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Value of intralesional and
perilesional radiomics for
predicting the bioactivity of
hepatic alveolar echinococcosis
Simiao Zhang1†, Juan Hou1†, Wenwen Xia2, Zicheng Zhao3,
Min Xu3, Shouxian Li1, Chunhui Xu1, Tieliang Zhang1

and Wenya Liu1*

1Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China,
2Imaging Center, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining,
Xinjiang, China, 3CT Scientific Collaboration Department, CT Business Unit, Canon Medical Systems
(China) CO., LTD., Beijing, China
Objectives: To investigate the value of intralesional and perilesional radiomics

based on computed tomography (CT) in predicting the bioactivity of hepatic

alveolar echinococcosis (HAE).

Materials and methods: In this retrospective study, 131 patients who underwent

surgical resection and diagnosed HAE in pathology were included (bioactive,

n=69; bioinactive, n=62). All patients were randomly assigned to the training

cohort (n=78) and validation cohort (n=53) in a 6:4 ratio. The gross lesion volume

(GLV), perilesional volume (PLV), and gross combined perilesional volume (GPLV)

radiomics features were extracted on CT images of portal vein phase. Feature

selection was performed by intra-class correlation coefficient (ICC), univariate

analysis, and least absolute shrinkage and selection operator (LASSO). Radiomics

models were established by support vector machine (SVM). The Radscore of the

best radiomics model and clinical independent predictors were combined to

establish a clinical radiomics nomogram. Receiver operating characteristic curve

(ROC) and decision curves were used to evaluate the predictive performance of

the nomogram model.

Results: In the training cohort, the area under the ROC curve (AUC) of the GLV,

PLV, and GPLV radiomic models was 0.774, 0.729, and 0.868, respectively. GPLV

radiomic models performed best among the three models in training and

validation cohort. Calcification type and fibrinogen were clinical independent

predictors (p<0.05). The AUC of the nomogram-model-based clinical and GPLV

radiomic signatures was 0.914 in the training cohort and 0.833 in the validation

cohort. The decision curve analysis showed that the nomogram had greater

benefits compared with the single radiomics model or clinical model.
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Conclusion: The nomogram model based on clinical and GPLV radiomic

signatures shows the best performance in prediction of the bioactivity of HAE.

Radiomics including perilesional tissue can significantly improve the prediction

efficacy of HAE bioactivity.
KEYWORDS

computed tomography , hepat ic a lveolar echinococcos is , rad iomics ,
perilesional, nomogram
1 Introduction

Alveolar echinococcosis is a zoonotic parasitic disease caused by

the larva stage of Echinococcus multilocularis, which is popular in

pastoral areas. The liver is the most commonly involved organ. The

hepatic alveolar echinococcosis (HAE) presents as a slow-growing

multiple cystic invasive mass, which is surrounded by macrophages,

lymphocytes, and fibrocytes, and forms granuloma tissues

resembling a malignant tumor; hence, it is called “worm cancer”

(1). Currently, the preferred treatment of HAE is radical

hepatectomy. However, HAE shows no obvious symptoms in the

early stage; most patients are diagnosed late, as they already have

large hepatic lesions with vascular or biliary structure involvement.

Those patients have to receive a liver transplant or a long-term

treatment with the drug. Therefore, it is important to identify the

bioactivity of the lesion, which means the ability of the hydatid

tapeworm to survive and to invade outward, as early as possible to

determine the treatment strategy of the patients.

In the early 1990s, Wen et al. (2) proposed that there was an

“infiltration zone” around HAE lesions, which formed granuloma

tissues with no clear margins with the adjacent normal liver

parenchyma, and determined the occurrence and expansion of

HAE. Studies found that microvascular infiltration exists in the

area of HAE, which is likely involved in the trafficking of immune

cells and can be used to assess its bioactivity (3). However, it is

challenging to quantify the microvessel density (MVD)

preoperatively. Although researchers found that the proliferation

and bioactivity of HAE lesions can be evaluated by CT perfusion,

dual-energy CT imaging, diffusion-weighted magnetic resonance

imaging (MRI), and positron emission tomography/computed

tomography (PET/CT), these functional imaging techniques were

difficult to popularize, as HAE was prevalent in less developed

pastoral areas (4–6).

Radiomics incorporates a series of computational technologies.

It can extract large amounts of high-dimensional quantitative

features from multimodality medical images, then the mining of

correlations between these features, and the diagnosis or prognosis

of disease, which provides quantitative and objective support for

disease detection and treatment (7, 8). A systematic review and

meta−analysis found that radiomics models showed promising

prediction performance for predicting microvascular invasion
02
(MVI) in hepatocellular carcinoma (HCC) (9). Ren et al. (10) had

developed and validated a radiomics model as an adjunct tool to

predict the HAE bioactivity by combining T2-weighted imaging

(T2WI), which achieved results nearly equal to the PET/CT

findings. However, there were no studies on the perilesional

radiomics of HAE. The present study aimed to explore the

perilesional radiomics based on CT in predicting the bioactivity

of HAE.
2 Materials and methods

This retrospective study was approved by the institutional

Ethics Committee of the First Affiliated Hospital of Xinjiang

Medical University (No. K202312–38), and patient informed

contents were waived.
2.1 Study population

The pathological database of the First Affiliated Hospital of

Xinjiang Medical University between January 2015 and December

2021 was searched. The inclusion criteria were as follows: (1) HAE

was confirmed by pathology; (2) the bioactivity of HAE lesions was

determined; (3) contrast-enhanced abdominal CT was performed

within 2 weeks before surgery; and (4) CT images was complete and

met the diagnostic requirements. The exclusion criteria were as

follows: (1) clinicopathological record was incomplete; (2) the liver

lobes were abnormally developed; (3) there were other malignant

tumors; (4) interventional therapy before surgery was performed;

and (5) the lesion edges were not easily segmented.

Finally, a total of 131 patients were eligible. All patients were

randomly divided into training cohort and validation cohort at the

ratio of 6:4 (training cohort, n=78; validation cohort,

n=53), respectively.
2.2 Pathological diagnosis of bioactivity

According to previous studies, perilesional MVD reflects the

bioactivity of the HAE (3). Two physicians with 10 years of
frontiersin.org
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pathological diagnosis who were blinded to the information

of patients interpreted the MVD of all patients independently.

First of all, each section with CD34-stained tissue was processed

at low magnification (×40) to spot three hotspots representing the

local areas of the highest microvessel density. Second, MVD was

counted with high magnification (×200) for clear imaging and

better counting. The mean count of the large and small

microvessels in each of the three hotspot areas was the final

MVD. The MVD > 15 was considered bioactive for HAE.
2.3 Clinical model construction

Clinical features included age, sex, smoking history, calcification

type, and some relevant laboratory tests, such as white blood cells

(WBC), neutrophils count (NE), lymphocyte count (LY), fibrinogen

(Fib), platelet count (PLT), creatinine (Crea), total bilirubin (TBIL),

aspartate aminotransferase (ASL), alanine aminotransferase (ALT),

and prothrombin time (PT). The independent predictors from

traditional features were identified by univariate and multivariate

logistic regression for the construction of clinical model.
2.4 Image acquisition

All enrolled patients have taken CT examinations with the

following two scanners: Aquilion ONE Genesis Edition (Canon

Medical Systems, Japan) and GE Discovery HD750 (GE Medical

Systems, Milwaukee, WI, USA). Patients were injected with

iodinated contrast material (350 mg I/mL, 1.5 mL/kg) through

the median cubital vein using a double-head power injector

(injection rate, 3.0 mL/s), followed by a 30-mL saline flush at the

same injection rate. The artery phase was started immediately when

the CT value of the region of interest (ROI) reached the threshold of

180 HU. The portal venous phase and delayed phase were obtained

at 50–70 s and 90–120 s, respectively, after injection of contrast.
Frontiers in Oncology 03
2.5 Lesion segmentation and
features extraction

Figure 1B shows the workflow of this study. Two radiologists

with 5 years and 10 years of experience, who were blinded to the

patients’ clinical information, depicted the volume of interest (VOI)

of lesion in portal venous phase. If there was more than one lesion

in the liver, the largest one was selected. Before segmentation, the

gray value of all images was standardized. The extracted features

were standardized using z-score normalization, which adhere to

each feature with a mean of 0 and a standard deviation of 1. The

edge of the lesion was marked by manual operation, and the

perilesional was defined as the liver parenchyma within a distance

of 10 mm outside the lesion edge, which was automatically

segmented by 3D Slicer (version 4.13.0). The detailed steps were

as follows: imported the axial images with a layer thickness of 5 mm

into the software, marked the lesion edges layer by layer for the VOI

of GLV with the CT value ranged from 200 HU to 500 HU, copied

the GLV as a new segmentation, and grew by specified margin size

of 10 mm. The final step was to erase the blood vessels and bile

ducts and anything beyond the liver to get the VOI of PLV.

The radiomics features were then extracted from each VOI

using open-source Pyradiomics (version 3.0.1, https://

pyradiomics.readthedocs.io/en/latest/index.html) toolbox and

processed using Scikit-learn (version 1.0.2, https://scikit-learn.org/

stable/index.html) package.
2.6 Feature selection and radiomics
model construction

First, CT images of 30 patients were selected randomly to

evaluate the inter-reader consistency of radiomics features labeled

from the two radiologists. The ICC >0.9 was considered

reproducible features, and the remaining features were excluded

in the further analysis.
A B

FIGURE 1

(A) Flow chart of patient enrollment; (B) the radiomics workflow.
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Next, the univariate analysis (one-way ANOVA) was used to

assessed statistical difference between features and bioactivity, and

only features with a p-value <0.05 was retained. The least absolute

shrinkage and selection operator (LASSO) was performed to further

select the most significant features. A 10-fold cross-validation was

applied to determine the optimal lambda value, minimizing the

prediction error.

Five conventional machine learning algorithms was used to

illustrate the stability and robustness of the performance of the

models, including support vector machine (SVM), logistic

regression (LR), random forest (RF), decision tree (DT), and k

nearest neighbors (KNN). The best classifier was chosen according

to the mean AUC results obtained from a 10-fold cross-validation

with 100 iterations.
2.7 Clinical radiomics
nomogram construction

The statistical difference of patient baseline characteristics and

HAE-related clinical factors according to univariate and

multivariate analyses were performed to identify the independent

predictors. The best radiomics model and the predictors were then

used to construct the nomogram based on the logistic regression. In

addition, the nomogram facilitates prediction by summing the

points corresponding to all predictors, thereby determining the

risk of bioactivity. It offers a direct and visual representation of

the assessment for bioactivity of HAE. The predictive accuracy of

the nomogram was assessed using the Hosmer–Lemeshow test. The

decision curve analysis (DCA) was performed to assess the clinical

utility of the nomogram.
2.8 Statistical analysis

Statistical analyses were performed using R software (version

4.2.2; http://www.R-project.org). General information were

expressed as the mean ± standard deviations (SD) or frequency.

The chi-square test was used for categorical variables. The ICC

value of concordance was used to measure the degree of agreement

between the two experienced radiologists. The independent

predictors of the bioactivity of HAE were determined by

univariable and multivariable logistic regression analysis. Bilateral

p-values < 0.05 were considered statistically significant. The ROC

curve was drawn, and the AUC was calculated to evaluate the

diagnostic performance of each model. DeLong test was used to

assess differences in AUC between models.
3 Results

3.1 Clinical features

The flowchart of patients enrolled is shown in Figure 1A. A total

of 131 patients were included (bioactive, n=69; bioinactive, n=62).

The training and validation cohort included 78 and 53 patients,
Frontiers in Oncology 04
respectively. The clinical features of the two cohorts are shown in

Table 1. There were no statistically significant differences in age, sex,

smoking history, WBC, NE, LY, PLT, Crea, TBIL, ASL, ALT, and

PT between the training cohort and validation cohort (all p > 0.05).

Both univariate and multivariate logistic regressions showed

statistical difference in calcification type and fibrinogen (p<0.05),

which were selected to established the clinical model (Table 2).
3.2 Radiomics analysis

A total of 1,037 radiomics features were extracted from the

images for each patients, including 14 shape features, 18 first-order

features, and 75 high-order features, containing 24 gray-level co-

occurrence matrix (GLCM) features, 16 gray-level run length

matrix (GLRLM) features, 16 gray-level size zone matrix

(GLSZM) features, 14 gray-level dependence matrix (GLDM)

features, and five neighboring gray tone difference matrix

(NGTDM) features. These features were initially extracted from

the original images, yielding a total of 107 features. Additionally,

excluding shape features, eight wavelet transform filters and two

Laplacian of Gaussian filters were applied to the first- and high-

order features to generate (18 + 75) × 10 = 930 filtered features. A

total of 974 features had good reliability with ICC > 0.90. After

ANOVA, there were 162, 52, and 340 features selected with GLV,

PLV, and GPLV, respectively. Finally, a total of 7, 5, and 10 optimal

radiomics features were selected by applying LASSO method,

respectively (Figure 2). Detailed information regarding the feature

classes and names is shown in Table 3.

The prediction performances of different machine learning

models in training and validation cohort are shown in Table 4,

which were averaged after 100 iterations. In general, all the machine

learning models performed well, and the SVM showed the highest

AUC both in the two cohorts (training cohort, 0.791; validation

cohort, 0.776).

The AUC of GLV were 0.774 (95% CI, 0.669–0.878) and 0.736

(95% CI, 0.602–0.870) in training cohort and validation cohort,

respectively. The AUCs of PLV were 0.729 (95% CI, 0.618–0.840)

and 0.674 (95% CI, 0.528–0.820) in training cohort and validation

cohort, respectively. The GPLV had the highest AUC among the

three models: 0.868 (95% CI, 0.790–0.945) in the training cohort

and 0.777 (95% CI, 0.652–0.903) in the validation cohort. As shown

in Table 5, the sensitivity and specificity of GPLV were 0.854 and

0.757 in the training cohort and 0.736 and 0.750 in the validation

cohort, respectively. Therefore, the GPLV model performs best in

predicting the bioactivity of HAE; it can be inferred that the

radiomics feature of PLV can be an important auxiliary tool for

the diagnosis and treatment of HAE.
3.3 Clinical radiomics
nomogram evaluation

The GPLV-Radscore, calcification type, and fibrinogen were

incorporated into the nomogram (Figure 3). Figures 4A, B shows

that clinical model, GPLV radiomics model, and nomogram had an
frontiersin.org
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TABLE 1 Baseline patient characteristics in training and validation cohort.

Characteristics

Training cohort Validation cohort

BA-active
(n = 41)

BA-inactive
(n = 37)

p-value BA-active
(n = 28)

BA-inactive
(n = 25)

p-value

Age 0.862 0.823

≤50 years 36 32 22 19

>50 years 5 5 6 6

Sex 0.764 0.232

Male 18 15 10 13

Female 23 22 18 12

Smoking 0.274 0.487

No 16 19 13 14

Yes 25 18 15 11

Calcification type <0.001 <0.001

I 2 13 1 12

II 23 20 15 11

III 16 4 12 2

WBC 0.848 0.883

≤9.5×109/L 36 33 25 22

>9.5×109/L 5 4 3 3

NE 0.561 0.122

≤6.3×109/L 39 34 27 21

>6.3×109/L 2 3 1 4

LY 0.368 0.486

≤3.2×109/L 35 34 27 23

>3.2×109/L 6 3 1 2

Fib <0.001 <0.001

≤4 g/L 39 14 23 3

>4 g/L 2 23 5 22

PLT 0.731 0.471

≤350 g/L 38 35 24 23

>350 g/L 3 2 4 2

Crea 0.116 0.340

≤110 µmol/L 36 36 27 25

>110 µmol/L 5 1 1 0

TBIL 0.070 0.205

≤22 µmol/L 27 31 18 20

>22 µmol/L 14 6 10 5

AST 0.220 0.275

≤59 U/L 27 29 20 21

>59 U/L 14 8 8 4

(Continued)
F
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AUC of 0.754, 0.868, and 0.914 in the training cohort, respectively.

Similarly, the AUCs in the validation cohort were 0.719, 0.777, and

0.833 in the three models, respectively. Delong test showed that the

AUC of the nomogram was significantly different from the clinical

model and GPLV radiomics model (all p < 0.05). Notably, the DCA

curves showed that the nomogram had greater benefits compared

with the single radiomics model or clinical model (Figures 4C, D).
4 Discussion

This retrospective study explored the clinical value of

perilesional radiomics based the portal venous phase of CT

images in predicting bioactivity of HAE. The results showed that

the radiomics model that integrates the lesion and surrounding

tissue has the best predictive value. Then, we established a
Frontiers in Oncology 06
nomogram based on Radscore of the best radiomics model and

independent predictors of clinical model; it had shown higher

application value in predicting the bioactivity of HAE.

Radical surgical resection is the main treatment for HAE (11).

Expert consensus suggests a 20-mm safe distance for removing the

lesion and the active infiltration zone at the edge of the lesion (12).

A study from China has shown that there would be residual disease

if the surgical margin was <10 mm, but the long-term survival rates

could be nearly 100% by adding chemotherapy with Albendazole

after surgery (13). Researchers have shown that the radical resection

can be achieved at a distance of more than 10 mm (2). Therefore, in

our study, the scope of 10 mm outside the lesion was defined

as PLV.

HAE has a tendency to invade neighboring tissues like liver

cancer (14). Similarly, it has been proposed that the area around the

HAE lesion has aggregations of new blood vessels and immune
TABLE 1 Continued

Characteristics

Training cohort Validation cohort

BA-active
(n = 41)

BA-inactive
(n = 37)

p-value BA-active
(n = 28)

BA-inactive
(n = 25)

p-value

ALT 0.092 0.552

≤72 U/L 29 32 23 22

>72 U/L 12 5 5 3

PT 0.560 0.805

≤38 s 27 22 17 16

>38 s 14 15 11 9
BA, bioactivity; WBC, white blood cells; NE, neutrophils count; LY, lymphocyte count; Fib, fibrinogen; PLT, platelet count; Crea, creatinine; TBIL, total bilirubin; ASL, aspartate aminotransferase;
ALT, alanine aminotransferase; PT, prothrombin time.
TABLE 2 Logistic regression analysis of clinical factors of patients in the training cohort.

Factors
Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Age 1.022 (0.981–1.065) 0.298

Sex 0.871 (0.354–2.144) 0.764

Calcification level 4.818 (1.996–11.632) <0.001 4.207 (1.376–12.861) 0.012

Smoking 1.649 (0.671–4.055) 0.276

WBC 1.022 (0.884–1.182) 0.764

NE 0.957 (0.741–1.237) 0.738

LY 1.169 (0.899–1.521) 0.244

Fib 0.153 (0.066–0.352) <0.001 0.133 (0.049–0.359) <0.001

PLT 0.999 (0.994–1.004) 0.624

Crea 1.017 (0.990–1.045) 0.230

TBIL 1.027 (0.998–1.057) 0.064

AST 1.015 (0.999–1.032) 0.065

ALT 1.006 (0.998–1.015) 0.133

PT 1.101 (0.942–1.285) 0.226
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TABLE 3 ICC of the selected features in the three models.

Model
Feature

ICC
Image type Feature class Feature name

GLV wavelet-LHL glcm MCC 0.906

wavelet-LHL glcm ClusterShade 0.958

wavelet-LHL firstorder Maximum 0.915

wavelet-LHL firstorder Minimum 0.930

Wavelet-LLL glcm JointEnergy 0.913

original glszm LowGrayLevelZoneEmphasis 0.918

log-sigma-1–0-mm-3D glszm LargeAreaLowGrayLevelEmphasis 0.954

PLV wavelet-LHL firstorder Maximum 0.915

wavelet-LHL gldm LowGrayLevelEmphasis 0.927

wavelet-LHH gldm LowGrayLevelEmphasis 0.936

wavelet-HHH gldm SmallDependenceLowGrayLevelEmphasis 0.935

wavelet-HLH glcm ClusterProminence 0.943

GPLV wavelet-LHL glcm MCC 0.906

(Continued)
F
rontiers in Oncology
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C

FIGURE 2

(A) The selected features of GLV model, (B) the selected features of PLV model, (C) the selected features of GPLV model.
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TABLE 3 Continued

Model
Feature

ICC
Image type Feature class Feature name

wavelet-LHL glcm ClusterShade 0.958

wavelet-LHL glrlm ShortRunLowGrayLevelEmphasis 0.942

wavelet-LHL firstorder Maximum 0.915

wavelet-LHH gldm LargeDependenceLowGrayLevelEmphasis 0.942

Wavelet-LHH glszm LargeAreaLowGrayLevelEmphasis 0.939

wavelet-HHH gldm DependenceVariance 0.903

original glszm SmallAreaEmphasis 0.908

log-sigma-1–0-mm-3D firstorder Kurtosis 0.946

log-sigma-3–0-mm-3D glrlm RunEntropy 0.908
F
rontiers in Oncology
 08
TABLE 5 Prediction performance of three models in training and validation cohorts.

Model
AUC
(95% CI)

Accuracy Sensitivity Specificity PPV NPV Youden index

GLV

Training cohort
0.774
(0.669–0.878)

0.744 0.780 0.703 0.744 0.743 0.483

Validation
cohort

0.736
(0.602–0.870)

0.698 0.734 0.690 0.715 0.729 0.424

PLV

Training cohort
0.729
(0.618–0.840)

0.679 0.688 0.692 0.733 0.711 0.380

Validation
cohort

0.674
(0.528–0.820)

0.660 0.621 0.680 0.706 0.639 0.301

GPLV

Training cohort
0.868
(0.790–0.945)

0.808 0.854 0.757 0.795 0.824 0.611

Validation
cohort

0.777
(0.652–0.903)

0.736 0.750 0.720 0.739 0.731 0.470
GLV, gross lesion volume; PLV, perilesional volume; GPLV, gross combined perilesional volume; PPV, positive predictive value; NPV, negative predictive value.
TABLE 4 Prediction performance of different machine learning models in training and validation cohort.

Classifiers
Training cohort Validation cohort

AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity

SVM
0.791
(0.781–0.802)

82.60% 75.30% 90.30%
0.776
(0.766–0.786)

73.80% 71.30% 76.60%

KNN
0.765
(0.754–0.775)

77.20% 70.50% 84.20%
0.716
(0.706–0.726)

67.70% 65.10% 70.50%

RF
0.711
(0.699–0.723)

77.60% 69.00% 86.90%
0.685
(0.673–0.697)

68.20% 67.40% 69.20%

DT
0.729
(0.718–0.740)

75.10% 67.70% 83.20%
0.647
(0.634–0.661)

64.70% 61.60% 68.10%

LR
0.783
(0.773–0.794)

81.50% 74.70% 88.70%
0.761
(0.752–0.771)

72.60% 69.60% 72.50%
SVM, support vector machine; KNM, k-nearest neighbor); RF, random forest; DT, decision tree; LR, logistic regression; AUC, the area under the curve.
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A B

DC

FIGURE 4

(A) The ROC curve for the three models in the training cohort, (B) the ROC curve for the three models in the validation cohort, (C) the DCA curve
for the three models in the training cohort, (D) the DCA curve for the three models in the validation cohort.
FIGURE 3

An individualized nomogram on Radscore and clinical features. The variables fibrinogen, calcification type, and Radscore have their own
independent scale as shown in the figure, representing their respective value ranges. Each variable has a corresponding single item score at different
values. The total score, summing each value of the variable, corresponds to the risk of bioactivity.
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cells, which serves as the basis for the alveolar hydatid to survive

and infiltrate the surrounding area (15). However, it is impossible to

give exact statement on the disease activity in AE without having a

specimen on which to perform histological examination (16). How

to obtain the bioactivity of HAE lesions under non-invasive

conditions is worth considering. Imaging plays a pivotal role in

the diagnosis and treatment of diseases; the new blood vessels can

show enhancement after injection of the contrast agent (17). While

CT and MRI can provide valuable information on disease

distribution, morphological changes do not always accurately

represent viable residual disease or can change only minimally

even under response to treatment, thus hampering further

treatment stratification (18). Functional imaging such as diffusion

weighted imaging (DWI), perfusion-weighted imaging (PWI),

contrast-enhanced ultrasound (CEUS), and PET/CT can detect

the bioactivity of HAE to a certain extent; in particular, 18F-

flurodeoxyglucose (18F-FDG) PET/CT was recommended by the

WHO Informal Working Group to assess the activity of HAE (16–

19). However, it is hard to popularize these functional imaging

examinations in pastoral areas with high HAE incidence. In this

study, we chose the most conventional CT portal phase images as

the study sequence because it can clearly show the boundary of the

lesion and the images are easy to obtain.

Radiomics has played a unique role in determining the

heterogeneity of diseases, which has be used in diseases of various

systems of the body (20, 21). In this study, GLV model, which was

based on the VOI of the whole lesion, showed a good prediction

effect. However, more and more studies have shown that the area

around the lesion that appears macroscopically normal also has

microscopic heterogeneity (22, 23). In our study, the PLV model

based on the surrounding tissue of 10 mm had also achieved good

results in predicting the bioactivity of HAE lesions. Delong test

showed GPLV models, combined lesion and perilesion volume, had

the best AUC (training, 0.868; validation, 0.777). This is consistent

with a study on microvascular invasion in hepatocellular carcinoma

(24). Not only in liver cancer but also in many other diseases in

which studies have confirmed that the peritumoral model can be

auxiliary to the intratumoral model so as to improve the application

value of imaging radiomics in clinical work (25–28). This study is

the first time to establish a PLV model in HAE. The PLV model

performed well when applied alone; as expected, the prediction

performance was greatly improved when it combined with GLV

and clinical predictors. This also confirmed that there was

heterogeneity in the microenvironment around the perilesional

tissue of HAE.

Clinical features were analyzed in this study by univariate and

multifactor logistic regression. Calcification type and fibrinogen had

significant difference between the active group and inactive group in

the training cohort. Moreover, this study combined the Radscore of

the best radiomics model with clinical features to establish

nomogram, which made the model visualization. Compared with

the clinical model and GPLV model, nomogram showed the highest

AUC (training, 0.914 vs. 0.868 vs. 0.754; validation, 0.833 vs. 0.777

vs. 0.719). DCA image showed that the nomogram had the best

clinical application value.
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Our study has several limitations. First, it is a single-center

study with a relatively small sample size. Second, we only studied

the PLV with 10 mm margin; it is necessary to build multiple

models for further subdivision of the perilesion for precise diagnosis

and treatment.
5 Conclusion

In conclusion, the nomogram model based on clinical and

GPLV radiomic signatures shows the best performance in the

prediction of the bioactivity of HAE. Radiomics including

perilesional tissue can significantly improve the prediction efficacy

of HAE bioactivity.
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