension

Commands
Complex
ideational sentence

16 16 16

9 9 9

Reading comprehension

Sentences and text
Word-picture
Words
Pseudowords

8
6
6
6

8
6
6
6

8
6
6
6

Automatic language

Automatized sequences:
Forward series
Mental control: Backward
series

3 3 3

3 3 3

Naming visuoverbal

Naming pictures 14 14 14

Reading - verbalization

Letters
Numbers
Pseudowords
Text

6
6
6
56

6
6
6
56

6
6
6
56

Writing: Dictate

Letters
Numbers
Pseudowords
Words
Sentences

6
6
6
6
13

6
6
6
6
13

6
6
6
6
13
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Discussion

The present case report described clinical outcomes and neural

correlates of a patient undergoing a non-invasive NICP protocol

before neurosurgery for brain tumour. Clinically, the patient

exhibited complete functionality at baseline despite the significant

tumour mass and did not show clinically relevant changes for

language function at the end of NICP nor at follow up after

surgery (i.e., he was stable throughout the course of the

intervention). On the other hand, when looking at the brain level,

the patient presented baseline tb-fMRI activation clusters related to

semantic decision in proximity with the tumour, particularly within

the IFG L, pars opercularis. These clusters dissipated after

prehabilitation with the concomitant enlargement of left

temporoparietal fMRI-related clusters (specifically within the

posterior divisions of the supramarginal and superior temporal

gyri). Finally, after surgery, the activation clusters reappeared at

approximately the same location as at baseline. Such brain activity

changes were paired by resting-state functional connectivity

outcomes, showing increased language network connectivity,

particularly in an anteroposterior manner and mostly evident

from the IFG L resting-state networks language node (with the

centre coordinates over the IFG L, pars triangularis).

Despite full independence in activities of daily living, the patient

presented at baseline with scores in cognitive domains such as

memory and executive function below what expected based on age

and education, which further decreased at the end of the

intervention. Being a single case it is only possible to draw causal

inferences by considering both the intervention and the tumour

itself. In the first hypothesis, it’s worth considering that rTMS was

applied to peak-fMRI of semantic language network and paired
Frontiers in Oncology 06
with speech training, while multichannel tDCS was applied to a

broad parietofrontal region and paired with cognitive training.

Because of the concurrent application of both modalities, it is

impossible to discriminate the role of each intervention, though it

would be interesting to compare the effectiveness of different

approaches (TMS versus tDCS) in future studies. In the second

hypothesis, the presence of the lesion determined cognitive scores

already below expectations at baseline, with further worsening due

to disease progression.

A critical aspect for the whole intervention was the rationale

leading to the choice of the target of neuromodulation. Previous

cases of non-invasive NICP selected the target based on a

combinat ion of c l in ica l symptoms, neuroanatomica l

considerations, and neural correlates. Barcia et al. applied

neuromodulation over a region corresponding to Broca’s area

because of the proximity with the tumour and symptoms of

speech disorders (6). Similarly, Dadario et al. selected targets close

to the tumour and in proximity with the planned surgical entry

point (10); furthermore, based on rs-fMRI results, areas that were

considered hyperconnected or eligible for excision were inhibited,

and areas hypoconnected or potential candidates to functionally

supply eloquent areas were stimulated (with excitatory paradigms).

When looking at invasive NICP case reports (7, 9) and case series

(8), a common element was the placement of grids of electrodes for

the application of cortical electrical stimulation at the maximum

tolerable intensity; grids were placed over extended regions covering

eloquent areas, based on clinical and neuroanatomical

considerations. For the present study, the patient was completely

functional at baseline, hence the starting point was considering the

anatomical localization of the tumour, the cortical distribution of

language tb-fMRI clusters, and the localization of the peak-fMRI for
B

C

D

A

FIGURE 2

Illustration of brain tumour lesion and language network tb-fMRI results. (A) Anatomical representation of the tumour lesion at the three different
time-points, with the centre of the figure positioned around the centre of masses. (B) Language network tb-fMRI results at the three different time-
points, with the centre of the figure placed over the stimulation site. (C) Distance from the tumour to tb-fMRI clusters, presenting all tb-fMRI clusters
and the nearest fMRI cluster. (D) Volume of tb-fMRI clusters, displaying the nearest one from the tumour and all of them.
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each cluster of interest. By delivering a regional neuromodulation,

the goal was to elicit widespread neuroplastic reorganization. In this

perspective, peak tb-fMRI of the largest cluster close to the tumour

was selected as the centre of a relevant node within the semantic

language network and targeted with low frequency rTMS to induce

a topographical rearrangement of this brain circuit. Furthermore,

inhibitory multifocal tDCS was applied with cathodes mainly

covering the identified circuit of interest, to boost the inhibition

within the targeted cluster in favour of other compensatory

network areas.

When looking at functional activation associated to semantic

decision task, the minimum distance between the tumour and any

activation peak increased by almost 16 mm from TP1 to TP2,

indicating an antero-posterior shift of functional activity (i.e., from

frontal to the temporoparietal brain regions). From a neurosurgical

perspective, a distance between a lesion and eloquent area less than
Frontiers in Oncology 07
5 mm is associated with worse outcomes (36, 37). Therefore, the

increase in minimum distance obtained may be considered of direct

clinical relevance. Furthermore, the minimum distance between the

tumour and peak-fMRI returned to approximately baseline levels at

TP3, hence suggesting that non-invasive NICP provoked a temporal

window of neuroplastic changes beneficial for the preservation of

functionality during neurosurgery; in the absence of any specific

treatment and likely following spontaneous recovery, the brain

reorganized itself by returning to a pattern of functional activity

comparable to what was evidenced before the intervention.

When focusing on rs-fMRI, seed-based analysis revealed a

notable functional connectivity increase within the language

resting-state networks. Specifically, ROI-to-ROI analyses showed

an increased connectivity between the IFG L area and all other

nodes in the network. Additionally, an anteroposterior connectivity

increment between the right hemisphere’s IFG and the posterior
B

C

A

FIGURE 3

Representation of the language network rs-fMRI results. IFG L, left inferior frontal gyrus; IFG R, right inferior frontal gyrus; pSTG L, left posterior
superior temporal gyrus; pSTG R, right posterior superior temporal gyrus. (A) Seed-to-voxel results displayed from the left inferior frontal gyrus (IFG
L) at three different time-points. The colour-map represents the connectivity strength, ranging from 1 to -1. The slices are ordered along the Z-axis,
ranging from -46 to 74 in increments of 8 units. (B) Connectivity matrices considering the four network ROIs at the three time-points. The color-
map also represents the connectivity strength, ranging from 1 to -1. ROI-to-ROI results encompassing all the network couplings at the three time-
points. (C) Histograms representing the same correlation values reported in the connectivity matrices. Each graph shows the evolution of
connectivity for a specific ROI-to-ROI.
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superior temporal gyrus (pSTG) was observed. Importantly, these

functional connectivity patterns were not present in a control visual

network. Therefore, our NICP protocol enhanced the rs-fMRI

connectivity of the language network, with a main emphasis on

the IFG L, the node roughly aligned with the tb-fMRI peak

activation used as the targeted TMS area, and particularly in an

anteroposterior fashion. Interestingly, the rs-fMRI functional

connectivity results for the language network are spatially

consistent with the findings from semantic language tb-fMRI

outcomes, wherein there was a subsequent reduction of clusters

anteriorly, at the level of the IFG L, and the enlargement of clusters

in posterior areas of the network, within the temporoparietal

intersection. Consequently, it appears that our NICP protocol was

capable of modulating both tb-fMRI brain activity and rs-fMRI

functional connectivity. More precisely, this modulation resulted in

an amplification of rs-fMRI functional connectivity within the

language system, which might presumably underlie the

subsequent displacement of brain activation to other regions,

farther from the lesion, during task demands.

Some limitations should be addressed. First, the present study is

a case report, which heavily limits the interpretation and

generalizability of findings, warranting future group-level studies.

Another important constraint is that the patient underwent a

complex intervention, composed of two different protocols of

neuromodulation (low frequency rTMS and multifocal tDCS)

coupled with intensive language and cognitive training, followed

by intensive aerobic training to promote the consolidation of

neuroplastic changes. The overall rationale was to provide a

comprehensive intervention based on the best available evidence

to achieve the most ambitious clinical outcome, tailored to specific

patient’s needs. Nonetheless, this prevents us from determining the

relative contribution of each ingredient on the outcome of the

intervention. Future comparative studies may help elucidating this

aspect. Finally, in the absence of a control condition, it is not

possible to determine to which extent neuroplastic changes were

due to the intervention. Indeed, the presence of the tumour itself

may significantly affect the coupling between neural activity and

blood flow (neurovascular uncoupling), possibly jeopardizing the

interpretation of functional neuroimaging outcomes (38). However,

data from the present case indicates a shift of the cortical activation

pattern within nodes of the language network, suggesting a true

neuroplastic reorganization rather than a random artifact. In

conclusion, when putting the present study in perspective with

previous literature, it is important to acknowledge that this is the

first case showing clinically relevant neuroplastic changes after non-

invasive NICP coupled with intensive task training without

neurological sequelae. Hence, non-invasive NICP holds

significance as an attractive alternative to invasive NICP

protocols, warranting further investigation.
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