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Chloroquine-induced DNA
damage synergizes with
DNA repair inhibitors
causing cancer cell death
Diego Iglesias-Corral1,2,3, Paula Garcı́a-Valles1,2,3,
Nuria Arroyo-Garrapucho1,2,3, Elena Bueno-Martı́nez1,2,3,
Juan Manuel Ruiz-Robles1,2,3, Marı́a Ovejero-Sánchez1,2,3,
Rogelio González-Sarmiento1,2,3* and Ana Belén Herrero1,2,3*

1Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain, 2Molecular Medicine Unit,
Department of Medicine, University of Salamanca, Salamanca, Spain, 3Institute of Molecular and
Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
Background: Cancer is a global health problem accounting for nearly one in six

deaths worldwide. Conventional treatments together with new therapies have

increased survival to this devastating disease. However, the persistent challenges

of treatment resistance and the limited therapeutic arsenal available for specific

cancer types still make research in new therapeutic strategies an urgent need.

Methods: Chloroquine was tested in combination with different drugs

(Panobinostat, KU-57788 and NU-7026) in 8 human-derived cancer cells lines

(colorectal: HCT116 and HT29; breast: MDA-MB-231 and HCC1937;

glioblastoma: A-172 and LN-18; head and neck: CAL-33 and 32816). Drug´s

effect on proliferation was tested by MTT assays and cell death was assessed by

Anexin V-PI apoptosis assays. The presence of DNA double-strand breaks was

analyzed by phospho-H2AX fluorescent staining. To measure homologous

recombination efficiency the HR-GFP reporter was used, which allows flow

cytometry-based detection of HR stimulated by I-SceI endonuclease-

induced DSBs.

Results: The combination of chloroquine with any of the drugs employed

displayed potent synergistic effects on apoptosis induction, with particularly

pronounced efficacy observed in glioblastoma and head and neck cancer cell

lines. We found that chloroquine produced DNA double strand breaks that

depended on reactive oxygen species formation, whereas Panobinostat

inhibited DNA double-strand breaks repair by homologous recombination. Cell

death caused by chloroquine/Panobinostat combination were significantly

reduced by N-Acetylcysteine, a reactive oxygen species scavenger,

underscoring the pivotal role of DSB generation in CQ/LBH-induced lethality.

Based on these data, we also explored the combination of CQ with KU-57788

and NU-7026, two inhibitors of the other main DSB repair pathway,
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nonhomologous end joining (NHEJ), and again synergistic effects on apoptosis

induction were observed.

Conclusion: Our data provide a rationale for the clinical investigation of CQ in

combination with DSB inhibitors for the treatment of different solid tumors.
KEYWORDS

breast cancer, colorectal cancer, head and neck cancer, glioblastoma, chloroquine,
DNA repair inhibitors, drug combination
Introduction

Cancer stands as a major health issue worldwide; the number of

new cancer cases diagnosed in 2020 was 19.3 million, and almost

10.0 million people die every year due to this disease (1).

Improvements in the conventional treatments, which include

surgery, radiation therapy, and chemotherapy together with new

approaches, such as immune-mediated therapies or targeted

therapy are increasing survival rates of this devastating disease.

However, the emergence of resistances to all these treatments

remains one of the biggest challenges in the field of cancer

research. One potential way to reduce resistances is through the

combination of anticancer therapies (2). Additionally, combined

drug regimens present several other advantages, such as the

reduction of toxicity, which allows using individual drugs at lower

dosages while maintaining therapeutic efficacy, particularly when a

synergistic anticancer activity is achieved. Our group have recently

reported that the combination of chloroquine (CQ) with a histone

deacetylase inhibitor, Panobinostat (LBH), or with inhibitors of the

nonhomologous end joining (NHEJ) DNA repair pathway, resulted

in significant synergistic effects in ovarian cancer cell lines (3, 4).

Therefore, it is of interest to analyze and compare the effect of these

combinations in other tumor types.

CQ is a well-known autophagy inhibitor initially discovered and

employed for the prevention and treatment of malaria (5). This

compound has also been used as an anti-inflammatory agent to

treat several inflammatory diseases (5, 6) and many reports

highlight its prominent role as an anticancer agent. In fact, it is

considered one of the most prominent instances of drug

repurposing in cancer (7). CQ has been described to reduce

hypoxia, cancer cell invasion and metastasis, while improving

chemotherapy delivery and response (8, 9). Thus, several

preclinical results and clinical trials have shown that CQ

sensitizes tumor cells to radiotherapy or chemotherapy (6, 8, 10–

22). The anticancer effect of CQ has been mainly attributed to its

ability to inhibit autophagy (6, 10, 11, 13, 18, 22), which serves as a

resistance mechanism against chemotherapy (23). However, other

autophagy-independent antitumoral effects have also been

described (8, 19, 24–27). In this regard, we have recently

published that CQ increases reactive oxygen species (ROS) in
02
ovarian cancer cell lines, causing DNA double-strand breaks

(DSBs) (3, 4), the most lethal form of DNA damage (28).

Histone deacetylase inhibitors (HDACi) also represent promising

agents in cancer treatment, particularly in combination with other

anti-cancer drugs and/or radiotherapy (29–31). These molecules

inhibit HDACs, enzymes responsible for removing acetyl groups

from lysine residues thereby acting as transcriptional repressors (32).

The inhibition of these enzymes promotes transcriptional activation

of multiple genes that are typically silenced in human tumors (33).

Moreover, HDACi have also been shown to exert pleiotropic

antitumor effects; they induce the expression of proapoptotic genes,

cause cellular differentiation and/or cell cycle arrest (29, 34, 35). That

is the case of Panobinostat (LBH), an HDACi approved in 2015 for

the treatment of different hematological malignancies (30). HDACi

and LBH also act as autophagy inducers, but this effect is not

considered and antitumor mechanism but rather a potential

mechanism of resistance. For this reason, some researchers have

explored the combination of HDACi with autophagy inhibitors,

discovering synergistic effects in several tumor cell lines, such as

breast, colon, leukemic and neuroblastoma cell lines (10–13, 18, 22).

However, our prior research indicated that the cell death induced by

the CQ/LBH combination in ovarian cancer cells was largely

dependent on DSB induction by CQ and the HR inhibition caused

by LBH (3). These effects have not yet been investigated in other types

of tumors.

Our group has also recently published findings indicating that

CQ-induced DNA damage synergizes with nonhomologous end

joining (NHEJ) inhibition, resulting in cytotoxicity in ovarian

cancer cells (4). Due to the inhibition of DSB repair, NHEJ

inhibitors (NHEJi) have been shown to increase the cytotoxicity

of several genotoxic drugs or radiotherapy in different cancer types

(36–41). However, the combination of CQ with these compounds

has neither been explored in other types of tumors.

In this study, we analyzed the effect of CQ, LBH and NHEJi,

both individually or in combination, in four different tumor types,

two with very high incidence: breast and colorectal cancer, and two

with limited approved treatments and poor outcomes: head and

neck cancer and glioblastoma. Our findings reveal that CQ induces

DNA double strand breaks (DSBs) in all the cell lines analyzed,

which largely depends on ROS production. Consequently,
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combination of CQ with NHEJi or with LBH, which we

demonstrate inhibits DSB repair by HR, elicits a strong

synergistic effect that should be explored in in vivo studies and

subsequent in clinical trials.
Materials and methods

Cell lines and culture conditions

The following human cell lines were used: colon cancer

HCT116 (RRID: CVCL_0291) and HT29 (RRID: CVCL_0320),

breast cancer MDA-MB-231 (RRID: CVCL_0062) and HCC1937

(RRID: CVCL_0290), glioblastoma A-172 (RRID: CVCL_0131) and

LN-18 (RRID: CVCL_0392) and head and neck cancer CAL-33

(ACC 447) and 32816. All of them were acquired from the

American Type Culture Collection (ATCC), with the exception of

CAL-33, obtained from the DSMZ German Collection of

Microorganisms and 32816 which was established in our

laboratory from an oropharyngeal squamous cell carcinoma.

Colon and glioblastoma cancer cell lines and the breast cancer

cell line MDA-MD-231 were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) (Gibco, Waltham, MA, USA), whereas

breast cancer cell line HCC1937, and head and neck cancer cell lines

were cultured in RPMI 1640 medium (Gibco, Waltham, MA, USA).

Both types of media were supplemented with 10% FBS and 1%

penicillin/streptomycin. All cells were incubated at 37°C in a 5%

CO2 atmosphere. The presence of mycoplasma was routinely

checked using the MycoAlert kit (Lonza, Basel, Switzerland) and

only mycoplasma-free cells were employed in the experiments.
Reagents

Chloroquine (CQ) and N-Acetylcysteine (NAC) were

purchased from Sigma-Aldrich (St. Louis, MO, USA). KU-57788

(KU), NU-7026 (NU) and Mirin were obtained from

MedChemExpress (South Brunswick Township, NJ, USA), and

Panobinostat (LBH) was provided by Novartis Pharmaceuticals,

Basel, Switzerland.
Cell proliferation assay

Cell lines were seeded into 96-well plates (from 2,000 to 4,000

cells/well, depending on the cell lines used) and were treated with

different concentrations of CQ, LBH, KU-57788 or NU-7026 for 24,

48 or 72 h. Cell proliferation was determined using 3-(4,5-

dimethylthiazol-2-yl)- 2,5-diphenyl-2H-tetrazolium bromide

(MTT) (Sigma-Aldrich). MTT was dissolved in PBS at 5 mg/mL

and 10 mL of the solution was added to each well. After 1 h of

incubation, medium was aspirated, and formazan crystals were

dissolved in DMSO (100 mL/well). Absorbance was measured in a

plate reader (Ultra Evolution, Tecan) at 570 nm. The half maximal

inhibitory concentration (IC50) was calculated using GraphPad

Prism 8 (RRID: SCR_002798).
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Apoptosis assay

Cancer cell lines were treated with the different drugs for 72 h

then stained with FITC Apoptosis Detection Kit CE (Immunostep,

Salamanca, Spain) according to the manufacturer’s guidelines. The

percentage of apoptotic cells was determined by flow cytometry

using a BD Accuri C6 Plus Flow Cytometer. The synergism of the

combination was determined using CompuSyn Software (version

1.0 for Windows, ComboSyn, Inc., Paramus, NJ, USA), based on the

Chou-Talalay method (42), which calculates the combination index

(CI) with the following interpretation: CI > 1: antagonistic effect;

CI = 1: additive effect; CI < 1 synergistic effect.
Immunofluorescence

Cancer cell lines were plated on round glass coverslips (12 mm

diameter) (200,000 cells/well in 6-well plates) and, after 24 h of

culture, cells were treated with CQ or CQ+NAC for 48 h. Then, cells

were fixed with 4% paraformaldehyde for 10 min, permeabilized with

0.5% Triton X-100 (Boehringer Mannheim) in PBS for 10 min,

blocked in 10% BSA in PBS for 30 min and incubated with phospho-

H2AX antibody (1:1000, Sigma-Aldrich, RRID: AB_309864) for

90 min. After washing, coverslips were incubated with fluorescent

secondary antibodies (1:400, Alexa Fluor 488 goat anti-mouse IgG,

RRID: AB_141607) for 1 h. DAPI (dihydrochloride of 4’, 6-

diamidino-2-phenylindole, Roche) was used to visualize the nuclei.

Mowiol reagent (Calbiochem, San Diego, CA, USA) was used to fix

preparations on slides. Cells were then analyzed by confocal

microscopy (63x) using a LEICA SP5 microscope DMI-6000V

model coupled to a LEICA LAS AF software computer.
Homologous recombination
functional assay

HCT116, HT29, HCC1937, A-172, LN-18, CAL-33 and 32816

cancer cell lines were transfected with 1 mg of pHR plasmid, kindly

provided by Dr Gorbunova (43) linearized by digestion with the

restriction enzyme NheI. G418 was added at 500 mg/mL 72 h post-

transfection and stable pools were obtained after 3 weeks of

selection. To measure HR efficiency in stable pools, cells were first

preincubated with LBH for 24 h. Then, 106 cells were cotransfected

with 5 mg of a plasmid that express the endonuclease I-SceI and 0.5

mg of pDsRed-N1 (Clontech, Palo Alto, CA, USA, Cat.632429) to

correct for differences in transfection efficiencies. Transfections

were performed using the Amaxa Cell Line Nucleofector Kit V

and Amaxa Nucleofector device (Lonza). Programs used were D-

032 for HCT116, W-017 for HT29, A-023 for HCC1937, T-016 for

A-172 and X-001 for LN-18. After transfection, cells were incubated

again with the same concentration of Panobinostat for 48 h. Live

cells were selected by FSC/SSC gating, and live GFP+ and DsRed+

cells were quantified by flow cytometry (BD Accuri C6 Plus Flow

Cytometer). HR efficiency was calculated as the ratio of GFP + to

DsRed + cells.
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Statistical analysis

Differences between the results obtained from treated and

nontreated cells were assessed for statistical significance using

Student’s unpaired 2 tailed t-test with IBM SPSS Statistics for

Windows version 25.0 (IBM Corporation, RRID: SCR_016479).

Data are presented as mean ± standard deviations. Statistical

significance was concluded for values of p ≤0.05.
Results

Chloroquine inhibits proliferation of colon,
breast, glioblastoma and head and neck
cancer cell lines

The effect of CQ on the tumor cell lines proliferation was

evaluated at different time points and concentrations by MTT

assays. We found that treatment with this drug inhibited cell

proliferation in a dose- and time-dependent manner in all the cell

lines analyzed (Figure 1). IC50 values, calculated at 72 hours post-

treatment, ranged from 2.27 mM in the colon cell line HCT116 to

25.05 in 32816, a head and neck cancer cell line established in

our laboratory.
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Chloroquine induces DSBs in cancer cell
lines that are avoided by the addition of
N-acetylcysteine

CQ has been demonstrated to exert pleiotropic cellular effects,

including the generation of reactive oxygen species (ROS) (44–47).

We have recently shown that CQ-induced ROS production in

ovarian cancer cell lines leads to the generation of DNA-DSBs (3).

To analyze whether CQ also induced these lethal lesions in other

cancer cell lines we treated colon, breast, glioblastoma and head and

neck cancer cell lines with this compound and then monitored the

phosphorylation of H2AX (gH2AX), a sensitive and well-recognized

marker of DSBs, by immunofluorescence. CQ was found to induce

DSBs in all the cell lines analyzed (Figure 2). Moreover, addition of

the antioxidant NAC decreased the number of cells with gH2AX foci,

which clearly indicate that CQ-induced DSBs are caused by ROS.
Panobinostat inhibits proliferation of colon,
breast, glioblastoma and head and neck
cancer cell lines

Next, we studied the effect of Panobinostat (LBH) on the

proliferation of the different cancer cell lines. A dose- and time-
FIGURE 1

Chloroquine inhibits cell proliferation in a variety of human solid tumor cell lines. Cell viability was calculated by MTT assays after treatment with the
indicated doses of CQ for 24, 48 and 72 h. The half maximal inhibitory concentration (IC50) was calculated at 72 h post-treatment.
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dependent effect was observed in all the cell lines analyzed

(Figure 3), with the lowest IC50s observed in the glioblastoma cell

lines (11.47 nM in A-172 and 15.6 nM in LN-18) and the highest in

the breast cancer cell line HCC1937 (231.6 nM).
Panobinostat inhibits homologous
recombination repair in cancer cell lines

It has been described that some HDACi decrease DNA DSB

repair by inhibiting homologous recombination (HR) (48, 49).

Moreover, we previously reported a significant reduction in HR

efficiency after treatment of ovarian cancer cell lines with

Panobinostat (3). To analyze the effect of this drug in the repair

ability of the tumor types under study, we first created stable cell

lines carrying a chromosomally integrated GFP-based reporter

cassette. In this system, correct repair by HR of DSBs induced by

an endonuclease restored a functional GFP that is detectable by flow

cytometry (green cells). Colon, breast, glioblastoma and head and

neck cells carrying the HR cassette were pretreated with LBH for

24 h and then transfected with an I-SceI endonuclease-expressing

plasmid together with the pDsRed-N1 plasmid (red), to normalize

for transfection efficiency, then incubated again for an additional

48 h. Mirin, an inhibitor of MRN complex (Mre11-Rad51-Nsb1)

required for HR, was used as a control (50). In all the cell lines
Frontiers in Oncology 05
analyzed, we found a significant reduction in the number of HR-

proficient cells that had been treated with LBH compared with

untreated cells (Figure 4). These results reveal a clear defect in the

HR mechanism in the presence of this HDACi.
Combination of chloroquine and LBH
synergistically induces cell death in colon,
breast, glioblastoma and head and neck
cancer cell lines

Once we established that CQ induced DNA damage and LBH

reduced DSB repair by HR in all the cell lines under study, we

analyzed the effect of combining both drugs on apoptosis induction.

As shown in Supplementary Figure S1 CQ and LBH induced

apoptosis when used individually, but the percentage of apoptotic

cells was much higher when these compounds were combined in all

the cell lines analyzed. To determine the type of interaction between

CQ and LBH, the combination indices (CIs) at three different drug

doses were calculated using CompuSyn software (Figure 5). In all

cases, CIs were below 1, indicating synergistic interactions. The cell

line A-172 was the one with the lowest CI (0.06), despite of using

lower CQ doses than in the rest of the cell lines assayed. CIs were

also very low in the breast cell line MDA-MB-231 and in both head

and neck cancer cell lines.
FIGURE 2

Chloroquine induces DNA double-strand-breaks (DSBs) in cancer cell lines that are prevented by the addition of N-Acetylcysteine (NAC). Cells were
treated with CQ for 48 h in the presence or absence of NAC, then fixed with paraformaldehyde, incubated with phospho-H2AX antibodies and
stained with DAPI. gH2AX foci were visualized by confocal microscopy.
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Reactive oxygen species generation plays
an important role in CQ/LBH-
induced lethality

We previously reported that CQ/LBH-induced lethality in

ovarian cancer cell lines largely depended on DSBs caused by ROS.

To analyze whether ROS generation was also crucial in triggering

apoptotic cell death in other tumor types, the different cell lines were

treated with CQ, LBH or their combination in the presence or

absence of N-acetylcysteine. Cell survival was analyzed after 72 h of

incubation by Annexin/PI staining. As shown in Figure 6, adding the

antioxidant significantly prevented cell death caused by the

combination of CQ and LBH in all the cancer cell lines analyzed,

being the glioblastoma cell line A-172 the one where the antioxidant

protected the most against CQ/LBH-induced cell death.
NHEJi decrease proliferation rates in
colon, breast, glioblastoma and head and
neck cancer cell lines

We have previously reported that treatment with NHEJi

decreased cell proliferation in ovarian cancer cell lines (4). To

determine whether NHEJi also affected the growth of other tumor

types, we performed MTT assays using different concentrations of
Frontiers in Oncology 06
the known NHEJi KU-57788 and NU-7026 (Supplementary Figures

S2, S3). We found that both compounds inhibited cell proliferation

in a dose-dependent manner in all cell lines analyzed. Inhibition of

cell proliferation was similar at the 3 times analyzed in most of the

cell lines, revealing a quick and sustained effect. The colon cancer

cell line HCT116 was the most affected by both NHEJi, with IC50s

of 4.52 µM for NU-7026 and 1.88 µM for KU-57788.
Combination of chloroquine and NHEJi
synergistically induces cell death in colon,
breast, glioblastoma and head and neck
cancer cell lines

Finally, we were interested in determining whether the

combination of CQ with NHEJi was also effective in the different

tumor cell lines under study. First, we monitored apoptosis

induction after treatment with CQ, NU-7026 or KU-57788 and

their combinations. As shown in Supplementary Figures S4 and S5,

Annexin+ cells were observed in all the cases, but the percentage of

apoptotic cells was much higher when CQ was combined with

either of the NHEJi. Then we assayed three different drug doses and

calculated the CIs using the CompuSyn software. In all the cases,

except in the glioblastoma cell line LN-18, CIs were below 1

indicating synergistic interactions (Figures 7, 8).
FIGURE 3

Panobinostat inhibits cell proliferation in a variety of human solid tumor cell lines. Cell viability was calculated by the MTT assay after treatment with
the indicated doses of LBH for 24, 48 and 72 h. The half maximal inhibitory concentration (IC50) was calculated at 72 h post-treatment.
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Discussion

The combination of two or more therapeutic agents is a

cornerstone in cancer treatment. This approach is particularly

interesting when synergistic interactions are achieved and

especially when it involves repurposing drugs, as it would reduce

timelines and cost compared with de novo drug development. In

this study, we report, for the first time, that the combination of the

antimalarial drug CQ with the HDACi LBH or with NHEJi

produces a robust synergistic effect in breast, colon, glioblastoma

and head and neck cancer cell lines. We demonstrate that CQ

induces DNADSBs dependent on ROS production and also that the
Frontiers in Oncology 07
repair of these lesions is inhibited by LBH, which avoids HR, or by

NU-7026 and KU-57788, that inhibit the NHEJ repair pathway,

which explains the observed synergies.

CQ has been widely used as an antimalarial and anti‐

inflammatory agent for decades without any major side effects.

This, and its promising preclinical results against several cancers,

make this compound an outstanding candidate for drug

repurposing in oncology (6, 16, 21). However, systematic studies

comparing the response to this drug in different cancer types had

not been conducted and are crucial to define its use in cancer

treatment. Here, we found that CQ inhibited cell proliferation in

colorectal, breast, glioblastoma and head and neck cancer cell lines,
FIGURE 4

Panobinostat inhibits DSB repair by homologous recombination. Tumor cell lines carrying the HR reporter cassette were pre-treated or not (C-) with
LBH for 24 h and then co-transfected with 5 mg of an I-SceI endonuclease-expressing plasmid and 0.5 mg of pDsRed2-N1. UT correspond to
untreated and non-transfected cells. Cells were then incubated in the presence or absence (C-) of LBH or Mirin for additional 48 h. Correct HR
repair restored GFP gene and was detected as green cells. HR efficiency was calculated as the ratio of GFP + to DsRed + cells. Histograms show the
mean of 3 independent experiments. Error bars represent the SD (**P < 0.01, *P < 0.05; ***P < 0.001).
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consistent with previous reports (51–53) although IC50s varied

among the different cell lines (ranging from 2 to 25 µM). The

underlying cause of this variability is challenging to identify, given

the compound’s pleiotropic effects, which may vary depending on

genetic backgrounds. One such effect is the production of ROS, that

we previously observed in ovarian cancer cell lines (3) and have also

been reported in other tumor types (44–47). CQ-induced ROS

production directly caused DSBs, as demonstrated by cotreatment

with the ROS scavenger NAC that prevented the appearance of

these DNA lesions in ovarian cancer cell lines (3) and also in all the

tumor cell lines used in this study. Some reports have described that

CQ-induced oxidative damage activated the p53 pathway and

induced apoptosis (E. L. 53, 54), so it is tempting to hypothesize
Frontiers in Oncology 08
that sensitivity to CQ might correlate with p53 status. However,

although this seem to be the case in the colorectal cancer cell lines

used in this study (p53 wild-type HCT116 was more sensitive than

p53 mutated HT29), it does not hold true in glioblastoma, where the

p53 wild-type A-172 cell line was more resistant than the p53

mutated LN-18.

Treatment with the HDACi LBH also produced an

antiproliferative effect in the various tumor types analyzed, in

agreement with previous reports (55). Similar to CQ, histone

deacetylases inhibitors (HDACi) exert pleiotropic effects; they

induce cell death, cell cycle arrest, angiogenesis reduction, and

modulation of the immune system in cancer cells (55). Here, we

demonstrate that LBH significantly reduces HR efficiency in all the
FIGURE 5

Synergistic effect of chloroquine and Panobinostat in the different cancer cell lines. Cells were treated for 72 h with the indicated concentrations of
LBH and CQ at a constant ratio and survival was assessed by flow cytometry after staining with Annexin-/PI-. CI values less than 1 indicated a
synergistic effect. These values were calculated using Compusyn Software.
FIGURE 6

Cell death caused by the combination of chloroquine and LBH depends on ROS production. Cells were exposed for 72 h to the indicated
concentrations of CQ (µM), LBH (nM) and the ROS scavenger NAC (mM) and the percentage of apoptotic cells were measured after cell staining
with annexin V and propidium iodide by flow cytometry. Data are the mean of at least 3 independent experiments. Error bars represent the SD
(***p < 0.001, **p < 0.01, and *p < 0.05).
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cell lines tested, supporting its combination not only with CQ, but

also with other therapies that produce DSBs directly or indirectly,

such as radiation, cisplatin, bleomycin, doxorubicin or etoposide. In

fact, previous studies have shown a synergistic effect with HDAC

inhibitors and many of these treatments (56–58) with several

combinations reaching clinical trials (30). We show a robust

synergistic effect with the combination of CQ and LBH in all

tested cell lines, particularly in glioblastoma, one of the most

aggressive human cancers, and head and neck cancer cell lines,

another cancer type with limited approved treatments and poor
Frontiers in Oncology 09
outcomes. The efficacy of this combination had previously been

reported only in a triple negative breast cancer cell line (12) and in

ovarian cancers (3). Interestingly, both CQ and also LBH have been

shown to cross the blood-brain barrier (BBB) (59, 60), increasing

the interest in glioma treatment. The synergistic effect of CQ in

combination with HDAC inhibitors has previously been attributed

to their opposite effects on autophagy, a potential mechanism of

resistance to chemotherapy (10–13, 18, 22). However, we

demonstrate that ROS generation plays a critical role in CQ/LBH-

induced lethality in the different tumor cell lines analyzed, especially
FIGURE 7

Synergistic effect of chloroquine and NU-7026 in various cancer cell lines. Cells were treated for 72 h with the indicated concentrations of CQ and
NU-7026 at a constant ratio and survival was assessed by flow cytometry after staining with Annexin-/PI-. CI values less than 1 indicated a
synergistic effect. These values were calculated using Compusyn Software.
FIGURE 8

Synergistic effect of chloroquine and KU-57788 in in various cancer cell lines. Cells were treated for 72 h with the indicated concentrations of CQ
and KU-57788 at a constant ratio and survival was assessed by flow cytometry after staining with Annexin-/PI-. CI values less than 1 indicated a
synergistic effect. These values were calculated using Compusyn Software.
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in the breast cancer MDA-MB-231 and in the glioblastoma A-172

cell line. It is possible that both mechanisms, autophagy modulation

and DNA damage/inhibition of DNA repair, contribute variably to

the cytotoxicity of the combination in the different tumor cell lines.

It has been described that the DNA-PK inhibitors NU-7026 and

KU-57788 sensitize cancer cells to ionizing radiation and other

DNA-damaging agents due to their known inhibition of NHEJ (36,

38, 40, 61), the other main mechanism involved in DSB repair

together with HR. We found that both inhibitors exert and

antiproliferative effect in all the cell lines analyzed, and when

combined with CQ a potent synergistic effect was observed,

except in LN-18, one of the two glioblastoma cell lines studied.

This cell line exhibited high levels of endogenous DNA damage,

suggesting an intrinsic alteration in the NHEJ repair pathway that

might not be further affected by NU-7026 or KU-57788.

CQ is efficient in preclinical trials, although it has been noted to

encounter challenges traversing the cell membrane due to the acidic

extracellular microenvironments prevalent in the tumors (16).

Recent advances in nanomedicine offer an opportunity to

overcome this limitation. In fact, CQ encapsulation within

nanoparticles has been shown to enhance its antitumor efficacy,

prolonging drug circulation and reducing systemic toxicity in

vivo (19).

In conclusion, our in vitro results suggest that the combination

of CQ with DNA repair inhibitors could represent new therapeutic

strategies against different cancer types beyond ovarian cancer (3

and 4), encompassing triple negative breast cancer, glioblastoma

and head and neck cancers, all characterized by dismal prognoses

and limited chemotherapy alternatives. The potential therapeutic

value of CQ (either free or encapsulated) in combination with

different DNA repair inhibitors requires further investigation.

Future research will be directed to test the toxicity and

effectiveness of the combinations in in vivo studies using

xenograft mouse models.
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