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Objectives: To explore the utility of gray-scale ultrasound (GSUS) and

mammography (MG) for radiomic analysis in distinguishing between breast

adenosis and invasive ductal carcinoma (IDC).

Methods: Data from 147 female patients with pathologically confirmed breast

lesions (breast adenosis: 61 patients; IDC: 86 patients) between January 2018 and

December 2022 were retrospectively collected. A training cohort of 113 patients

(breast adenosis: 50 patients; IDC: 63 patients) diagnosed from January 2018 to

December 2021 and a time-independent test cohort of 34 patients (breast

adenosis: 11 patients; IDC: 23 patients) diagnosed from January 2022 to

December 2022 were included. Radiomic features of lesions were extracted

from MG and GSUS images. The least absolute shrinkage and selection operator

(LASSO) regression was applied to select themost discriminant features, followed

by logistic regression (LR) to construct clinical and radiomic models, as well as a

combined model merging radiomic and clinical features. Model performance

was assessed using receiver operating characteristic (ROC) analysis.

Results: In the training cohort, the area under the curve (AUC) for radiomic

models based on MG features, GSUS features, and their combination were 0.974,

0.936, and 0.991, respectively. In the test cohort, the AUCs were 0.885, 0.876,

and 0.949, respectively. The combined model, incorporating clinical and all

radiomic features, and the MG plus GSUS radiomics model were found to

exhibit significantly higher AUCs than the clinical model in both the training

cohort and test cohort (p<0.05). No significant differences were observed

between the combined model and the MG plus GSUS radiomics model in the

training cohort and test cohort (p>0.05).
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Conclusion: The effectiveness of radiomic features derived fromGSUS andMG in

distinguishing between breast adenosis and IDC is demonstrated. Superior

discriminatory efficacy is shown by the combined model, integrating

both modalities.
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Introduction

Breast adenosis, a prevalent proliferative breast condition

lacking atypia (1), has an uncertain etiology. However, Endocrine

alterations and disorders, such as increased levels of estrogen, a

shortage in progesterone, hyperprolactinemia, imbalances in

thyroid hormones, stress, and deficiencies in unsaturated fatty

acids, may contribute to its development (2). Pathologically,

breast adenosis manifests as an enlargement of the lobule and

terminal ductal lobular unit, characterized by an increased number

of ductules and acini within the lobule (3). Radiologically, some

instances of breast adenosis may be erroneously interpreted

as invasive ductal carcinoma (IDC). While breast adenosis

typically only requires observation and monitoring, IDC

necessitates a comprehensive treatment plan involving surgery,

radiation, and chemotherapy (4, 5). Therefore, accurate

preoperative differentiation between breast adenosis and IDC is

imperative for precise diagnosis and optimal patient management.

Gray-scale ultrasound (GSUS) and mammography (MG) are

widespread screening tools for breast cancer globally, providing

crucial diagnostic guidance (6, 7). However, Ozturk et al. (8).

demonstrated the inherent difficulty in distinguishing breast adenosis

from IDC using MG and ultrasound (US) due to the absence of

characteristic features. Additionally, MRI is expensive and time-

consuming for routine examination in breast adenosis diagnosis,

while CT carries a higher radiation dose risk and offers lower

resolution in differentiating the fine structures of breast tissue (9–11).

Radiomics is a data mining approach aimed at extracting high-

dimensional data from clinical images to build diagnostic and

predictive models for addressing relevant clinical questions (12,

13). Radiomics has long been widely employed in MG and US

images to enhance the efficiency and accuracy of breast cancer

screening (14, 15). Nevertheless, the effectiveness of radiomics

based on single-modality medical images is limited, as these

images capture only a fraction of tumor information due to their

imaging principles (16). There is growing interest in using

multimodal radiomics to acquire a more complete and nuanced

understanding of tumor properties, such as shape, size, and texture

(16, 17). However, limited studies have investigated the use of

radiomics to differentiate between breast adenosis and IDC,

particularly using the combination of GSUS and MG. Therefore,
02
this study aims to develop models using radiomic features extracted

from GSUS and MG images, along with clinical data, to differentiate

between breast adenosis and IDC.
Materials and methods

Subjects

This retrospective study received approval from our

institution’s independent ethics committee, and the need for

informed consent was waived. Patients with histologically

confirmed breast adenosis or invasive ductal carcinoma (IDC)

enrolled between January 2018 and December 2022. Inclusion

criteria were: (i) patients with pathologically confirmed breast

adenosis or IDC post-surgical operation or core needle biopsy;

(ii) patients who had undergone both mammography (MG) and

ultrasound (US) within a month prior to any surgical operation.

Exclusion criteria were: (i) patients with a history of undergoing

therapies such as breast surgery, radiotherapy, or chemotherapy; (ii)

poor image quality, including significant motion artifact. A total of

147 patients, 61 with breast adenosis (mean age, 45 ± 12 years;

range, 26-69 years) and 86 with IDC (mean age, 52 ± 12 years;

range, 31-74 years), were included. All patients had a single and

unilateral lesion. Based on the time sequence of patients receiving

treatment, they were divided into training and test cohorts. The

training cohort comprised 113 patients treated between January

2018 and December 2021, while the test cohort comprised 34

patients treated between January 2022 and December 2022.

Clinical data, including age, family history of breast cancer, and

menopausal status, were collected from medical records. Figure 1

illustrates the patient selection process.
Imaging acquisition and interpretation

All patients underwent a pre-surgical US examination,

positioned supine with hands raised above their heads for full

breast exposure. Color Doppler ultrasound instruments used

included GE LOGIQ E9 (General Electric Company, Boston,

USA), MyLab™ ClassC (Esaote, Genoa, Italy), TOSHIBA APLIO
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500 (Toshiba, Tokyo, Japan), or HITACHI ARIEETTA 70

(HITACHI Ltd, Tokyo, Japan) with a linear array probe and a

frequency of 9-12 MHz. The examinations were conducted by

ultrasound practitioners with 10 years of experience in breast

ultrasonography, trained in standardized chart storage. The field

of view was adjusted to encompass the pectoralis muscle at its most

profound point within the photograph. The focus was situated

slightly beneath the lesion. The standard stored image of a breast

lesion comprised of a minimum of two vertical slices, with one of

them displaying the lesion’s maximum diameter. The image

exhibiting the clearest and most comprehensive presentation of

the lesion was chosen. A digital mammography machine (Hologic

Selenia, Hologic Medical Systems, Boston, USA) was employed to

capture images in mediolateral oblique (MLO) and cranial-caudal

(CC) positions.
Image analysis

Two radiologists with 10 and 15 years of MG diagnostic

experience, respectively, and another two radiologists with 9 and

12 years of breast US diagnostic experience, respectively,

independently assessed the images without access to clinical and

pathological information. They recorded imaging features of lesions

on MG and US, including glandular type, architectural distortion,

microcalcification morphology, mass, asymmetric focal density,

shape, orientation, posterior feature, margin, calcification,

vascularity grade, and echo pattern. In case of disagreement, a

final consensus was achieved through discussion. Lesions were

categorized based on the 5th edition of the Breast Imaging

Reporting and Data System (BI-RADS) (18).
Frontiers in Oncology 03
Tumor segmentation and radiomics
feature extraction

Breast lesions in the MLO and CC positions of MG images were

manually segmented by radiologist 1 (with 5 years of MG diagnostic

experience), confirmed by radiologist 2 (with 10 years of

experience), and adjusted if necessary. For GSUS images, breast

lesions were manually segmented by radiologist 3 (with 7 years of

experience in breast GSUS diagnosis), confirmed by radiologist 4

(with 15 years of experience), and adjusted if necessary. Radiologists

were aware of the lesion locations but remained blinded to the

clinical and pathological information of the patients.

Manual segmentation utilized the open-source ITK-SNAP

software (version 3.8.0, http://www.itksnap.org). In cases of

uncertain lesion boundaries, a final consensus was achieved

through discussion, as illustrated in Figure 2.

The radiomics features of the GSUS and MG images were

extracted using an artificial intelligence-assisted diagnosis modeling

software based on Pyradiomics (version 2.2.0) (19). The extracted

features were categorized into seven groups: shape features, first-

order statistical features, gray-level co-occurrence matrix (GLCM)

features, gray-level run length matrix (GLRLM) features, gray-level

size zone matrix (GLSZM) features, neighboring gray-tone

difference matrix (NGTDM), and gray-level dependence matrix

(GLDM) features. Radiomic features were generated on both the

original and pre-processed images using seven filters, including

Laplacian of Gaussian (LoG) (s= 0.5, 1.0, 1.5), Logarithm, Square,

Square root, Exponential, Wavelet, and Gradient.

The segmentation process was repeated in 30 randomly selected

patients by radiologist 1 and radiologist 3 after 2 months. Intraclass

correlation coefficients (ICCs) were calculated to assess the intra-
FIGURE 1

The flowchart illustrates the inclusion and exclusion criteria for study subjects. MG, mammography; US, ultrasound; IDC, invasive ductal carcinoma.
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observer reproducibility of radiomic features. An ICC ≥ 0.8

indicates high agreement, 0.5 to 0.79 indicates moderate

agreement, and < 0.5 indicates low agreement (20, 21).
Feature selection, model construction
and validation

All radiomic features were normalized to a zero mean and unit

variance using Z-score. A comprehensive feature selection process

was conducted as follows. Firstly, features with low variance

(<0.1) were eliminated. Secondly, Welch’s t-test compared the

remaining features between breast adenosis and IDC groups, with
Frontiers in Oncology 04
a p-value < 0.05 considered statistically significant, and

insignificant features were removed. Thirdly, We retained a

relatively large number of the top 50 features in the minimum

redundancy maximum relevance (mRMR) method, in order to

reduce the redundancy between features and retain relevant

features, while reducing the possibility of mRMR method

deleting features helpful for the identification of breast adenosis

and IDC. Finally, the least absolute shrinkage and selection

operator (LASSO) regression determined the most discriminant

feature subset (Figures 3A, C, E, G). The optimal penalization

parameter l value, minimizing the mean square error (MSE), was

automatically chosen for LASSO using an estimator with built-in

cross-validation capability. Subsequently, the L2-regularized
A
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FIGURE 2

Lesion segmentation in MG and GSUS images. (A-F) Displaying the original MG, GSUS images, and segmentation of a 32-year-old female patient
with confirmed breast adenosis. (G-L) Presenting the original MG, GSUS images, and segmentation of a 57-year-old female patient with confirmed
IDC. MG, mammography; GSUS, gray-scale ultrasound; IDC, invasive ductal carcinoma.
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logistic regression (LR) model (22, 23) was trained based on the

selected clinical, GSUS, and MG image features, along with

radiomic features. The GridSearchCV was employed from

sklearn package to carry out a grid search to find the optimal

value of the L2 regularization parameter by using fivefold cross-

validation, repeated five times on the training cohort (24).

Separate models were established for the clinical model, MG-

based radiomics model (Rad-MG model), GSUS-based radiomics

model (Rad-GSUS model), MG plus GSUS radiomics model (Rad-

MG-GSUS model), and combined model integrating clinical

features, MG, and GSUS radiomics features. The discriminatory

ability of each model was assessed using the receiver operating

characteristic (ROC) curve and decision curve analysis (DCA).

The area under the ROC curve (AUC), sensitivity, specificity,

and accuracy were calculated. Model comparisons within the

training and test cohorts were based on Delong test results.
Frontiers in Oncology 05
Statistical analysis

Statistical analyses were conducted using SPSS 25.0 (IBM Corp.,

Armonk, NY, USA) and Python 3.6 (Python Software Foundation,

Beaverton, OR, USA) software. The Kolmogorov-Smirnov test

assessed the normality of quantitative data. Quantitative data

conforming to a normal distribution were presented as mean ±

standard deviation; otherwise, data were expressed as the median

(interquartile range). Qualitative data were reported as numbers.

The comparison of quantitative data utilized the independent

sample t-test or Mann-Whitney U-test, while the x2 test was

employed for qualitative data comparison. LASSO logistic

regression, ROC curves, and LR were implemented using the

sklearn package. Model performance was evaluated through the

Delong test and decision curve analysis (DCA). A two-tailed p-value

< 0.05 was considered indicative of statistical significance.
A B
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FIGURE 3

Feature extraction and filtering. (A, C, E, G) Depicting LASSO coefficient profiles (y-axis) for radiomics features from MG images, GSUS images,
combined radiomics features of MG and GSUS images, and clinical features combined with MG and GSUS radiomics features. (B, D, F, H) Illustrating
selected features and coefficients in the models. MG, mammography; GSUS, gray-scale ultrasound; IDC, invasive ductal carcinoma.
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Results

Patient profiles

A total of 147 patients were included in the study, comprising 61

with breast adenosis and 86 with IDC. The training cohort comprised

113 patients (breast adenosis: 50; IDC: 63), while the test cohort

included 34 patients (breast adenosis: 11; IDC: 23). Histopathological

examination results showed 8 cases of pure adenosis and 53 cases of

adenosis mixed with fibrocystic changes among the adenosis lesions.

Table 1 presents the clinical, US, and MG imaging features.

Significant differences in age, menopausal status, family history,

microcalcification morphology, and vascularity grade were observed

between the breast adenosis and IDC groups in the training cohort

(p<0.05). No significant difference was found between the two groups

in glandular type, architectural distortion, mass, asymmetric focal

density, shape, orientation, posterior feature, margin, calcification,

and echo pattern (p>0.05). The GSUS features, MG features and

histopathological characteristics of breast lesions or IDC are

summarized in Figures 4 and 5.
Frontiers in Oncology 06
Feature extraction and selection

A total of 4491 radiomics features were extracted fromGSUS (1497

features) and MG (2994 features) images for each patient. The

intraobserver ICC ranged from 0.76 to 0.97, indicating a good

reproducibility of radiomics feature extraction. 109 features with an

ICCs value less than 0.80 were excluded. Univariate analysis of five

features (age, family history of breast cancer, and menopausal status,

microcalcification morphology, vascularity grade) with statistical

differences in the training cohort was used to construct the clinical

model. Radiomics features of four radiomics signatures were shown in

Table 2, Figures 3B, D, F, H.
Comparison of performance
between models

No significant differences were noted between the Rad-GSUS

model and the Rad-MG model in the training cohort (AUCs 0.936

vs. 0.974; p=0.166) and the test cohort (AUCs 0.876 vs. 0.885;
TABLE 1 Demographic characteristics and imaging features of GSUS and MG.

Training cohort (n=113) Validation cohort (n=34)

breast
adenosis (n=50)

IDC
(n=63)

P
breast
adenosis (n=11)

IDC
(n=23)

P

Age 45 + 12 52 ± 12 0.002* 48 ± 12 55 ± 11 0.138

Menopausal status 0.021* 0.434

postmenopausal 20 39 6 17

premenopausal 30 24 5 6

Family history 0.042* 0.324

no 49 55 10 23

yes 1 8 1 0

Mammography features

Glandular type 0.155 1.000

entirely fatty 1 1 0 0

scattered fibroglandular 1 8 2 4

heterogeneously dense 42 49 9 19

extremely dense 6 5 0 0

Architectural distortion 0.066 1.000

no 47 52 11 22

yes 3 11 0 1

Microcalcification morphology 0.013* 0.615

no 30 23 5 10

punctate 12 24 <0.001* 4 10 0.442

amorphous 1 3 0 0

(Continued)
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p=0.926). The Rad-MG-GSUS model performed better than the

Rad-GSUS model in the training cohort (AUCs 0.991 vs. 0.936;

p=0.021). Although the Rad-MG-GSUS model showed improved

efficacy over the Rad-MG model in both the training cohort (AUCs

0.991 vs. 0.974; p=0.174) and the test cohort (AUCs 0.949 vs. 0.885;
Frontiers in Oncology 07
p=0.322), as well as over the Rad-GSUS model in the test cohort

(AUCs 0.949 vs. 0.876; p=0.093), the differences were not

statistically significant.

The combined model and the Rad-MG-GSUS model showed

significantly higher AUCs than the clinical model in both the
TABLE 1 Continued

Training cohort (n=113) Validation cohort (n=34)

breast
adenosis (n=50)

IDC
(n=63)

P
breast
adenosis (n=11)

IDC
(n=23)

P

coarse heterogeneous 4 1 1 0

fine pleomorphic 1 1 0 1

fine linear/fine-
linear branching

2 11 1 2

Mass 0.574 0.064

no 16 21 6 6

circumscribed 6 4 0.328 1 0 0.227

ill-circumscribed 28 38 4 17

Asymmetric focal density 0.292 1.000

no 40 55 9 20

yes 10 8 2 3

Ultrasound features

Shape 0.699 0.300

regular 11 12 3 2

irregular 39 51 8 21

Orientation 0.181 0.535

orientation 45 51 11 20

not parallel 5 12 0 3

Posterior feature 0.469 1.000

no posterior feature 44 58 11 22

shadowing 6 5 0 1

Margin 0.279 0.070

circumscribed 12 10 4 2

not circumscribed 38 53 7 21

Calcification 0.653 0.053

no 33 39 10 12

In a mass 17 24 1 11

Vascularity grade <0.001* 0.152

grade 0~I 38 26 8 10

grade II~III 12 37 3 13

Echo pattern 0.568 1.000

homogeneity 10 10 1 1

heterogeneity 40 53 10 22
Data are shown as mean ± standard deviation, or n. *P value < 0.05, with statistical difference.
IDC, invasive ductal carcinoma; MG, mammography; GSUS, gray-scale ultrasound.
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training cohort (AUCs 0.993 vs. 0.826, p<0.001; AUCs 0.991 vs.

0.826, p<0.001, respectively) and the test cohort (AUCs 0.941 vs.

0.664, p=0.014; AUCs 0.949 vs. 0.664, p=0.011, respectively). No

significant differences were noted between the combined model and

the Rad-MG-GSUS model in the training cohort (AUCs 0.993 vs.

0.991; p=0.212) and the test cohort (AUCs 0.941 vs. 0.949; p=0.299).

The performance of the five models is summarized in Table 3. The

comparison of predictive models is summarized in Table 4, and the

ROC curves of the models are depicted in Figure 6A-D. DCA shows

comparable clinical benefits for the Rad-MG-GSUS model and the

combined models over a large range of threshold probabilities

in Figure 7.
Discussion

Accurate qualitative diagnosis of breast adenosis using GSUS or

MG remains challenging for radiologists (25). This study utilized

GSUS-based and MG-based radiomics features to differentiate

breast adenosis from IDC. The interpretability of the model was

an important factor in our consideration. LR model provides easy-

to-interpret coefficients that can reflect the importance of each
Frontiers in Oncology 08
feature to decision making, and LR is the most commonly used

classification algorithm in clinical research. The results

demonstrated that LR models incorporating GSUS-based and

MG-based radiomics features could effectively distinguish breast

adenosis from IDC. Notably, the Rad-MG-GSUS model

outperformed the Rad-GSUS and Rad-MG models. Additionally,

a combined model integrating clinical parameters and radiomics

features from MG and GSUS images was developed and validated.

Compared to the clinical model, both the combined model and the

Rad-MG-GSUS model exhibited superior performance. The

predictive performance differences between the Rad-MG-GSUS

model and the combined model in both the training and test

cohorts were not significant. DCA further indicated increased net

clinical benefits for these models compared to no prediction models,

offering potential assistance in devising improved treatment plans

for patients.

Univariate analysis revealed that breast adenosis was more

prevalent in younger women without menopausal symptoms, less

common with II~III vascularity grade on ultrasound, and associated

with the absence of a family history and fine linear/fine-linear

branching on mammography. These findings align with previous

studies (8, 9, 26–28). Notably, family history and vascularity grade
A

B D

C

FIGURE 4

GSUS, MG and histopathologic findings of a 37-year-old woman with breast adenosis. (A, B) The MG presents an oval shape, ill-circumscribed
isodense mass (white arrow); (C) The GSUS presents a irregular shape, ill-circumscribed homogeneity mass (white arrow); (D) The sample
(hematoxylin and eosin) with breast adenosis (100x). MG, mammography; GSUS, gray-scale ultrasound.
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features were retained during feature selection in the combined

model, suggesting a significant correlation with breast adenosis. A

family history of breast cancer is a significant risk factor, accounting

for approximately 5-10% of breast cancer cases (26). Tumor

angiogenesis, an increase in blood flow and the presence of

irregular or penetrating blood vessels are responsible for the

development and progression of cancer (29). However, in the test

cohort, the clinical model demonstrated an AUC of only 0.664,

potentially influenced by the small number of included patients.

Further investigation with larger and more relevant studies may be

necessary to validate these findings.

Recently, due to the standardization of radiomics methodologies

and the development of tools, as well as the widespread acceptance

of the idea, radiomics has become extensively utilized in all parts of

tumor diagnostics (30, 31). Previously, radiomics research often

utilized single-modality or single-sequence images. However, the

effectiveness of radiomics that based on single-modality medical

images, which only captures a portion of tumor information due to

its imaging principles, has been unavoidably degraded (14–16).

Radiomics based on multimodal images extracts various aspects of

information from each modal image and then combine them for
Frontiers in Oncology 09
model development, gaining increasing interest (16, 17). Tan et al.

(32) evaluated the individual and combined efficacy of artificial

intelligence (AI) detection systems for digital mammography and

automated 3D breast ultrasound in the identification of breast

cancer in women with dense breasts. The study revealed that the

AI systems performed significantly better when operating in a multi-

modal setting compared to when each system operated individually

in a single-modal setting (AUC-AI -Multimodal =0.865; AUC-AI-

DM=0.832, p=0.026; AUC -AI- ABUS=0.841, p=0.041). Zheng et al.

(7) conducted a study to assess the clinical usefulness of a radiomics

model that utilizes GSUS and contrast-enhanced ultrasound (CEUS)

images for distinguishing between inflammatory mass stage

periductal mastitis/duct ectasia (IMSPDM/DE) and IDC. The

study discovered that the GSUS combined with CEUS radiomics

signature outperformed the other two radiomics signatures. Similar

to our findings, the combination of the two modalities demonstrates

exceptional discriminatory ability (AUC of 0.941 in the test cohort).

Our finding suggest that both MG-based and GSUS-based

radiomics features effectively distinguish breast diseases and IDC,

yielding AUCs of 0.885 and 0.876 in the respective test cohorts.

Additionally, a radiomics model utilizing ultrasound, as devised
A

B D

C

FIGURE 5

GSUS, MG and histopathologic findings of a 48-year-old woman with IDC. (A, B) The MG presents an irregular shape, ill-circumscribed isodense
mass (white arrow) with a microlobulated margin; (C) The GSUS presents an irregular shape, ill-circumscribed heterogeneity mass (white arrow);
(D) The sample (hematoxylin and eosin) with IDC (100x). MG, mammography; GSUS, gray-scale ultrasound; IDC, invasive ductal carcinoma.
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by Huang et al. (33), exhibits robust diagnostic performance for

sclerosing adenosis and invasive ductal carcinoma, with AUCs of

0.886 and 0.779 in the validation and independent validation

cohorts. A prior investigation demonstrates that employing

radiomics data from both CC and MLO positions outperforms
Frontiers in Oncology 12
using CC or MLO positions alone in classification (34).

Consequently, we utilized radiomics data from both CC and

MLO positions to differentiate breast adenosis and IDC. The

results indicate that the Rad-MG model achieves commendable

classification performance. The radiomics models included shape
A B

DC

FIGURE 6

Receiver Operating Characteristic (ROC) Curves. (A) ROC curves for three radiomics models in the training cohort; (B) ROC curves for three radiomics
models in the test cohort; (C) ROC curves for the clinical model, Rad-MG-GSUS model, and combined model in the training cohort; (D) ROC curves for
the clinical model, Rad-MG-GSUS model, and combined model in the test cohort. MG, mammography; GSUS, gray-scale ultrasound. Rad-MG-GSUS
model: the model based on radiomics features from MG and GSUS images; Rad-MG model: the model based on radiomics features from MG images;
Rad-GSUS model: the model based on radiomics features from GSUS images; combined model: the model based on clinical features, MG and GSUS
radiomics features.
TABLE 4 Performance comparison of predictive models in the training cohort and the test cohort.

Models
training cohort

Models
test cohort

AUC Z statistic p-value AUC Z statistic p-value

Rad-MG vs Rad-GSUS 0.974 vs 0.936 1.386 0.166 Rad-MG vs Rad-GSUS 0.885 vs 0.876 0.093 0.926

Rad-MG vs Rad-MG-GSUS 0.974 vs 0.991 1.36 0.174 Rad-MG vs Rad-MG-GSUS 0.885 vs 0.949 0.99 0.322

Rad-GSUS vs Rad-MG-GSUS 0.936 vs 0.991 2.317 0.021* Rad-GSUS vs Rad-MG-GSUS 0.876 vs 0.949 1.68 0.093

Clinical vs Combined 0.826 vs 0.993 4.138 <0.001* Clinical vs Combined 0.664 vs 0.941 2.461 0.014*

Rad-MG-GSUS vs Combined 0.991 vs 0.993 1.248 0.212 Rad-MG-GSUS vs Combined 0.949 vs 0.941 1.038 0.299

Rad-MG-GSUS vs Clinical 0.991 vs 0.826 4.057 <0.001* Rad-MG-GSUS vs Clinical 0.949 vs 0.664 2.551 0.011*
*P value < 0.05, with statistical difference.
MG, mammography; GSUS, gray-scale ultrasound; Rad-MG-GSUS model, the model based on radiomics features from MG and GSUS images; Rad-MG model, the model based on radiomics
features fromMG images; Rad-GSUS model, the model based on radiomics features from GSUS images; combined model, the model based on clinical features, MG and GSUS radiomics features;
AUC, areas under the receiver operator characteristics curve.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1390342
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1390342
radiomics features from both MG and GSUS, as two-dimensional

images from these modali t ies provide l imited tumor

morphological information. By including shape radiomics

features from MG and GSUS with statistically significant

differences, we aim to offer a more comprehensive view of

tumor morphology from different angles. To reduce feature

redundancy, we applied the mRMR method, ensuring a more

effective feature selection process.

Our research shows that the clinical model exhibited

moderate efficacy in distinguishing between breast adenosis and

IDC. A significant enhancement in efficacy was observed when

combining clinical data with radiomics features to form a

composite model. This suggests that radiomics have the

capacity to enhance the objectivity of image representation by

emphasizing graphical features that are not visible to the human

eye. In the test cohort, the AUC value of the combined model was

estimated to be 0.941, somewhat lower than that of the Rad-MG-

GSUS model (AUC value: 0.949), however, the difference between

the two values was not statistically significant. We believe this

might be due to the excellent diagnostic efficiency of the Rad-

MG-GSUS model, resulting in the addition of clinical

information not enhancing the diagnostic efficiency of the

combined model , or due to the sample s ize or the

characteristics of patients within the cohort.

Our study has several limitations. Firstly, being a retrospective

single-center study introduces the possibility of selection bias.

Future validation with larger sample sizes and external test

cohorts is essential. Secondly, the study exclusively considered

GSUS and MG features, while MRI is another crucial method for

detecting breast disease. Exploring the potential comprehensive

information offered by the combination of all three modalities

warrants investigation in subsequent studies. Thirdly, different

ultrasound equipment and scanning parameters may impact the

generality of the results. Finally, to ensure precise correspondence

between the lesions analyzed in the images and those obtained from

surgical or biopsy specimens, we did not include cases with

multifocal lesions in our study. Therefore, if multifocal lesions are

of the same pathological type, would there be significant differences

in the radiomic features between the lesions? A dedicated study is

required to verify this.
Frontiers in Oncology 13
Conclusions

In conclusion, GSUS and MG radiomic features demonstrate

outstanding performance in distinguishing between breast adenosis

and IDC. The amalgamation of radiomic features from both

modalities, along with clinical features, enhances identification

efficacy. This could serve as a valuable reference in the clinical

decision-making process.
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