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Lung cancer remains one of the leading causes of cancer-related mortality

worldwide necessitating the development of innovative therapeutic strategies.

Chimeric antigen receptor (CAR) natural killer (NK) cell therapy represents a

promising advancement in the field of oncology offering a novel approach to

target and eliminate tumor cells with high specificity and reduced risk of immune-

related adverse effects. This paper reviews the mechanism, potential targets, and

recent advances in CAR-NK cell therapy for lung cancer, including the design and

engineering of CAR-NK cells, preclinical studies, and the outcomes of early-phase

clinical trials. We highlight the unique advantages of using NK cells, such as their

innate ability to recognize and kill cancer cells and their reduced potential for

inducing graft-versus-host disease (GvHD) and cytokine release syndrome (CRS)

compared to CAR T-cell therapies. Results from recent studies demonstrate

significant antitumor activity in lung cancer models with improved targeting and

persistence of CAR-NK cells observed in vitro and in vivo. Finally, we discuss the

challenges in optimizing CAR-NK cell therapies, including the potential resistance

mechanisms. The paper concludes with an outlook on the future directions of CAR-

NK cell research and its implications for lung cancer treatment emphasizing the

importance of continued innovation and collaboration in the field.
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Introduction

Lung cancer remains a major global health challenge accounting for a significant portion

of cancer deaths worldwide. As of 2023, there occurred approximately 238,340 new cases of

lung cancer (117,550 in men and 120,790 in women), and it was estimated to cause 127,070

deaths from lung cancer (67,160 in men and 59,910 in women) (1). From a global perspective,

as of 2020, it was estimated to cause about 1.8 million deaths representing 18% of all cancer

deaths (2). Lung cancer is the second most common cancer in both men and women in the

U.S. after prostate and breast cancer, respectively (1). At diagnosis, lung cancer is classified

based on the type of cells the tumor is derived from. There are two major types of lung cancer

categorized by the pathological description of the malignant cells as follows: small-cell lung
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cancer (SCLC; 15% of cases) and non-small-cell lung cancer (NSCLC;

85% of cases) (3). The primary risk factor for lung cancer is smoking

tobacco, which is responsible for approximately 85% of all cases. This

includes cigarettes, cigars, and pipes. Other risk factors include

exposure to secondhand smoke, occupational hazards (such as

asbestos, radon, and certain chemicals), air pollution, hereditary

cancer syndromes, and previous chronic lung diseases (3).

Physical examinations, imaging (chest X-rays, CT scans, MRI),

bronchoscopy, biopsies, and molecular testing are often used to

diagnose lung cancer and determine the specific subtype (NSCLC vs.

SCLC). In addition to the classification of lung cancer, the staging of

lung cancer is also particularly important for the selection of treatment

options. Common treatments include surgery, radiation therapy,

chemotherapy, targeted drug therapy, and immunotherapy (3).

Common immunotherapies include adoptive cell therapy, checkpoint

blockade immunotherapies (like drugs targeting the PD-1/PD-L1

pathway), and cancer vaccines (4). Adoptive cell therapies are quite

popular in the field of lung cancer treatment, including chimeric

antigen receptor T-cell (CAR T) therapy, T-cell receptor (TCR)

therapy, and tumor-infiltrating lymphocyte (TIL) therapy (5). These

approaches involve using a patient’s own immune cells, modified and

expanded in the laboratory, to target and destroy cancer cells. However,

due to the limitations of T cells themselves, such as limited sources and

easy triggering of inflammatory factor storms, researchers have turned

their attention to other immune cells that can be modified, such as NK

(natural killer) cells (6). As a new star in cell therapy, CAR-NK therapy

has attracted much attention in recent years. This study intends to

discuss the possibility, advantages, and challenges of using CAR-NK in

the treatment of lung cancer from multiple dimensions.
Mechanism of CAR-NK cell therapy

NK cells are a type of lymphocyte in the immune system that

play a crucial role in the body’s defense against tumors and viral

infections. NK cells are functionally similar to CD8+ cytotoxic T
Frontiers in Oncology 02
cells and kill target cells through similar cytotoxic mechanisms, but

lack a somatically rearranged and antigen-specific TCR. Tumor

cells with lower expression of human leukocyte antigen (HLA) may

be more susceptible to NK cell killing due to a reduced KIR-

mediated inhibition (7). NK cells used in therapy can be derived

from various sources like peripheral blood mononuclear cells, cord

blood, immortalized cell lines, hematopoietic stem and progenitor

cells (HSPCs), and induced pluripotent stem cells (iPSCs) (6, 7).

Allogeneic NK cells are often preferred over autologous cells due to

the dysfunctional phenotype of autologous NK cells in cancer

patients. NK cell lines like NK-92MI have also been approved to

load the CAR structure to create a CAR-NK therapeutic system and

apply it clinically. This further increases the source and availability

of NK cells (8). NK-92 cells, in contrast to NK cells from other

sources, have predictable expansion kinetics and can be grown in

bioreactors that produce billions of cells within a couple of weeks. In

addition, NK cell lines can easily be transduced by physical methods

with high efficiency. CAR-expressing NK-92 has been generated to

target several cancer surface receptors, such as CD19 (a type of B-

cell receptor) (9), human epidermal growth factor receptor 2

(HER2/ErbB2) (10), and epidermal growth factor receptor

(EGFR, aka HER1) (11), and many of these engineered NK-92

cells are currently in clinical trials for the treatment of cancer. CAR-

NK cells are engineered to recognize and attack specific antigens

present in cancer cells. Figure 1 shows the CAR-NK cell therapy

process using PBMC as an example.
Potential CAR NK lung cancer targets
and preclinical experimental results

Immunotherapy for lung cancer is very popular and has

achieved great success. Population-level mortality from NSCLC in

the United States fell sharply from 2013 to 2016, and survival after

diagnosis improved substantially (12). Several different genetic

mutations may arise in lung tumors, and some may be more
FIGURE 1

The CAR NK cell therapy process.
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likely to cause the cancer cells to spread to other parts of the body.

As an example, mutations of epidermal growth factor receptor

(EGFR) have been identified as key drivers of metastasis, and safe,

efficacious therapies have been developed to target EGFR mutations

and inhibit cancer spread (13). These targets can also be used as a

basis to design the antigen-recognition region of CAR-NK therapy.

Figure 2 shows some lung cancer targets that CAR-NK therapy

can potentially target.

We have compiled published lung cancer-related targets in

CAR-NK engineering therapies and corresponding preclinical

research results:
Fron
1. HER2 (human epidermal growth factor receptor 2): HER2

is a well-known target in various cancers, including breast

and ovarian cancers. It has also been targeted in lung

cancer. Trastuzumab deruxtecan (a HER2 antibody–drug

conjugate) showed durable anticancer activity in patients

with previously treated HER2-mutant NSCLC (14).

2. EGFR (epidermal growth factor receptor): EGFR plays a

significant role in the development and progression of

non-small cell lung carcinoma and other types of cancer.

Approximately 15% of NSCLCs express EGFR. CAR T-

cell therapies targeting EGFR are being explored and could

be adapted for CAR-NK cell therapies in lung cancer (13).

3. Programmed death ligand 1 (PD-L1) is one of the most

successful targets since targeted cancer therapy became

popular. Immunotherapies targeted PD-L1, and its

receptor (PD-1) have improved survival in a subset of

patients with advanced lung cancer (15). Membrane-

bound programmed death ligand 1 (PD-L1) level was

elevated on a tumor cell surface, which serves as an

attractive target for natural killer (NK) cell-mediated

therapy (16).
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4. IL-13Ra2 (Interleukin-13 receptor alpha 2): This receptor
is highly expressed in glioblastoma but has potential as a

target in lung cancer due to its limited expression in

normal tissues. It is a negative prognostic factor in

human lung cancer and stimulates lung cancer growth

in mice (17). IL-13Ra2-targeted therapies have been

studied in glioblastoma and could be a novel avenue for

lung cancer treatment.

5. ROR1 (receptor tyrosine kinase-like orphan receptor 1):

ROR1 is expressed in many lymphatic and epithelial

malignancies and involved in tumor cell survival. It is

being examined as a target for CAR T-cell therapies in

lung and breast cancers, suggesting potential for CAR-NK

cell therapy (18).

6. GD2 (disialoganglioside GD2): GD2 is highly expressed in

neuroblastoma and melanoma but could be considered for

SCLC treatment due to its expression on certain small lung

cancer cell lines (19). GD2 is one of the few SCLC-specific

therapeutic targets. The anti-GD2 antibody dinutuximab

was used to treat patients with relapsed/refractory

SCLC (20).

7. 7.Mesothelin (MSLN) overexpression is a marker of tumor

aggressiveness and associated with reduced recurrence-

free and overall survival in early-stage lung cancer (21).

Combined with chemokine receptor CCR2b, CAR T

treatment targeting MSLN showed good results in the

NSCLC mouse model (22).

8. Mucin 1 (MUC1) is an emerging therapeutic target for

solid tumors in recent years. Artificial MUC1-positive

animal tumor models show that CAR T therapy

targeting MUC1 has a good effect on reducing tumor

size and metastasis (23). As shown in a Phase I clinical

trial, PD-1 disrupting anti-MUC1-CAR cells achieved a
FIGURE 2

Potential lung cancer targets.
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greater response rate and acceptable tolerability results in

the NSCLC patients (24).

9. Prostate stem cell antigen (PSCA) is associated with prostate

cancer metastasis. Using aCGH and protein expression

analysis, researchers found that PSCA may play an

important role in the development of NSCLC brain

metastasis and it can be a good therapeutic target for

advanced lung tumors (25). Similar with MUC1, PSCA, as

a target, performed well in CAR T therapy for NSCLC (26).

10. Delta-like ligand 3 (DLL3) is an inhibitory Notch ligand

that is highly expressed in SCLC and other neuroendocrine

tumors but minimally expressed in normal tissues. It is

therefore being explored as a potential therapeutic target in

SCLC (27).
Additionally, new targets, such as erythropoietin-producing

hepatocellular carcinoma A2 (EphA2) (28), tissue factor (TF)

(29), and protein tyrosine kinase 7 (PTK7) (30) are currently

under clinical investigation. The development of next-generation

personalized CAR T cells against solid tumors like NSCLC remains

a critical frontier in cancer immunotherapy, given the unique

challenges posed by the strong immunosuppressive tumor

microenvironment in solid tumors.

The principle of selecting cell therapy targets is the target’s high

expression on lung cancer cells and the lack of expression on

normal cells to minimize off-target effects. The expression of cell-

surface molecules changes in malignantly transformed cells, and

CAR-NK cells can target these altered expressions.
Advantages of CAR NK therapy and
other immunotherapy approaches in
lung cancer

Immunotherapy has revolutionized cancer treatment by

harnessing the body’s immune system to target and destroy cancer

cells. Among various immunotherapy modalities, CAR-NK therapy

and other approaches offer distinct advantages, paving the way for

novel and effective cancer treatments. One of the most significant

advantages of CAR-NK therapy over other forms of immunotherapy,

such as CAR T-cell therapy, is its inherent ability to target cancer cells

with high specificity while minimizing off-target effects. Table 1

shows comparison of CAR-T and CAR-NK technology. NK cells

have a natural ability to distinguish between healthy and malignant

cells, reducing the risk of autoimmune responses and collateral

damage (31). In particular, CAR-NK therapy has demonstrated

promising efficacy in treating solid tumors, including lung cancer,

which has been a significant challenge for other forms of

immunotherapy. The natural ability of NK cells to infiltrate solid

tumors, combined with the specificity of CAR targeting, offers a

potent therapeutic approach for lung cancer patients (32).

Unlike CAR T therapy, CAR-NK therapy demonstrated

superior treatment safety. CAR T-cell therapies have been

associated with cytokine release syndrome (CRS), a potentially

fatal immune response. CAR-NK cells have shown a lower
tiers in Oncology 04
propensity to induce CRS, making CAR-NK therapy a safer

alternative (33). This reduced risk enhances patient safety and

could lead to broader applicability in clinical settings.

The source of cells in cell therapy often becomes a constraint

limiting the clinical application of the treatment. CAR T cells are

typically autologous (derived from the patient), which limits its

promotion. Currently, many attempts to manufacture off-the-shelf

CAR T cells, such as using induced pluripotent stem cells (iPSCs)

differentiate T cells (8, 34, 35), are being developed. Hopefully, the

source and practicality of CAR T cells can be solved. Unlike T cells, NK

cells can be derived from allogeneic sources (donors), making them

readily available for “off-the-shelf” use (10, 31). This allogeneic

capability significantly reduces the time and cost associated with

CAR–NK cell therapy, making it more accessible to a broader

patient population. The main sources of NK cells include peripheral

blood, umbilical cord blood, NK cell lines, and induced pluripotent

stem cells (iPSCs). Peripheral blood is the most traditional source of

NK cells for therapeutic purposes. NK cells derived from peripheral
TABLE 1 The comparison of CAR-NK and CAR T technology.

CAR T CAR-NK

Intracellular
signaling
domain

CD3 z with a co-stimulus
domain, CD28, etc.

Similar to CAR T
structure, but can use
NK-specific signal
domains such as
2B4, DAP10

Cell source
Autologous or MHC-
matched allogeneities

Autologous/allogeneic/
NK92 cell line

In
vitro
amplification

Yes

Yes, for autologous NK
cells, the cells can be pre-

amplified
before transduction

Mechanism of
killing
target cells

CAR-dependent cell killing
CAR-dependent and
-independent NK cell-
mediated cell killing

Effective time Effect after antigen presentation
Faster activation does not

require
antigen presentation

Cytodynamics

Continuous antigen stimulation
and increased expression of

inhibitory receptors lead to T-
cell exhaustion

There is also a problem
of NK cell exhaustion

Cytokine
release
syndrome

Common, usually severe
Not common and

not severe

Neurotoxicity Common Not common

Invasive
tumor
characteristics

Usually poor Usually poor

Developing the
potential of
ready-to-
use products

Limited source of donor cells
and the off-the-shelf CAR T
cells are being developed

There is potential, but it
is necessary to address
the efficiency issue of
cryopreservation
and recovery

Clinical trials
Both the FDA and CFDA have

approved a large number
of trials

Limited, currently FDA-
only approved
tumor therapies
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blood are readily available and can be collected from the patient

(autologous) or a donor (allogeneic). The peripheral blood collection

is relatively straightforward, and autologous use minimizes the risk of

immune rejection (36). Beyond peripheral blood, umbilical cord blood

(UCB) is an alternative source of NK cells that has been explored due to

its unique properties. UCB-derived NK cells display a higher degree of

immaturity, which might result in better expansion and longevity after

infusion. They also carry a lower risk of causing graft-versus-host

disease (GvHD) when used allogeneically (37).

In addition to the abovementioned naturally derived NK cells, NK

cells obtained through cell-engineering methods have also been proven

to be able to load CAR structures to build CAR-NK therapy. The iPSCs

represent a cutting-edge source of NK cells, capable of differentiating

into any cell type, including NK cells. The iPSCs provide an

inexhaustible source of NK cells that can be genetically engineered to

enhance their anticancer properties. While the differentiation process is

complex and costly, the long-term safety of iPSC-derived NK cells

remains to be fully established (38). What is more, several human NK

cell lines, such as NK-92, have been genetically modified to express

CARs for therapeutic applications–10. NK cell lines offer a consistent

and unlimited source of NK cells that can be readily engineered and

expanded in vitro. The use of cell line sources makes the expansion and

packaging process easy. At the same time, it can also reduce the batch

effect and instability of engineered cells. The use of NK cell lines poses a

risk of tumorigenicity, and regulatory authorities require irradiation

before infusion, which can affect the longevity and potency of these

cells in vivo (39).
Trials, challenges, and future
directions of CAR-NK treatment of
lung cancer

As of January 2024, researchers have tried many different types of

CAR-NK therapies for lung cancer, including two approved clinical

trials. A chimeric co-stimulatory transition receptor, (CCCR)

consisting of PD1 extracellular domain, NKG2D transmembrane

and cytoplasmic domain, and NKG2D cytoplasmic domain 4–1BB,

was applied to CAR-NK cell engineering. This receptor can convert

negative PD1 signals into activation signals, effectively reversing the

immunosuppressive effect of PD1. In a lung cancer xenograft model,

CCCR-NK92 cells demonstrated significant inhibition of tumor

growth (40). NCT03656705 has been conducted in the First

Affiliated Hospital of Xinxiang Medical University, which uses the

CCCR-NK92 cells to treat NSCLC patients from 18 to 75 years. For

SCLC, Liu et al. engineered DLL3-specific NK-92 cells and explored

their potential in treating SCLC. DLL3-CAR NK-92 cells induce

tumor regression in an H446-derived lung metastatic tumor model at

a favorable safety threshold (41). The DLL3-CAR approach also

started a clinical trial in Tianjin Medical University Cancer Institute

and Hospital to treat SCLC patients from 18 to 75 years old

(NCT05507593). In addition to the abovementioned two studies

that have carried out clinical trials, NK-92MI cells carrying an anti-

B7-H3 CAR (second-generation CAR) effectively restricted the

growth of transplanted non-small cell lung cancer in mice,

significantly prolonging the survival time compared to unmodified
Frontiers in Oncology 05
NK-92MI cells (42). Mesenchymal–epithelial transition factor (C-

Met) has been acknowledged as a significant therapeutic target for

treating lung adenocarcinoma (LUAD). Anti-c-Met scFv,

transmembrane domain of NKG2D, and cytoplasmic signaling

domain of CD137, 2B4, DAP10, and CD3z were employed to

construct four c-Met-CAR structures with different combinations

(CC1, CC2, CC3, CC4). The tumor-inhibitory role of c-Met-CAR-

NK cells was finally evaluated in vitro and in vivo (43).

While these therapies offer promising avenues for improving

patient outcomes, they also face significant challenges that must be

addressed to fully realize their potential. One of the primary

challenges in CAR-NK cell therapy is the immunosuppressive

nature of the tumor microenvironment (TME) in lung

cancer. The TME can inhibit NK cell activation and function

through various mechanisms, including the expression of

inhibitory molecules [e.g., PD-L1 (44)] and the presence of

immunosuppressive cells [e.g., Tregs (45), myeloid-derived

suppressor cells (46)]. Overcoming the immunosuppressive

barriers of the TME is crucial for enhancing the efficacy of CAR-

NK cell therapies. Besides TME, the persistence and effective

trafficking of CAR-NK cells to tumor sites are crucial for their

antitumor activity. However, current CAR-NK cell therapies often

face challenges with limited in vivo persistence and inefficient

migration to the tumor site, which can significantly reduce their

therapeutic efficacy (32). Tumor heterogeneity and the emergence

of antigen escape variants pose significant challenges to CAR-

related cell therapies. Similar to the dilemma faced by CAR T

therapy, the loss or downregulation of target antigens on tumor cells

can lead to the evasion of CAR-NK cell-mediated recognition and

destruction, contributing to relapse and treatment resistance (47).

To overcome these difficulties, future CAR-NK cell therapies for

lung cancer should be carried out in these following directions: 1.

Overcoming TME suppression: future strategies could focus on

combining CAR-NK cell therapy with agents that modulate the

TME, such as checkpoint inhibitors [e.g., anti-PD-1, anti-PD-L1

antibodies (48)] or agents targeting the suppressive cells within the

TME. These combinations could enhance the efficacy of CAR-NK

cells by reducing immunosuppression and promoting a more

favorable tumor microenvironment for NK cell activity. 2.

Enhancing CAR NK cel l pers is tence and trafficking:

advancements in genetic engineering could lead to the

development of CAR-NK cells with enhanced persistence and

trafficking capabilities. For example, incorporating genes that

encode for chemokine receptors matching the chemokines

secreted by tumor cells can improve the homing of CAR-NK cells

to the tumor site. Additionally, genetic modifications that promote

the survival and proliferation of NK cells in vivo could improve

their persistence and antitumor activity. 3. Targeting multiple

antigens: to counteract antigen escape, developing CAR-NK cells

that target multiple tumor-associated antigens could be a promising

approach. Designing multi-target CAR structures (third-generation

CAR structure) could reduce the likelihood of tumor cells evading

CAR-NK cell-mediated detection and destruction potentially

leading to more durable responses (32, 40, 48). 4. Advancements

in manufacturing technologies: innovations in bioprocessing and

genetic engineering could streamline the production of CAR-NK
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cells, making it more efficient and cost effective. The development of

“off-the-shelf” CAR-NK cell products from universal donor cells or

induced pluripotent stem cells (iPSCs) could also address scalability

issues and improve accessibility to CAR-NK cell therapies (38).
Conclusion

Lung cancer’s high mortality rate and global prevalence

underscore the importance of continued research and

development in its detection, treatment, and prevention. Primary

prevention, like smoking cessation and reducing exposure to

environmental risk factors, remains crucial. Advances in medical

treatments and early detection strategies offer hope for improved

outcomes in lung cancer patients. CAR- NK cell therapy represents

a promising avenue for the treatment of lung cancer offering

potential advantages over traditional therapies, including reduced

risk of CRS and GvHD, and the ability to target and kill cancer cells

through innate immune mechanisms. However, addressing the

challenges of TME suppression, CAR-NK cell persistence, antigen

escape, and scalability is essential for the successful development

and clinical implementation of these therapies. Future research and

technological advancements will play a critical role in overcoming

these obstacles and unlocking the full therapeutic potential of CAR-

NK cell therapy for patients with lung cancer.

This review highlights the importance of continued research

and collaboration across disciplines to address the complex

challenges facing CAR-NK cell therapy in lung cancer. By

leveraging advances in genetic engineering, immunology, and

manufacturing technologies, there is significant potential to

improve the efficacy, safety, and accessibility of CAR-NK cell

therapies, offering new hope to patients with lung cancer.
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