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Background: Lymphovascular invasion (LVI) is a significant risk factor for lymph

node metastasis in gastric cancer (GC) and is closely related to the prognosis and

recurrence of GC. This study aimed to establish clinical models, radiomics

models and combination models for the diagnosis of GC vascular invasion.

Methods: This study enrolled 146 patients with GC proved by pathology and who

underwent radical resection of GC. The patients were assigned to the training

and validation cohorts. A total of 1,702 radiomic features were extracted from

contrast-enhanced computed tomography images of GC. Logistic regression

analyses were performed to establish a clinical model, a radiomics model and a

combined model. The performance of the predictive models was measured by

the receiver operating characteristic (ROC) curve.

Results: In the training cohort, the age of LVI negative (−) patients and LVI positive

(+) patients were 62.41 ± 8.41 and 63.76 ± 10.08 years, respectively, and there

were more male (n = 63) than female (n = 19) patients in the LVI (+) group.

Diameter and differentiation were the independent risk factors for determining

LVI (−) and (+). A combinedmodel was found to be relatively highly discriminative

based on the area under the ROC curve for both the training (0.853, 95% CI:

0.784–0.920, sensitivity: 0.650 and specificity: 0.907) and the validation cohorts

(0.742, 95% CI: 0.559–0.925, sensitivity: 0.736 and specificity: 0.700).

Conclusions: The combined model had the highest diagnostic effectiveness, and

the nomogram established by this model had good performance. It can provide a

reliable prediction method for individual treatment of LVI in GC before surgery.
KEYWORDS

contrast-enhanced computed tomography, gastric cancer, lymphovascular invasion,
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1 Introduction

Gastric cancer (GC) is one of the most common malignant

tumours, with a high incidence in Asia, South America and Africa.

It is estimated that there are 1 million new cases of GC and 70,000

deaths globally each year (1, 2). According to the World Health

Organization classification, gastric adenocarcinoma is the most

common type of GC. Most gastric adenocarcinomas are thought

to develop through a gradual progression from Helicobacter pylori-

induced chronic gastritis to atrophic gastritis, intestinal metaplasia,

dysplasia and ultimately adenocarcinoma (3). At present, the

Lauren and Borrmann classifications are commonly used to

categorise them. Furthermore, some patients with GC have both

intestinal and diffuse types in the GC specimen, which is separated

into mixed types (4). The widely used Borrmann classification

system divides advanced GC into four types depending on its

gross appearance: mass type (type 1), ulcerative type (type 2),

infiltrative and ulcerative type (type 3) and diffusely infiltrative

type (type 4) (5). These types can be easily defined by endoscopic

morphologic assessment before preoperative therapy, as well as by

gross histopathologic assessment after surgery.

Lymphovascular invasion (LVI) is defined as the lymphatic vessels

and/or blood vessel invasion of malignant tumour cells within the

primary tumour and surrounding tissues. Lymphovascular invasion

plays an important role in cancer cell spreading and lymph node

metastasis, and it is associated with an increased risk of micrometastasis

(6). Studies have revealed that LVI is an independent prognostic factor

for predicting clinical outcomes for patients with GC (6). Although LVI

is considered to be a key prognostic factor of unsatisfactory survival

outcomes in various cancers, accurate identification of LVI status

before operation is still difficult, as LVI is mainly found through

postoperative pathology.

Lambin et al. first put forward the concept of radiomics in 2012 (7).

With high-throughput computing, it is now possible to rapidly extract

innumerable quantitative features from tomographic images

(computed tomography [CT], magnetic resonance [MR] or positron

emission tomography [PET] images). Recent research has found that

radiomics methods exhibit high accuracy and sensitivity in diagnosing

GC. By analysing a variety of imaging features, researchers can more

accurately locate and assess tumours. Radiomics contributes to the

early detection of lesions, including tiny tumours and early-stage

malignancies. This is crucial for improving treatment success rates

and survival rates (8, 9) and can provide personalised diagnosis and

treatment plans for each patient (9, 10). Research has found that its

advantages are typically non-invasive, causing minimal harm to

patients, and it is suitable for repeated monitoring and long-term

follow-up. Combining different types of imaging techniques, such as

CT,MRI and PET, can provide comprehensive information, aiding in a

more thorough understanding of lesions and utilising computer

algorithms for image analysis; this enables efficient and automated

data processing, thus relieving the workload of healthcare professionals

(11). However, it also has some disadvantages, such as (1) some

advanced imaging techniques may lead to higher costs, limiting their

widespread adoption in certain regions and healthcare systems, (2)

radiomics methods face challenges in standardisation; differences in
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devices and methodologies across studies may affect result consistency

and (3) the vast amount of medical imaging data raises privacy

concerns, necessitating strict data security measures (12, 13). With its

development, it has now been applied to any medical research that can

image a disease or condition (14). At present, there are few studies on

the use of radiomics to investigate LVI of GC. Therefore, this study

aims to develop a clinical model, a radiomics model and a combination

model based on contrast-enhanced CT to predict LVI of GC and to

evaluate the potential clinical applicability of the model.
2 Materials and methods

2.1 Patients

The sample size calculation formula was as follows: n = Z2 × p ×

(1 − p)/E2, where n is the required sample size, Z is the Z-score

corresponding to the desired confidence level (1.96 for a 95% CI), p

is the estimated proportion of the population with a particular

characteristic and E is the margin of error.

This study was approved by the Institutional Review Board of our

hospital. The informed consent requirement was waived. A total of 423

consecutive patients with GC at the hospital between January 2019 and

May 2022 were enrolled in this retrospective study. The inclusion

criteria were as follows: (1) patients received radical gastrectomy with

R0 resection and D2 lymphadenectomy; (2) contrast-enhanced

abdominal CT images were acquired within 7 days before the

operation; (3) GC diagnosis was histologically confirmed; (4) the

image quality was satisfactory for analysis. The exclusion criteria

were as follows: (1) received antitumour treatment before surgery;

(2) the lesion was too small to be recognised by CT; (3) combined with

other malignant tumours. In total, 146 patients were enrolled. All

enrolled patients were randomly allocated to either the training cohort

(n = 117) or the validation cohort (n = 29) at a ratio of 8:2. The clinical

factors, including age, gender, tumour diameter, differentiation status,

Borrmann classification, Lauren type and the test results of four serum

biomarkers, namely carbohydrate antigen 125 (CA125), carbohydrate

antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA) and alpha-

fetoprotein (AFP), were obtained. An overview of the study’s workflow

is shown in Figure 1.
2.2 Computed tomography examination

All patients were asked to fast for 8 hours, drink 800–1,000 ml of

water and practice holding their breath before the CT examination.

Patients were administered scopolamine hydrochloride

intramuscularly before the examination to reduce gastrointestinal

motility artefacts. The CT examination was performed using

Revolution CT (GE Medical Systems) and Aquilion ONE CT

(CANON Medical Systems) devices. All patients were in the supine

position, and the scan covered the upper or the entire abdomen. The

scanning parameters were as follows: tube voltage 120 kVp, 375

reference mAs with an automated tube current modulation system,

slice thickness 5.0 mm, slice interval 5.0 mm, matrix 512 × 512,
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rotation time 0.5 s and reconstruction section thickness 1.25 mm.

After an intravenous injection of contrast medium (3.0–3.5 ml/s

ioversol, 320 mg/ml) via a syringe pump, the arterial phase (AP) and

venous phase (VP) scans were acquired following delays of 30–35 s

and 70–75 s, respectively.
2.3 Region of interest segmentation and
feature extraction

The AP and VP images of all patients were imported into the

image processing software 3D Slicer 4.11.0 (https://www.slicer.org/) in

the DICOM format. Two doctors unaware of the pathology

manually delineated the upper and lower consecutive three-layer

regions of interest (ROIs) centred on the largest cross-section of the

tumour. In case of a disagreement, the two doctors discussed with

each other until they reached a consensus. Using a spline

interpolation algorithm, all CT images were resampled to the

same size (1 × 1 × 1 mm), regardless of the scanner from which

they were acquired. A total of 1,702 radiomic features were

extracted from the AP and VP CT images for each patient. These

features included shape, first order, grey level co-occurrence matrix,

grey level size zone matrix, grey level run length matrix, grey level

dependence matrix and neighbouring grey tone difference

matrix features.
2.4 Feature selection

To identify robust and reliable radiomics features, feature

selection was performed in the following five steps. First, all the

features were centralised and standardised. Second, the intra-class
Frontiers in Oncology 03
correlation coefficient (ICC) was calculated for the re-segmentation

data. All ICC values ≥0.75 were reserved for stable features. Third, the

independent sample t-test or Mann–Whitney U test was applied to

compare the features between the LVI positive (+) group and the LVI

negative (−) group for selecting the potentially important features.

Fourth, the least absolute shrinkage and selection operator (LASSO)

method was used to reduce the dimension. The variables were

selected through the regularisation process, and the complexity was

adjusted simultaneously to obtain the optimal feature subset to

improve the accuracy and repeatability of the radiomics prediction

model. This study tuned the regularisation parameter (l), and tenfold
cross-validation was used to select features. The best feature subset

was obtained using the minimum variance model principle. Finally,

the Pearson correlation coefficient of the retained features was

analysed to verify whether there was a high correlation between the

retained features (i.e. whether there was collinearity). The radiomics

signature (RS) was built based on the selected features, and each

patient’s corresponding radiomics score was calculated.
2.5 Model construction

The RS was built based on the selected features, and each

patient’s corresponding radiomics score was calculated. Based on

the selected features, the radiomics model was established by a

multivariate logistic regression algorithm. The statistically

significant risk variables (radiomics score and clinical factors)

obtained from the univariate logistic regression analysis were then

entered into the multivariate analysis to establish the clinical and

combined models. A nomogram was generated for the combined

model visualisation, graphical evaluation of variable importance
FIGURE 1

Flow chart.
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and calculation of predictive accuracy. The Hosmer–Lemeshow test

was performed to assess the goodness-of-fit of the nomogram. A

calibration curve, obtained by plotting the actual LVI probability

against the nomogram-predicted probability of LVI, was used to

assess the calibration of the nomogram. The decision curve was

used to evaluate the clinical utility of the nomogram.
2.6 Statistical analysis

The statistical analysis was conducted using the SPSS 25.0 and R

4.2.1 (https://www.R-project.org). A p-value <0.05 was set,

indicating a statistically significant difference. The differences

between continuous clinical variables (age, diameter, AFP, CEA,

CA125 and CA19-9) were evaluated by the independent sample t-

tests or Mann–Whitney U test; these variables were expressed as

mean ± standard deviation or median and interquartile range, as

appropriate. The chi-squared test was used to compare

dichotomous clinical variables (gender, differentiation, Borrmann

classification and Lauren type) between LVI (+) and LVI (−); these

variables were expressed as numbers and percentages. Following

that, univariate and multivariate logistic regression analyses were

performed to identify the relationship between clinical factors and

LVI status. The LASSO analysis was conducted using the ‘glmnet’

package in the R software, and the nomogram, calibration curve and
Frontiers in Oncology 04
decision curve were made using the ‘rms’ and ‘rmda’ packages.

Diagnosis efficacy was assessed using the receiver operating

characteristic (ROC) curve with the area under the curve (AUC).
3 Results

3.1 Clinical characteristics

Table 1 lists the clinical factors of the training and validation

cohort patients. A total of 146 patients were included in this study,

including 82 patients with LVI (+) and 64 patients with LVI (−)

Among them, there were more male (n = 63) than female (n = 19)

patients in the LVI (+) group.

In the training cohort, the poor differentiation rate of LVI (−)

patients was higher than that of LVI (+) patients, and there was a

significant difference in Borrmann classification between LVI (+) and

LVI (−) (p < 0.05), and there was a significant difference in Lauren

type between LVI (+) and LVI (−) (p < 0.05). Other features – sex,

age, AFP, CEA, CA125, CA19-9 and diameter – had no statistical

difference between groups. In the validation cohort, there was a

significant difference in diameter between the two groups (p < 0.05),

and the other factors were not statistically significant. Whether in the

training or validation cohorts, the tumour diameter of LVI (+)

patients was more extensive than that of LVI (−) patients.
TABLE 1 Analysis of clinical characteristics.

Factors
Training cohort (n = 117) Validation cohort (n = 29)

LVI(-) LVI(+) P LVI(-) LVI(+) P

Gender, n (%)

0.672 0.494Male 42(77.8) 51(81.0) 5(50.0) 12(63.2)

Female 12(22.2) 12(19.0) 5(50.0) 7(36.8)

Age 62.41(±8.41) 63.76(±10.08) 0.301 59.50(±10.66) 64.26(±6.79) 0.073

AFP 3.20(3.38) 3.33(3.34) 0.928 2.94 (3.15) 3.10(3.59) 0.735

CEA 3.20(2.87) 2.33(3.92) 0.166 2.23(2.03) 3.13(6.10) 0.138

CA125 11.50(9.23) 9.43(7.38) 0.226 10.32 (4.92) 12.03(8.50) 0.266

CA19-9 10.90(11.57) 11.26(15.05) 0.557 10.41 (18.69) 15.30(30.05) 0.211

Diameter 16.76(±4.84) 18.68(±5.77) 0.378 13.98(±3.78) 19.21(±7.79) 0.034

Differentiation, n (%) 0.001 0.798

well 7(13.0) 2(3.2) 1(10.0) 3(15.8)

moderate 31(57.4) 21(33.3) 3(30.0) 7(36.8)

poor 16(29.6) 40(63.5) 6(60.0) 9(47.4)

Borrmann, n (%) 0. 044 0.269

I 5(9.3) 2(3.2) 1(10.0) 1(5.3)

II 25(46.3) 19(30.2) 4(40.0) 10(52.6)

III 18(33.3) 37(58.7) 2(20.0) 7(36.8)

IV 6(11.1) 5(7.9) 3(30.0) 1(5.3)

(Continued)
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3.2 Feature selection

A total of 1,702 radiomic features were initially extracted from

the segmented CT images of the GC ROI, and 1,389 features with

ICC ≥0.75 were retained. After the independent sample t-test or

Mann–Whitney U test, 97 features with p <0.05 were retained. To
Frontiers in Oncology 05
reduce dependency and redundancy, LASSO regression was used to

reduce the dimensions of these features (Figures 2A, B). After

adjusting the parameter l by tenfold cross-validation, the optimal

feature subset containing 8 features was finally obtained for model

construction (Table 2, Figure 2C). After the Pearson correlation

coefficient analysis, no high correlation was found between the
TABLE 1 Continued

Factors
Training cohort (n = 117) Validation cohort (n = 29)

LVI(-) LVI(+) P LVI(-) LVI(+) P

Lauren, n (%) 0.001 0.790

intestinal 34(63.0) 18(28.6) 4(40.0) 6(31.6)

diffuse 8(14.8) 24(38.1) 4(40.0) 7(36.8)

mixed 12(22.2) 21(33.3) 2 (20.0) 6(31.6)
LVI (-) vascular invasion is negative, LVI (+) vascular invasion is positive, n cases.
FIGURE 2

(A) LASSO the two vertical dotted lines in figure a represent the logarithm l of the minimum mean square error (lambda.min) (left dashed line) and the
logarithmic l (right dashed line) of the minimum distance standard error (lambda.1se); lmabda.min is the best value, and lambda.1se is a model with
excellent performance and the least number of independent variables. (B) Each curve in b represents the changing trajectory of each independent
variable coefficient, the ordinate is the coefficient value, and the Abscissa is the number of non-zero coefficients in the model at this time. With the
continuous increase of the parameters, the coefficient is finally compressed to a variable of 0, which shows that it is more important. The dotted line in
the graph is the number of features under the lambda.1se parameter. (C) The vertical coordinate of the feature weight diagram represents the feature
name, and the Abscissa represents the coefficient value; Coefficients: coefficient. (D) The scale on the right side of the correlation coefficient heat map
shows the color depth corresponding to different correlation coefficients, and the higher the color is, the greater the correlation is; as can be seen from
the figure, the maximum correlation coefficient between each feature is 0.63, so there is no highly correlated feature pair.
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retained features (the maximum correlation coefficient was 0.63);

therefore, there was no redundant feature (Figure 2D). The retained

8 imaging features were calculated according to Rad-score, and

finally the RS of each patient was obtained (Figure 3A).
Frontiers in Oncology 06
3.3 Establishment of model and evaluation
of diagnostic efficiency

Univariate andmultivariate logistic regression determined that the

diameter and differentiation were independent risk factors for LVI

(Table 3), and these two variables were included in logistic regression

to establish the clinical model. In addition, the radiomics model was

established based on the RS by using a multivariate logistic regression

algorithm, and the combined model was developed by integrating the

RS and clinical independent risk factors. In the training cohort, the

AUC values of the clinical model, the radiomics model and the

combined model were 0.709 (95% CI: 0.613–0.805), 0.852 (95% CI:

0.783–0.921) and 0.853 (95% CI: 0.784–0.920), respectively. In the

validation cohort, the AUC values of three correspondingmodels were

0.468 (95% CI: 0.239–0.697), 0.638 (95% CI: 0.391–0.881) and 0.742

(95% CI: 0.559–0.925), respectively. The combined model showed a

higher predictive capability in the training cohort; therefore, the

combined model was chosen as the final model and presented as a

nomogram. The specific performances of the models are shown in

Table 4. The ROC curves of the three models are illustrated in

Figures 3B, C, and the nomogram is presented in Figure 4A.
TABLE 2 Feature names and weight coefficient results.

Feature Phase Coefficients

wavelet.LLHglszmLow
GrayLevelZoneEmphasis

Arterial phase -1.574158e-02

wavelet.LLHngtdmContrast Venous phase -4.279167e-09

wavelet.HLHfirstorderMedian Venous phase 2.909216e-09

wavelet.HHLngtdmStrength Venous phase -6.950219e-02

wavelet.LHLfirstorderMedian.1 Arterial phase 1.330830e-01

wavelet.LHHglszmGrayLevel
NonUniformity.1

Arterial phase 2.157122e-01

wavelet.HLHglcmCorrelation.1 Venous phase -5.867018e-09

wavelet.HHHglszmGrayLevelNon
UniformityNormalized.1

Venous phase -1.189336e-01
FIGURE 3

(A) Rad-score Falls Map Abscissa each bar represents a patient, green represents the patient of LVI (-), pink represents the patient of LVI (), and the
ordinate represents Rad-score from-1 to 1. (B) ROC curve of the model a ROC curve of each model in the training set; (C) ROC curve of each
model in the test set.
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3.4 Calibration and clinical
usefulness analysis

The calibration curve analysis demonstrated good agreement

between prediction and observation for the nomogram (Figure 4B).

The decision curve analysis (DCA) for the radiomics model, the clinical

model and the combined model are presented in Figure 4C. The DCA

demonstrated the effectiveness of the three models in clinical decision-

making; the clinical application value of the combined model is seen to

be higher than that of the radiomics model and clinical model, and it

can provide better net benefits (Figure 4C).
4 Discussion

Among the clinical features, endoscopic biopsy and tumour

markers have become the routine preoperative examination of GC

(15, 16). However, at present, LVI is mainly found by postoperative

pathology, and accurate preoperative identification of LVI status

remains difficult. Radiomics can be used for GC screening,

particularly for early detection in high-risk populations. Usually,

the larger the tumour diameter (17) and the lower the degree of

differentiation are, the higher the tumour invasiveness and the
Frontiers in Oncology 07
higher the risk of LVI. In a study of 2,090 patients, Fujikawan et al.

(18) found that the maximum diameter of the tumour is one of the

factors affecting LVI, which agrees with the findings of this study. In

the study of the relationship between early GC vascular invasion

and prognostic factors, Choi et al. (19) concluded that the degree of

differentiation of early GC was statistically significant between the

LVI (−) group and the LVI (+) group. In this study, we

demonstrated that the tumour’s maximum diameter and

differentiation were independent risk factors of GC LVI. This

study also found that Borrmann typing is not a factor affecting

the positive rate of LVI, which is contrary to the results of some

studies (20, 21). The five tumour markers included in this study

have no statistical significance after statistical analysis, which is

different from the results of Ren (22) and Chen (23). The reason

may be different research participants (i.e. different populations in

different areas) or it may be caused by the small sample size of

this study.

Radiomics is an emerging analytical method to improve the

accuracy and sensitivity of GC diagnosis by assessing multiple

features of medical images. It helps in identifying tumours early,

including small or early malignancies, and is important in

improving treatment efficiency and patient survival (8, 9).

Although there are few studies on LVI of GC by radiomics, its
TABLE 4 ROC diagnostic performance of the model.

Training cohort model Validation cohort model

Clinical Radiomics C+R Clinical Radiomics C+R

AUC 0.709 0.852 0.853 0.468 0.638 0.742

95%CI 0.613-0.805 0.783-0.921 0.784-0.920 0.239-0.697 0.391-0.881 0.559-0.925

threshold 0.485 0.588 0.655 0.606 0.255 0.561

Accuracy 0.701 0.786 0.769 0.620 0.7 0.724

Sensitivity 0.761 0.777 0.650 0.631 0.842 0.736

Specificity 0.629 0.796 0.907 0.600 0.600 0.700
TABLE 3 Univariate and multivariate logistic regression analysis of clinical characteristics.

Variable Univariate Logistic Regression Multivariate Logistic Regression

b OR(95%CI) P b OR(95%CI) P

Gender 0.392 1.480(0.592-3.698) 0.401

Age -0.005 0.995(0.954-1.039) 0.828

AFP -0.003 0.997(0.992-1.002) 0.182

CEA 0.001 1.001(0.999-1.002) 0.354

CA125 0.001 1.001(0.991-1.011) 0.826

CA19-9 -0.012 0.988(0.975-1.002) 0.091

Diameter -0.077 0.926(0.862-0.995) 0.035 0.077 1.080(1.005-1.159) 0.035

Differentiation -0.795 0.452(0.220-0.926) 0.030 0.795 2.214(1.080-4.541) 0.030

Borrmann 0.263 1.300(0.725-2.333) 0.379

Lauren -0.383 0.682(0.425-1.094) 0.112
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application is promising. Some articles in imaging science also show

that wavelet changes are helpful in imaging analysis (24–27). The

combined model is established based on clinical characteristics and

RS, and RS is calculated according to the RAD score. No matter the

verification set or the test set, the combined model has the largest

AUC value and the highest diagnostic efficiency. Therefore, by

combining the maximum diameter and differentiation of the

tumour with the RS, the nomogram can be established, and the

calibration curve and DCA analysis can be carried out; the results of

this procedure are encouraging. Li (28) collected 1,062 patients with

GC based on enhanced CT imaging and established an imaging

group model and a deep learning model to study the preoperative

prediction of LVI status in patients with GC. Unlike the model

established by logistic regression in this study, it used other machine

learning (ML) models, namely random forest and support vector

machine. Yardımcı et al. (29) established eight ML models based on

CT to predict LVI for tubular gastric adenocarcinoma, although

they did not use the logistic regression method. Meng et al. (30)

included the task of predicting LVI in the multicentre comparative

study of two-dimensional (2D) and three-dimensional (3D) CT

imaging features of GC. The results showed that the AUC of the

model established with 3D features in the training verification set

was 0.618 and 0.615, which was lower than the AUC values of 0.704

and 0.677 for 2D features. Unlike the above study, this study
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selected the largest level of the tumour and its upper and lower

layers when outlining the ROI.

Chen et al. (31) carried out a retrospective analysis of 160 patients

with GC. Three predictive models were established according to the

imaging characteristics of arterial, venous and biphasic images, and

then three RAD scores were obtained by multivariate logistic

regression analysis. Four predictive models were established by

combining the three RAD scores with clinical risk factors, and a

total of seven predictive models were constructed. The nomogram for

predicting LVI was established. In this study, the RAD score was

established by using the characteristics of biphasic images and then

combined with clinical factors, the nomogram was established and

the decision curve (which is not found in the above research) was

analysed; the results were positive. Fan et al. (32) used different ML

classifiers with enhanced CT, PET/CT and clinical variables to

establish a model to predict the LVI state of GC before operation.

Three-dimensional manual segmentation was used to extract imaging

features from PET and VP CT images. This study aimed to extract

imaging features from AP and VP images.

This study has several limitations. First, it is a single-centre

retrospective study without multicentre validation; future studies

require multicentre data and prospective designs to evaluate current

studies. Second, the sample size of this study is small, and the

resulting sample error results in the prediction efficiency of the
FIGURE 4

(A) The nomogram consists of the maximum diameter of Diameter tumour; the degree of Differentiation; and RS imaging tagging. (B) The calibration
curve of the nomogram this chart shows that there is a high consistency between the observation and prediction results of the nomogram. (C) DCA
decision curve validation of three model’s clinical decision-making.
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training set being higher than that of the verification set. Third,

there is no 3D drawing of the whole tumour when sketching the

ROI. Some studies (33, 34) conclude that the model of drawing a 3D

ROI has better performance; therefore, in future research, we should

pay attention to the 3D ROI of the tumour.

5 Conclusion

Based on the preoperative clinical features of GC and enhanced

CT images, the imaging and clinical models for predicting vascular

invasion of GC and the combined model combined with imaging

and clinical features were established and verified. It was found that

the combined model offered the highest diagnostic efficiency. It was

found that the DCA analysis result of the nomogram was better,

which was beneficial in improving the clinical decision-making

efficiency of patients with GC. However, experiments based on

multicentre retrospective verification and prospective design of

large samples of 3D interest need to be further studied and verified.
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markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers:
European group on tumor markers 2014 guidelines update. Int J Cancer. (2014)
134:2513–22. doi: 10.1002/ijc.28384

17. Uzunoglu H, Kaya S. Short-term prognostic value of tumor diameter in stage 2 and 3
gastric cancer. J Coll Physicians Surg Pak. (2021) 31:288–93. doi: 10.29271/jcpsp.2021.03.288

18. Fujikawa H, Koumori K, Watanabe H, Kano K, Shimoda Y, Aoyama T. The
clinical significance of lymphovascular invasion in gastric cancer. In Vivo. (2020)
34:1533–9. doi: 10.21873/invivo.11942

19. Choi S, Song JH, Lee S, Cho M, Kim YM, Kim HI. Lymphovascular invasion:
traditional but vital and sensible prognostic factor in early gastric cancer. Ann Surg
Oncol. (2021) 28:8928–35. doi: 10.1245/s10434-021-10224-6

20. Wu L, Liang Y, Zhang C, Wang X, Ding X, Huang C. Prognostic significance of
lymphovascular infiltration in overall survival of gastric cancer patients after surgery with
curative intent.Chin J Cancer Res. (2019) 31:785–96. doi: 10.21147/j.issn.1000-9604.2019.05.08

21. Gresta LT, Rodrigues-Júnior IA, de Castro LP, Cassali GD, Cabral MM.
Assessment of vascular invasion in gastric cancer: a comparative study. World J
Gastroenterol. (2013) 19:3761–9. doi: 10.3748/wjg.v19.i24.3761
Frontiers in Oncology 10
22. Ren T, Zhang W, Li S, Deng L, Xue C, Li Z. Combination of clinical and spectral-
CT parameters for predicting lymphovascular and perineural invasion in gastric cancer.
Diagn Interv Imag. (2022) 103:584–93. doi: 10.1016/j.diii.2022.07.004

23. Chen QY, Hong ZL, Zhong Q, Liu ZY, Huang XB, Que SJ. Nomograms for pre-
and postoperative prediction of long-term survival among proximal gastric cancer
patients: A large-scale, single-center retrospective study. World J Clin Cases. (2019)
7:3419–35. doi: 10.12998/wjcc.v7.i21.3419

24. Zhou J, Lu J, Gao C, Zeng J, Zhou C, Lai X. Predicting the response to
neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in
MRI. BMC Cancer. (2020) 20:100. doi: 10.1186/s12885-020-6523-2

25. Jing R, Wang J, Li J, Wang X, Li B, Xue F. A wavelet features derived radiomics
nomogram for prediction of Malignant and benign early-stage lung nodules. Sci Rep.
(2021) 11:22330. doi: 10.1038/s41598-021-01470-5

26. Chaddad A, Daniel P, Niazi T. Radiomics evaluation of histological
heterogeneity using multiscale textures derived from 3D wavelet transformation of
multispectral images. Front Oncol. (2018) 8:96. doi: 10.3389/fonc.2018.00096

27. Jiang Z, Yin J, Han P, Chen N, Kang Q, Qiu Y. Wavelet transformation can
enhance computed tomography texture features: a multicenter radiomics study for
grade assessment of COVID-19 pulmonary lesions. Quant Imaging Med Surg. (2022)
12:4758–70. doi: 10.21037/qims-22-252

28. Li Q, Feng QX, Qi L, Liu C, Zhang J, Yang G. Prognostic aspects of
lymphovascular invasion in localized gastric cancer: new insights into the radiomics
and deep transfer learning from contrast-enhanced CT imaging. Abdom Radiol (NY).
(2022) 47:496–507. doi: 10.1007/s00261-021-03309-z
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