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Introduction: Adenocarcinoma in situ (AIS) andminimally invasive adenocarcinoma

(MIA) are considered pre-invasive forms of lung adenocarcinoma (LUAD) with a 5-

year recurrence-free survival of 100%. We investigated genomic profiles in early

tumorigenesis and distinguished mutational features of preinvasive to invasive

adenocarcinoma (IAC) for early diagnosis.

Methods: Molecular information was obtained from a 689-gene panel in the 90

early-stage LUAD Chinese patients using next-generation sequencing. Gene

signatures were identified between pathology subtypes, including AIS/MIA (n=31)

and IAC (n=59) in this cohort. Mutational and clinicopathological information was

also obtained from the Cancer Genome Atlas (TCGA) as a comparison cohort.

Results: A higher mutation frequency of TP53, RBM10, MUC1, CSMD, MED1,

LRP1B, GLI1, MAP3K, and RYR2 was observed in the IAC than in the AIS/MIA

group. The AIS/MIA group showed higher mutation frequencies of ERBB2, BRAF,

GRIN2A, and RB1. Comparable mutation rates for mutually exclusive genes (EGFR

and KRAS) across cohorts highlight the critical transition to invasive LUAD.

Compared with the TCGA cohort, EGFR, KRAS, TP53, and RBM10 were

frequently mutated in both cohorts. Despite limited gene mutation overlap

between cohorts, we observed variant mutation types in invasive LUAD.

Additionally, the tumor mutation burden (TMB) values were significantly lower

in the AIS/MIA group than in the IAC group in both the Chinese cohort

(P=0.0053) and TCGA cohort (P<0.01).

Conclusion: These findings highlight the importance of distinguishing

preinvasive from invasive LUAD in the early stages of LUAD and both pathology

and molecular features in clinical practice, revealing genomic tumor

heterogeneity and population differences.
KEYWORDS

adenocarcinoma in situ, minimally invasive adenocarcinoma, invasive adenocarcinoma,
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1 Introduction

Lung cancer remains the leading cause of cancer-related deaths

and ranks second in newly diagnosed carcinoma worldwide, with

2.2 million new cases and 1.8 million new deaths per year (1). Non-

small-cell lung cancer (NSCLC) accounts for 80%~85% of all lung

cancers, and it is composed of squamous-cell carcinoma,

adenocarcinoma, and large-cell carcinoma (1). LUAD is a major

subtype of lung cancer. Lung adenocarcinoma (LUAD) accounts for

approximately 40% of all lung carcinomas (1). If diagnosed and

treated in the early stages, the survival rate for lung cancer

participants who undergo complete surgical resection within 1

month after diagnosis can reach 92% (2). Furthermore, the

overall survival (OS) rate varies among different stages of primary

lung cancer; stage IA (tumor size < 1 cm) has a 5-year OS rate of

82%, whereas stages beyond IIB have a 5-year OS rates of less than

50% (3).

Most cases of early-stage lung cancer are treated with surgery

alone, whereas combination therapy may be used in other scenarios

(4). The 2015 World Health Organization (WHO) classification of

lung tumors introduces new concepts for LUAD, such as

adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma

(MIA) (5); Invasive adenocarcinoma (IAC) also recommended by the

WHO to be classified by comprehensive histologic pattern, which

includes five predominant adenocarcinoma patterns: lepidic, acinar,

papillary, solid, and micropapillary (5). Others include invasive

mucinous adenocarcinoma, colloid adenocarcinoma, fetal

adenocarcinoma, and enteric adenocarcinoma (5). The recurrence-

free survival (RFS) rate varies among different pathology subtypes,

with AIS and MIA having a 100% RFS rate (6). There is a 40%

recurrence rate in NSCLC cases with all pathology subtypes after

complete primary tumor resection and systematic lymph node

dissection within 5 years (7). Clinical judgment and treatment

therapy for early-stage lung cancer is crucial in clinical practice.

Early diagnosis of pathology subtypes, along with an understanding

of the genetic landscape, can help to prolong the survival of lung

cancer patients.

In recent years, mutation profiles of NSCLC have been clarified,

with frequent mutations identified in driver genes such as epidermal

growth factor receptor (EGFR), and erb-b2 receptor tyrosine kinase 2

(ERBB2) (8, 9). Various treatment options are available for patients

with NSCLC, including targeted therapy, immunotherapy,

chemoradiotherapy (CRT), and complete resection (4, 10).

However, the crucial predictive biomarkers for early-stage NSCLC

remain largely unknown and require validation and reproducibility

(11). Genomic intratumor heterogeneity has been identified in early-

stage LUAD, and different pathology subtypes, including AIS (12). In

preinvasive and invasive LUAD, EGFRmutation is the most common

driver alterations across AIS, MIA, and IAC (13). In addition, other

canonical cancer gene mutations such as ERBB2, NRAS proto-

oncogene, GTPase (NRAS), and B-Raf proto-oncogene (BRAF) are

early trunk mutations during the carcinogenesis of LUAD (13, 14).

Meanwhile, mutations in the tumor protein p53 gene (TP53) and cell

mobility, gap junction, and metastasis-related genes may be late

events associated with subclonal diversification and neoplastic

progression (14).
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Targeted exome sequencing has been widely used for mutation

detection in cancer therapy (15). In one retrospective study, four

gene mutations were identified, including MAP2K1 insertion-

deletions (indels), BRAF non-V600E kinase mutations, and exon

20 insertions (20ins) in both EGFR and ERBB2, which were

enriched in pre-invasive tumors among 3,254 Chinese patients

with LUAD (16). The dataset from TCGA has also been used for

comparison studies or validation of the gene signature results (17).

Despite these observations, genomic characteristics and ethnic

differences in the WHO 2015 pathology classifications of LUAD

genomics have yet to be systematically elucidated because of the

lack of a sufficiently large cohort.

To address the challenges mentioned above, our study aimed to

identify the unique mutational features that distinguish preinvasive

from invasive LUAD in both our Chinese cohort and the TCGA

cohort. To achieve this, we collected epidemiological and

clinicopathological information from early-stage LUAD patients

with AIS/MIA or IAC from both our Chinese cohort and the TCGA

cohort. In addition, surgically resected specimens were subjected to

targeted exome sequencing to reveal the molecular status differences

between AIS/MIA and IAC.
2 Materials and methods

2.1 Patients and sample collection

The resected tissue samples were collected from 90 primary

LUAD patients who underwent resection surgery from July 2020 to

December 2021. Gene mutation data was obtained using a capture-

based targeted sequencing approach with a 689-gene panel.

Relevant epidemiological and clinicopathologic information

records were also obtained. The public dataset of TCGA was

derived from the MSK study with histologic data in cBioportal for

Cancer Genomics (18). Only patients data from stages I and II were

included and the clinical data was selected following the 2015WHO

criteria (5).
2.2 DNA Extraction, library preparation,
and target capture sequencing

Genomic DNA (50-200 ng) was extracted from formalin-fixed

paraffin-embedded (FFPE) samples using QIAamp DNA FFPE

Tissue Kit (Qiagen, Hilden, Germany). The extracted tissue DNA

samples were qualified and used to construct cDNA libraries

(Integrated DNA Technologies, Coralville, IA, USA). Custom-

designed 689-gene probe panels (Integrated DNA Technologies,

Coralville, IA, USA) were used to capture their respective, as listed

in Supplementary Table S1. To eliminate germline mutations, a

control library was created using DNA extracted from peripheral

blood samples. The cDNA libraries were sequenced using the

MGISEQ-2000 platform (MGI, Shenzhen, China) by the

manufacturer’s recommendations. The workflow for potentially

actionable variants was introduced following a previous

pipeline (19).
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2.3 Sequencing data analysis
and immunohistochemistry

The raw fastq data generated by the MGISEQ-2000 sequencer

underwent filtering by SOAPnuke (RRID : SCR_015025, https://

scicrunch.org/resolver/SCR_015025) to remove reads with low

quality. The reference human genome used was GRCh37/hg19, and

clean reads were mapped to this genome using the UCSC genome

browser (RRID : SCR_005780, https://scicrunch.org/resolver/

SCR_005780). Single nucleotide variants (SNVs) and small

insertions/deletions (Ins/Del) were identified using the Genome

Analysis Tool kit (GATK) with parameters adapted to HaloPlex-

generated sequences. Copy number variants (CNVs) were called

using the CNVnator read-depth algorithm. Tumor mutation

burden (TMB) was assessed through targeted sequencing of

approximately 1.25Mb, which broadly recapitulated previous results

of whole exome TMB analysis. Tumor mutation burden was

calculated as the number of all nonsynonymous mutations per 0.7

Mb of the targeted coding region. TMB was obtained by calculating

the number of mutations (allele frequency > 1.5%) in non-driver

genes per Mb in each sample. MSIsensor and MANTIS were used to

detect the status of microsatellite instability (MSI) (20, 21).

Programmed death ligand 1 (PD-L1) expression was conducted

by immunohistochemistry in the central laboratory. The PD-L1

expression was determined by the Tumor Proportion Score (TPS)

method with the IHC 22C3 pharmDx kit (Agilent Technologies,

Santa Clara, California, USA).
2.4 Statistical analysis

Visualization and statistical analyses were performed using R

(v4.1.0) and prism graphpad (RRID : SCR_000306, https://

scicrunch.org/resolver/SCR_000306). All distributed data were

presented as mean ± standard deviation. Chi-square test was

employed to analyze the differences between AIS/MIA and IAC

groups. P < 0.05 is regarded as statistically significant. GO and

KEGG were performed using Database for Annotation,

Visualization, and Integrated Discovery v6.8 (DAVID, https://

david.ncifcrf.gov/) (22). DAVID v6.8 (https://david.ncifcrf.gov/

tools.jsp), an online set of functional annotation tools, was used to

analyze biological processes, cellular components, molecular

functions, and pathways for DEGs. GO terms and KEGG pathways

(RRID : SCR_012773, https://scicrunch.org/resolver/SCR_012773)

with P value <0.05 were considered statistically significant.
3 Results

3.1 Clinical characteristics and mutation
spectrum of LUAD patients

Clinical data were employed for 90 primary LUAD patients.

The mean age was 59 years (standard deviation [SD] = 12.9 years)

for this cohort, with 42.2% (38/90) male and 58.7% (52/90) female.

13.3% (12/90) were adenocarcinoma in stage 0, Others were 67.8%
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(61/90) in stage I, and 18.9% (17/90) in stage II (Supplementary

Table S2). The detailed clinical characteristics of the patients are

shown in Table 1 and Supplementary Table S2. In brief, 12.2% (11/

90) had Ex19Del mutant EGFR, 34.4% (31/90) were L858R mutant

EGFR, others 12.2% (11/90) were absent of these two classical EGFR

activating mutations. The whole LUAD patients were also divided

into subgroups of AIS, MIA, and IAC. The age of the AIS/MIA

group was significantly younger than the IAC group (52.4 versus

62.5 years, P < 0.001). Besides, the composition of sex and tumor

stage were also significantly different between AIS/MIA and IAC

group patients. The AIS/MIA group had more females and more

cancers in the early stages. Other factors such as N stage, MSI, and

EGFR mutation status (Ex19Del, L858R, Absent) had no difference

between the AIS/MIA and IAC groups (Table 1).

A panel of 689 cancer-related genes was applied to 90 primary lung

tissue samples. Mutation genes were also revealed in this cohort

(Supplementary Table S3). All 90 patients had at least one potentially

actionable variant. Full details of variants for all patients are available in

Supplementary Table S3. In summary, gene landscape was different

between AIS/MIA and IAC groups (Figure 1A, Supplementary Figures

S1A, B). The most frequently mutated genes with various pathology

subtypes (AIS/MIA/IAC) are displayed. The mutation frequencies of

TP53 (31% versus 6%), RNA binding motif protein 10 (RBM10, 24%

versus 6%), mucin-16 (MUC16, 14% versus 0%), CUB and sushi

multiple domains 3 (CSMD3, 8% versus 3%), mediator complex

subunit 12 (MED12, 8% versus 6%), low-density lipoprotein

receptor-related protein 1b (LRP1B, 8% versus 3%), GLI family zinc

finger 1 (GLI1, 8% versus 0%), mitogen-activated protein kinase kinase

4 (MAP3K4, 7% versus 3%), and ryanodine receptor 2 (RYR2, 7%

versus 3%) were higher in the IAC group than in the AIS/MIA group.

The AIS/MIA group showed higher mutation frequencies of ERBB2

(16% versus 3%), BRAF (10% versus 3%), glutamate ionotropic

receptor NMDA type subunit 2A (GRIN2A, 6% versus 2%), and RB

transcriptional corepressor 1 (RB1, 6% versus 0%) than the IAC groups

(Figure 1A, Supplementary Figures S1A, B). The mutation frequencies

were similar between AIS/MIA and IAC groups for the two top driver

genes of EGFR (55% versus 54%) and KRAS proto-oncogene, GTPase,

(KRAS, 10% versus 10%) (Figure 1A, Supplementary Figures S1A, B).

The data suggest that ERBB2, BRAF, GRIN2A, RB1 were early-stage

events for LUAD. The late events were mutations for TP53, RBM10,

MUC1, CSMD3,MED1, LRP1B, GLI1, RYR2mutations. Besides, EGFR

and KRAS mutations accompanied all the events. In addition, by

analyzing the mutation types of 15 high-frequent mutated genes

between AIS/MIA and IAC (Figure 1B), we identified that the

mutation type of EGFR varied in IAC, with genes such as RYR2,

GLI1, LRP1B, MED12, CSMD3, MUC16, RBM10, TP53 having higher

mutation frequency andmore mutation types, such as structure change

for genes in invasive LUAD.
3.2 Identification of core genes in tumors
originating from the lung

In Figure 1C, tumor mutation burden (TMB) values of the AIS/

MIA group were significantly lower than those of the IAC group

(3.92 versus 0.94 mut/Mb, P = 0.0053). The proportion of PD-L1
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expression in the IAC group was slightly higher than that in the

AIS/MIA group, but this difference was not significant.

Furthermore, as shown in Figure 2A, these two groups shared 26

genes in common, including EGFR, ERBB2, MED12, TP53, insulin-

like growth factor 1 receptor (IGF1R), mutS homolog 5 (MSH5),

BRAF, CSMD3, RYR2, estrogen receptor 1 (ESR1), KRAS, LRP1B,

notch receptor 4 (NOTCH4), IKAROS family zinc finger 1 (IKZF1),

laminin subunit alpha 2 (LAMA2), RBM10, KIT proto-oncogene,

receptor tyrosine kinase (KIT), fibroblast growth factor receptor 4

(FGFR4), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1),

MAP3K4, GRIN2A, phosphatase and tensin homolog (PTEN),

adhesion G protein-coupled receptor A2 (ADGRA2) ,

apolipoprotein B (APOB), XPC complex subunit, DNA damage

recognition and repair factor (XPC), neuronal tyrosine-

phosphorylated phosphoinositide-3-kinase adaptor 2 (NYAP2). In

addition, EGFR, ERBB2, MED12, TP53, BRAF, and KRAS are six

genes shared across AIS/MIA/IAC groups (Supplementary Figure

S2A), all of which play an important role during tumorigenesis.

There were 15 genes unique to MIA/AIS rather than AIS. More

detailed information can be found in Supplementary Table S3.
Frontiers in Oncology 04
According to the gene co-occurrence figure (Figure 2B), there

was a significant exclusivity between mutations in KRAS (P < 0.01),

BRAF (P < 0.05), and EGFR. Additionally, CSMD3 was found to co-

occur with TP53, ZFHX4, RYR2, LRP1B and GLI1. Previous studies

have shown that high expression of CSMD3 is associated with poor

outcomes (23). In our results, we found that zinc finger homeobox 4

(ZFHX4) co-occurs with TP53, MUC16, CSMD3, and GL1. It is

worth noting that ZFHX4 was found to be upregulated in lung

adenocarcinoma (LUAD) and was associated with a poor prognosis,

as indicated by previous research (24).

In the analysis of core genes and related signaling pathways, we

adopted the Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis (25). A total of

20 important pathways in the lung cancer population were grouped

(Figures 2C–E). The genes shared between preinvasive and invasive

LUAD play important roles in the cellular component of the

receptor complex, positive regulation of kinase activity for

biological processes, and transmembrane receptor protein kinase

activity function. Moreover, these genes function in focal adhesion

and pathways in cancer, which are crucial for neoplastic
TABLE 1 Clinical characteristics of 90 patients with primary LUAD.

Group

Characteristics Overall Patients (n = 90) Patients with AIS/MIA (n = 31) Patients with IAC (n = 59) P value

Age at operation

<0.001

Mean 59.0 52.4 62.5

SD 12.9 12.1 12.1

Sex, n (%)

0.0220

Male 38 (42.2%) 8 (25.8%) 30 (50.8%)

Female 52 (57.8%) 23 (74.2%) 29 (49.2%)

EGFR mutation, n (%)

0.7230

Ex19Del 11 (12.2%) 3 (9.7%) 8 (13.6%)

L858R 31 (34.4%) 11 (35.5%) 20 (33.9%)

Absent 11 (12.2%) 4 (12.9%) 7 (11.9%)

N status, n (%)

0.0660

N0 84 (93.3%) 31 (100%) 53 (89.8%)

N1 6 (6.7%) 0 (0%) 6 (10.2%)

MSI status

0.5770

MSI-H 2 (2.9%) 0 (0.0%) 2 (4.3%)

MSI-L 5 (7.1%) 2 (8.7%) 3 (6.4%)

MSS 63 (90.0%) 21 (91.3%) 42 (89.4%)

Tumor stage, n (%)

<0.001

Stage 0 12 (13.3%) 12 (38.7%) 0 (0%)

Stage I 61 (67.8%) 17 (54.8%) 44 (74.6%)

Stage II 17 (18.9%) 2 (6.5%) 15 (25.4%)
fro
AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma; LUAD, lung adenocarcinoma; MIA, minimally invasive adenocarcinoma; MSI, microsatellite instability; MSI-H, high microsatellite
instability; MSI-L, low microsatellite instability; MSS, microsatellite stability; SD, standard deviation.
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progression. Thus, membrane-related kinase activity could be an

early event from preinvasive to invasive LUAD. The differentially

mutated genes suggest a better understanding of early lung

cancer progression.
3.3 Clinical implications and comparison
with the TCGA cohort

To further compare the clinical significance in multiple

dimensions, we used the public database from TCGA. Full details

of variants for all patients are available in Supplementary Table S4.

From our Chinese cohort and TCGA cohort, we identified that our

Chinese group contained 34% (31/90) AIS/MIA patients, compared

with 12% (64/524) in the TCGA cohort. In our Chinese cohort, 66%

(59/90) of the patients had IAC, whereas a higher percentage of

patients (88%, 460/524) had IAC in the TCGA cohort (Figure 3A).

Moreover, the tumor stages we analyzed were also different between

our cohort and the TCGA cohort. The percentages were 13% (12/

90), 68% (61/90), 19% (17/90) for Stage 0/I/II in our cohort,

compared with 0% (0/524), 82% (432/524), 18% (92/524) in the

TCGA group (Figure 3A). TMB values were also analyzed for the

Chinese group and the TCGA group (Figure 3B, up panel). In the

TCGA cohort, the TMB values were significantly higher in the IAC

group than in the MIA group (7.625 versus 4.450, P < 0.01).

Additionally, it seems that our group had a lower TMB of the
Frontiers in Oncology 05
AIS/MIA group than the TCGA (0.939 versus 4.450, P < 0.0001).

This might be because our group had 13% Stage 0 and we had 12

AIS patients, while the TCGA group was in higher stages with MIA.

By analyzing the mutation spectrum of the top 35 genes in our

Chinese cohort and the TCGA cohort, we identified that different

genes varied significantly under different circumstances

(Supplementary Figure S2B and Figure 3B, lower panel). We also

compared two driver genes, EGFR and KRAS, in the whole

population. The variation frequency of EGFR was 54.44% in our

cohort, compared with 29.81% in the TCGA cohort (Figure 3C, up

panel). Additionally, the variation frequency of KRAS was 10% in

our cohort, compared with 37.88% in the TCGA cohort (Figure 3C,

lower panel). In Figure 3D, the comparative bar plot shows the 10

mutation types of the top 15 genes in TCGA cohort. Although the

overlapped genes between our Chinese cohort and TCGA cohort

varied, the mutation types increased in invasive LUAD in the

TCGA cohort.
4 Discussion

We profiled this functional study on 90 early-stage LUAD

patients, combining the AIS and MIA groups due to their high 5-

year RFS of 100% (6). This RFS was higher than NSCLC cases with

all pathology subtypes, which experienced a recurrence rate of 40%

within 5 years (7). We analyzed gene mutational profiles using
B C

A

FIGURE 1

Distinct mutation spectrum of preinvasive and invasive LUAD patients. (A) Waterfall plot with top 38 genes for LUAD patients in AIS/MIA and IAC
group; (B) The mutation types of 15 high-frequent mutated genes between AIS/MIA and IAC; (C) Proportion of PD-L1 expression level in AIS/MIA and
IAC group (left), Proportion of TMB values in AIS/MIA and IAC group (right). AIS: adenocarcinoma in situ, MIA: minimally invasive adenocarcinoma,
IAC: Invasive adenocarcinoma, MSI: microsatellite instability, TMB: tumor mutation burden, ns, not significant, **: P < 0.01.
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capture-based targeted sequencing and compared the most

frequently mutated genes within AIS/MIA and IAC groups. Our

results showed that the gene landscape was different between the

two groups. The mutation frequency of TP53, RBM10, MUC16,

CSMD3, MED12, LRP1B, GLI1, MAP3K4, RYR2 was higher in the

IAC group than in the AIS/MIA group. Additionally, during the

follow-up, there were only two recurrence events in the IAC group

(2/25, 8%) and no events in the preinvasive group (0/9, 0%),

indicating a difference in recurrence rates between preinvasive

and invasive LUAD groups. Although the difference was not

significant, this may be due to the short follow-up time of less

than 3 years, which was too short for early-stage LUAD.

Genomic intratumor heterogeneity has been identified in early-

stage LUAD with different pathology subtypes, including AIS (12,

13). Mutations including MAP2K1, BRAF, EGFR, and ERBB2, were

identified as enriched in pre-invasive tumors (16). Additionally,

ERBB2, NRAS, and BRAF are considered to be early trunk

mutations during LUAD carcinogenesis (13, 14). Our study also

identified that ERBB2 and BRAF were early-stage events for LUAD

with higher mutation frequency in the preinvasive group. ERBB2 is

a proto-oncogene, and it’s alternation is associated with poor

survival and worse outcomes (26). Our results also showed that

mutations in BRAF (P < 0.05) with EGFR were significantly

mutually exclusive. This has also been recently confirmed in
Frontiers in Oncology 06
another Chinese cohort (27). In our study, GRIN2A and RB1

were also highly mutated in the preinvasive group and were

considered to be early-stage events for LUAD in our Chinese

cohort. The mutation frequency of ERBB2, BRAF, GRIN2A, and

RB1 was found to be low in the TCGA cohort, and there was no

significant difference in mutation frequency between the

preinvasive and invasive LUAD groups in TCGA.

In our study, TP53, RBM10, MUC16, CSMD3, MED1, LRP1B,

GLI1, and RYR2 were identified as late events with a higher

mutation frequency in the invasive LUAD group. TP53 mutations

were the most enriched alternations in invasive LUAD, suggesting

that it may play a more important role in the acquisition of

invasiveness. It has also been revealed that TP53 and cell

mobility, gap junction, and metastasis-related genes may be late

events associated with subclonal diversification and neoplastic

progression (13, 14). One study identified that RBM10 plays an

important role in invasive LUAD, whereas another study showed

that this gene is significantly mutated in the pre/minimally invasive

group (14). It has been reported that as a tumor suppressor gene,

RBM10 can also promote lung cancer (28). For the TCGA cohort

results, the mutation frequency of RBM10 was 16.1%, and it was

more highly mutated in the preinvasive group than in the invasive

LUAD group (25% versus 14%). Interestingly, MUC16 (CA125) is

cleaved and shed into the bloodstream, and its serum level is
B C

D E

A

FIGURE 2

Distinct distribution of genes and pathway analysis. (A) Shared genes between IAS/MIA and IAC groups; (B) Gene co-occurrence figure for the top 15
frequently mutated genes; (C–E) The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment for the
shared genes between IAS/MIA and IAC groups. ▪: P < 0.05. *: P < 0.01.
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thought to be a key indicator of lung cancer metastasis to the liver

(29). Additionally, MUC16 plays crucial roles in lung cancer

pathogenesis, progression, and chemoresistance (30). In general,

MUC16 might play an important role during the entire process

from preinvasive to invasive LUAD.

In both preinvasive and early invasive LUAD, EGFRmutation is

the most common driver alterations across AIS, MIA, and IAC (13).

EGFR is a transmembrane protein that can transduce important

growth factor signaling from the extracellular milieu to the cell, thus

regulating downstream events including increased proliferation,

angiogenesis, metastasis, and decreased apoptosis (31). KRAS

alterations occur early in the carcinogenesis process and promote

cancer cell survival, invasion, and migration (32). Our results

showed that mutations in KRAS and EGFR were mutually

exclusive (P < 0.01). This has been validated in another study that

EGFR mutations are never found in LUAD tumors with KRAS

mutations (33). In our study, for driver genes such as EGFR and

KRAS, the mutation was similar between the AIS/MIA and IAC

groups, indicating that EGFR and KRAS mutations were separately

occurring and accompanying all events. It has also been reported

that EGFR and KRAS mutations are significantly mutated genes in

the pre/minimally invasive group (14). In addition, the EGFR

mutation type varies greatly in IAC compared with AIS/MIA in

our Chinese cohort. The distribution and comparison of deleterious

mutations detected for EGFR and KRAS exhibited some overlap

between the Chinese group and TCGA group but also showed
Frontiers in Oncology 07
variations. In our study, the pre-invasive LUAD exhibited a high

frequency of driver mutations, including those in EGFR, KRAS,

ALK, and ERBB2 genes, which was also found in other publications

(14, 34). The population for TCGA cohort also yielded a high

incidence of EGFR mutations, which might due to the background

of the United States (35).

In conclusion, we demonstrated that ERBB2, BRAF, GRIN2,

RB1, TP53, RBM10, MUC1, CSMD3, MED1, LRP1B, GLI1,

MAP3K4, RYR2, EGFR, and KRAS genes all play crucial roles in

carcinogenesis from preinvasive to invasive LUAD in our Chinese

cohort. The usability of targeted sequencing for biomarker

detection has strong clinical significance for LUAD. Furthermore,

in comparison of our findings with the TCGA database, EGFR,

KRAS, TP53, and RBM10 were the most frequently mutated genes

in the two cohorts. In addition, we also observed an increase

in mutation types in IAC in both cohorts. Overall, our current

understanding of pathological and molecular features in

clinical practice reveals genomic tumor heterogeneity of

resectable LUAD.
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FIGURE 3

Comparison of data in Chinese LUAD and the TCGA LUAD cohorts. (A) Pathology and tumor stage status in our cohort with Chinese patients and
TCGA cohort; (B) Proportion of TMB values in AIS/MIA and IAC group in our group and TCGA group (up panel), gene alternations in our group and
TCGA group (lower panel); (C) Distribution and comparison of deleterious mutations detected in EGFR gene (up panel) and KRAS gene (lower panel)
both in Chinese group and TCGA group; (D) The comparative bar plot of the top 15 frequently mutated genes in the TCGA cohort. ****: P < 0.0001
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