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Gene signatures of copper
metabolism related genes may
predict prognosis and immunity
status in Ewing’s sarcoma
Yongqin Chen1†, Wencan Zhang1†, Xiao Xu2, Biteng Xu1,
Yuxuan Yang1, Haozhi Yu1, Ke Li1, Mingshan Liu1, Lei Qi1*

and Xiejia Jiao3*

1Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China, 2Sterile
Supply Department, The First People Hospital of Jinan, Jinan, Shandong, China, 3Department of
Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong, China
Background: Cuproptosis is copper-induced cell death. Copper metabolism related

genes (CMRGs)weredemonstrated that used toassess theprognosis out of tumors. In the

study, CMRGs were tested for their effect on TME cell infiltration in Ewing’s sarcoma (ES).

Methods: The GEO and ICGC databases provided the mRNA expression profiles and

clinical features for downloading. In the GSE17674 dataset, 22prognostic-related

copper metabolism related genes (PR-CMRGs) was identified by using univariate

regression analysis. Subsequently, in order to compare the survival rates of groupswith

high and low expression of these PR-CMRGs,Kaplan-Meier analysis was implemented.

Additionally, correlations among themwere examined. The study employed functional

enrichment analysis to investigate probable underlying pathways, while GSVA was

applied to evaluate enriched pathways in the ES (Expression Set). Through an

unsupervised clustering algorithm, samples were classified into two clusters,

revealing significant differences in survival rates and levels of immune infiltration.

Results: Using Lasso and step regression methods, five genes (TFRC, SORD, SLC11A2,

FKBP4, and AANAT) were selected as risk signatures. According to the Kaplan-Meier

survival analysis, the high-risk group had considerably lower survival rates than the low-risk

group(p=6.013e-09). The area under the curve (AUC) values for the receiver operating

characteristic (ROC) curve were 0.876, 0.883, and 0.979 for 1, 3, and 5 years, respectively.

The risk model was further validated in additional datasets, namely GSE63155, GSE63156,

and the ICGC datasets. To aid in outcome prediction, a nomogram was developed that

incorporated risk levels and clinical features. This nomogram’s performancewas effectively

validated through calibration curves.Additionally, the study evaluated the variations in

immune infiltration across different risk groups, as well as high-expression and low-
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expression groups. Importantly, several drugs were identified that displayed sensitivity,

offering potential therapeutic options for ES.

Conclusion: The findings above strongly indicate that CMRGs play crucial roles in

predicting prognosis and immune status in ES.
KEYWORDS

Ewing’s sarcoma, copper metabolism related genes, prognostic-related copper
metabolism related genes, functional enrichment, immune infiltration, risk model,
clinical features
GRAPHICAL ABSTRACT

Flow chart. PR-CMRGs: prognostic-related copper metabolism related genes. DEGs, differentially expressed genes; GSVA, Gene Set Variation Analy-
sis; PPI, protein-protein interaction.
1 Introduction

Ewing’s sarcoma (ES) is a very aggressive cancer that mostly

impacts the skeletal system and soft tissues in individuals who are in

their childhood or teenage years (1). The documented prevalence of

ES is 2.9 occurrences per million individuals annually (2). ES was

distinguished by the merging of the EWSR1 gene with the FLI1 gene

in previous researches (3, 4). The FLI1 gene belongs to the ETS gene

group. A novel inhibitor of ETS proteins called TK216 has shown

clinical benefits for almost half of the patients (5). The dedication of

researchers and clinicians has advanced ES therapy. Traditionally,

the main approach for treating ES has been a combination of

surgery and radiation. However, despite comprehensive therapy,

approximately 30–40% of patients continue to encounter

recurrence or metastases. Less than 10% of ES patients with

metastases still survive after five years. Currently, treating ES

patients remains immensely challenging, necessitating the urgent
02
identification of dependable intervention biomarkers to

advance therapy.

Copper plays a crucial role in mitochondrial respiration,

antioxidant defense, and programmed cell death (6).

Maintaining an appropriate copper concentration is crucial for

the survival of living organisms. Oxidative stress and cytotoxicity

result from excessive copper levels, while copper deficiency can

also be detrimental (7, 8). Cuproptosis is a novel kind of cellular

demise induced by copper. In the tricarboxylic acid (TCA) cycle,

copper ions bind to lipoylated components and engage in certain

cellular interactions. This leads to the clustering of these copper-

bound lipoylated proteins in the mitochondria, which in turn

reduces the levels of iron-sulfur (Fe-S) clusters. This process

causes proteotoxic stress and eventually leads to the death of the

cell (6). Cu fills an essential function in the advancement and

growth of cancer by stimulating the multiplication of cells, the

formation of new blood vessels, and the spread of cancer cells to
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other parts of the body. Recent research indicates that the Cu-

complex might be a promising target for cancer treatment. Cu has

been found to induce apoptosis and/or the formation of free

radicals, leading to the death of cancer cells (9, 10). Notable

advancements in copper metabolism have been made in recent

years. Several studies have revealed significant regulation of

metabolism by proteins involved in copper handling and

utilization in proliferating cells (11, 12). Cuproplasia, a novel

kind of copper-dependent cell growth and proliferation, has been

discovered (13). Both neoplasia and hyperplasia are included

under this phrase. Growing evidence underscores the deep

involvement of copper metabolism in cancer proliferation,

angiogenesis, and metastasis (14, 15). Copper dysregulation is

observed in cancer tissue than normal tissue (16–18). Various

cancers have exhibited elevated amounts of copper (19).

Additionally, copper imbalance is closely associated with

weakened immune responses in cancer. Hence, a potential

prognostic model based on CMRGs could effectively predict the

prognosis and immune status of ES.

There is no study suggested that the mechanism of TFRC, SORD,

SLC11A2, FKBP4, and AANAT in cuproptosis. In this study, we

identified five signatures (TFRC, SORD, SLC11A2, FKBP4, and

AANAT) based on CMRGs, which robustly predict ES prognosis.

TFRC, SLC11A2, FKBP4, and AANAT were demonstrated

associated with increased risk, while SORD was a favorable

prognostic factor. Furthermore, we elucidated the correlation

between these signatures and immune status. Ultimately, we

concluded that CMRGs play a pivotal role in ES prognosis and

immunity, providing valuable guidance for future research.
2 Manuscript formatting

2.1 Material and methods

2.1.1 Data collection and preprocessing
Using the Molecular Signatures Database (MSigDB: https://

www.gsea-msigdb.org/gsea/msigdb), we were able to identify 133

copper metabolism-related genes (Supplementary Table 1).Using

the “GEOquery” software, we extracted profile matrices and

clinical/survival data for this investigation from the GSE17674,

GSE63155, and GSE63156 datasets in the Gene Expression

Omnibus (GEO) database. We standardized all probe information

to corresponding gene symbols based on annotation files using a

consistent approach: when one gene symbol matched more than

one probe, we eliminated the probes that had multiple gene symbols

and chose the probe with the greatest expression value. GSE17674,

comprised of 44 ES and 18 muscle samples, used the GPL570

platform. The GSE63155 and GSE63157 datasets, each containing

39 and 46 ES samples, respectively, were generated by the GPL5175

platform. Additionally, we obtained clinical data and expression

profiles for 49 ES samples from the database of International Cancer

Genome Consortium (ICGC). We designated GSE17674 as the

training dataset, and GSE63155, GSE63156, and ICGC datasets as

external test datasets. The flow chart of the study as follows

(Graphical Abstract).
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2.1.2 Landscape of prognostic related CMRGs
in ES

To assess the prognostic significance of CMRGs, we conducted

univariate Cox regression analysis. We identified 22 CMRGs as

prognostically relevant (PR-CMRGs). Using the “ggplot2” package,

we visualized the results through a forest plot. Using the point_cut

function to determine the cutoff value for PR-CMRGs, we classified

the samples into categories based on their level of expression,

distinguishing between high and low expression. We performed

Kaplan-Meier analysis between these two expression groups using

the “tinyarray” package. Utilizing the same package, we investigated

the expression levels of PR-CMRGs in skeletal muscle and ES

samples. To analyze correlations among these prognostic genes, we

employed the “Pearson” method. The “corrplot” and “circlize”

packages were used to present the correlation analysis results. We

constructed a network of the 22 CMRGs using the “igraph” package

and visualized the chromosomal positions of PR-CMRGs using the

“RCircos” package.
2.1.3 Functional enrichment, PPI network
and GSVA

Using the “clusterProfiler” package, we performed functional

enrichment analysis (GO/KEGG) to uncover potential mechanisms

involving PR-CMRGs in ES. The results of the analysis were

visualized using the ggplot package. To gain insight into potential

interactions among PR-CMRGs, we identify protein interaction

networks (with a minimum required interaction score > 0.150) by

utilizing the STRING database (http://string-db.org/), and then

depicted these results using the “igraph” package.

Gene Set Variation Analysis (GSVA) was conducted based on

the “h.all.v7.5.1.symbols.gmt” gene set from the Molecular

Signature Database. Using the “limma” package, we identified the

differentially enriched scores of 50 pathways between ES and

normal tissue, and illustrated these findings with bar plots.
2.1.4 Construction of consensus
molecular clusters

Based on the PR-CMRGs matrix to identify distinct molecular

patterns that provide insight into the potential involvement of

CMRGs in ES, unsupervised clustering was employed. For this

task, we utilized the “ConsensusClusterPlus” package, known for its

interpretability. We utilized PCA and t-SNE methods to confirm

the differentiation of molecular clusters. To assess the survival

differences among these clusters, we employed Kaplan-Meier

curves. Additionally, we conducted an analysis of immune

infiltration to gain insights into the status of the tumor

microenvironment within these two clusters.

2.1.5 Establishment and validation of risk model
To streamline the PR-CMRGs, we conducted Lasso regression

analysis through the “glmnet” package. Utilizing the “survival”

package, we then employed stepwise regression to identify the

risk signature with the lowest Akaike’s information criterion

(AIC). In addition, we used the “ggplot2” package to present the

prognostic model via a forest plot.
frontiersin.org

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://string-db.org/
https://doi.org/10.3389/fonc.2024.1388868
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1388868
The subsequent equation: the prognostic risk model was

developed by conducting a study to calculate the risk score, which

is determined by multiplying the Ei coefficient of a gene with its

corresponding gene expression [risk score = Ei coefficient (gene i) ×

expression (gene i)]. Using the “survminer” package, the samples in

the datasets were classified into high risk and low risk groups based

on a predetermined cutoff value. Heatmaps, scatter plots, and PCA

plots showed signature expression, survival status distribution, and

risk score in different risk groups. Applying the Kaplan-Meier

analysis with log-rank testing, survival curves were produced for

these categories. Furthermore, using the “timeROC” package, the

reliability of the risk model was confirmed by utilizing AUC values

and time-dependent ROC curves.

Additionally, we evaluated the AUC of clinical features and risk

model effectiveness in different clinical subgroups. Wilcoxon test

was used to examine risk scores distribution in clusters and clinical

subgroups. An alluvial diagram was employed to depict the link

among risk groups, molecular clusters and clinical features.
2.1.6 Establishment and validation of nomogram
We used Cox regression analysis to see if the risk score could act

as a prognostic indication apart from clinical data(including gender,

age, and stage status).Subsequently, using the “rsm” package, a

nomogram was developed at risk level and clinical data, which

facilitated prognosis prediction. Finally, evaluate the nomogram’s

prediction accuracy at one, three, and five years, calibration curves

were used.
2.1.7 Analysis of immune infiltration
We utilized the ssGSEA method, implemented using the

“GSVA” package to evaluate the differing amounts of 13

immunological pathways and 28 immune cells across groups

classified as high and low risk. Additionally, we investigated

immune cells variations in different signature expression groups.

We employed Spearman correlation analysis to explore how the

risk score, different immune cells, and the signature were connected.

These results were presented using lollipop diagrams created with

the “ggplot” package. Lastly, we used the mantel approach in

conjunction with the “ggcor” package to assess the link between

the risk signature matrix and PR-CMRGs.
Frontiers in Oncology 04
2.1.8 Sensitivity of chemotherapeutic drugs
The “pRRophetic” package is designed for predicting clinical

chemotherapeutic responses based on gene expression levels in

various cancers, facilitating the evaluation of measured drug

responses. The sensitivity of chemotherapeutic medications was

tested across groups with high and low risk using this package.

Using the expression profile of ES from the training dataset and

expression data from Genomics of Drug Sensitivity in Cancer

(GDSC, www.cancerrxgene.org/), we predicted the half-maximal

inhibitory concentration (IC50) of drugs with a significance

threshold of p < 0.001.

2.1.9 Differentially expressed genes between risk
groups, functional enrichment and GSVA

Using the “limma” package, we detected differentially expressed

genes (DEGs) in different risk groups in the GSE17674 dataset

(|LogFC| > 1, p < 0.05). For a deeper understanding of DEGs

functions, based on |log2FC| > 1 and FDR value < 0.05, GO/KEGG

analysis was conducted by using the “clusterProfiler” software.

Visualization of the analysis results was done using the “ggplot”

package. For KEGG pathways with |NES| > 1, NOM p value < 0.05,

and FDR (p.adj) < 0.25, Gene Set Enrichment Analysis(GSEA) was

conducted. Visualization of the results was accomplished using the

“gseaplot2” and “ridgeplot” tools. We also conducted GSVA,

comparing the enriched scores of pathways between risk groups

using the Wilcoxon test. Heatmaps and boxplots were utilized to

display the results.
2.2 Validation of Hub PR-CMRGs by
RT-PCR

2.2.1 Cell source
For this experiment, American Type Cell Culture (ATCC)

provided RD-ES and A673 cells, and mesenchymal stem cells

(MSCs) from Cyagen (Guangzhou, China).

2.2.2 Real Time-PCR
Total RNA was extracted from cells using Trizol (Sigma, United

States) and reverse transcribed into cDNA using a reverse

transcription kit (Takara, Japan). The SYBR Premix Ex Taq
TABLE 1 The sequences of the primers.

Gene Symbol Forward primer Reverse primer

DAXX ACGTGCCCACTCTCTGTTTT CAGAGGGCTCATTGGAGGTG

CCS GGGAACTATTGACGGCCTGG GTCAGCATCAGCACGGACAT

MTF2 GCATGTGGCGAAAAATACCG GCAGTTGCTCCTTCCCATTC

F8 GGCCATCAGTGGACTCTCTTT TAGCGAGTCAGTAACGGTGG

SLC11A2 GAGTGGTTACTGGGCTGCAT CACAGGATGACTCGTGGGAC

IL1A CTTCTGGGAAACTCACGGCA AGCACACCCAGTAGTCTTGC

FKBP4 TGCTATCGTGGAGGTTGCAC CTCCTTTCTCCATGCGCTGA
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(Takara, Japan) was utilized for real-time PCR, and the protocol

provided by the manufacturer was adhered. Primer design was done

using the “primerBank” website (pga.mgh.harvard.edu), and the

primer sequences are provided in Table 1. The data analysis

employed the 2-DDCT method. At least three replications of each

experiment were conducted.
2.3 Statistical methods

R was utilized to execute bioinformatic analyses, and the

Wilcoxon rank sum test was employed to analyze data between

two groups. Spearman’s rank correlation was employed for the

correlation study. Statistics were considered significant if P<0.05.R
Frontiers in Oncology 05
4.1.3 (https://www.r-project.org) and GraphPad Prism 9.0

(GraphPad Software) were used for all statistical analyses.
3 Result

3.1 Landscape of prognostic related
CMRGs in ES

In our study, we investigated 133 CMRGs in GSE17674. Initially,

the p-value and hazard ratio for each gene were calculated using

univariate Cox regression. Subsequently, we identified 22 CMRGs

with p-values < 0.05 as prognostically relevant genes (PR-CMRGs). A

forest plot visualized the results, highlighting that among the 22
B

C D

E F G

A

FIGURE 1

Construction of the CMRGS in ES and validation of hub PR-CMRGs. (A) The forest map of hazard ratios displayed the outcomes of univariate regression.
(B) The result from the Kaplan-Meier analysis. (C) Boxplot of differentially expressed PR-CMRGs between Ewing and normal groups. (D) RT-PCR results
of DAXX, CCS, MTF2, F8, SLC11A2, IL1A, and FKBP4. (E, F) PR-CMRGs correlation in ES. (G) Chromosomal positions of PR-CMRGs. * means p < 0.05, **
means p < 0.01, *** means p < 0.001, **** means p < 0.0001 and ns means no significance (p>0.05).
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CMRGs, 11 genes including TFRC, SNCG, SLC11A2, MTF2, MT3,

HAMP, FKBP4, DAXX, COA6, ATP13A2, and AANAT with HR > 1

were associated with worse survival (Figure 1A). The remaining 11

PR-CMRGs, which included SUMF1, STEAP3, SORD, PTEN,

PIK3CA, NFE2L2, IL1A, F8, COX17, CCS, and AKT1 with HR < 1,

were related to beneficial survival. Based on the levels of PR-CMRGs,

the samples were divided into two groups: high expression and low

expression. Kaplan-Meier analysis showed that there was a significant

difference in survival rates between the two groups (Figure 1B).

Among the 22 PR-CMRGs, 7 (DAXX, CCS, MTF2, F8,

SLC11A2, IL1A, and FKBP4) exhibited differential expression in

the training dataset. Specifically, F8 was found to be enriched, while
Frontiers in Oncology 06
DAXX, CCS, MTF2, SLC11A2, IL1A, and FKBP4 were significantly

down-regulated in ES samples compared to skeletal muscle

tissue (Figure 1C).

RT-PCR results demonstrated that in A673 cells, the relative

expression levels of seven hub PR-CMRGs were lower compared to

MSCs, except for F8 which was higher. But the expression of F8 has

not significant difference between them. In the RD-ES cell line, five

of the hub genes were also significantly down-regulated in tumors,

except for F8 and FKBP4 (Figure 1D).

Considering their biological function similarity, we explored the

correlation among these PR-CMRGs. Notably, TFRC exhibited

positive correlation with COA6 (r=0.71) while showing a negative
B

C D

A

FIGURE 2

The outcomes of the enrichment analysis. (A, B) The outcomes of GO and KEGG study of PR-CMRGs. (C) The PPI network of PR-CMRGs. (D) Pathways
alteration in ES by GSVA.
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correlation with PTEN (r=-0.62), underscoring TFRC’s central role

in ES progression (Figure 1E).

The gene network of PR-CMRGs depicted their expression

levels, correlations, and prognostic values in ES (Figure 1F).

Chromosomal positions were visualized, revealing that F8 was

located on the X chromosome, while the others were on

autosomes. Chromosomes 1 (ATP13A2, MTF2, and COA6), 2

(IL1A, STEAP3, and NFE2L2), and 3 (COX17, PIK3CA, and

TFRC) harbored the most genes, with no genes found on

chromosomes 4, 5, 7, 8, 9, 13, 18, 20, 21, 22, and Y (Figure 1G).
Frontiers in Oncology 07
3.2 Functional enrichment, PPI network
and GSVA

The PR-CMRGs were subjected to functional enrichment

analysis, revealing involvement in processes like transition metal

ion transport, response to copper ion and copper ion transport. In

terms of cellular components, these genes were primarily located

in the late endosome, intercalated disc, and multivesicular body.

Molecular function analyses indicated participation in copper ion

binding, protein kinase activator activity, and kinase activator
B C

D E F

G H

I J

A

FIGURE 3

The outcomes of the consensus clusters, CRGs, and immune infiltration in clusters [(A): blue vs. (B): red] are as follows. (A–C) Two molecular
clusters constructed using PR-CMRGs. The findings of (D, E) PCA and t-SNE show two distinct clusters. (F) Kaplan-Meier curves plotted for several
molecular groupings. (G–I) A boxplot displaying the differential expression of PR-CMRGs and immune cells is shown. (J) A box diagram illustrating
the distribution of checkpoint genes in clusters. * means p < 0.05, ** means p < 0.01, *** means p < 0.001, **** means p < 0.0001 and ns means no
significance (p>0.05).
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activity (Figure 2A). KEGG analysis highlighted associations with

various human cancers such as hepatocellular carcinoma,

melanoma, and glioma. These enrichment results strongly

emphasize the essential role of PR-CMRGs in carcinogenesis

and cancer progression (Figure 2B). The PPI network of PR-

CMRGs underscored the core positions of AKT1, TFRC, and

SLC11A2 (Figure 2C). GSVA results demonstrated enriched

scores for pathways l ike oxidat ive_phosphory la t ion ,

fatty_acid_metabolism, and kras_signaling_dn, with t-values>1,

as well as pathways l ike wnt_beta_catenin_signal ing,

mitotic_spindle,andnfolded_protein_response with t-values < -1,

when comparing ES and normal tissue (Figure 2D).

3.3 Consensus molecular
clusters construction

We conducted unsupervised clustering based on PR-CMRGs to

discern distinct patterns. The optimal number of patterns was
Frontiers in Oncology 08
determined as K=2. Consequently, the 44 ES samples in

GSE17674 were categorized into cluster A (n=23) and cluster B

(n=21) (Figures 3A-C). The separation between these clusters was

evident through PCA and t-SNE analyses (Figures 3D, E). In terms

of survival advantage, cluster B outperformed cluster A, showing

noticeably longer survival times.(p=4.727e−08) (Figure 3F).

Dysregulated PR-CMRGs were observed in both clusters, as

indicated by box plots (Figure 3G).

An analysis of immune infiltration unveiled that cluster A was

characterized by higher levels of infiltration of Immature dendritic

cells, Natural killer T cells, CD56dim natural killer cells, and

Activated CD8 T cells (Figures 3H, I). Significant differences were

observed between the two clusters in terms of immune function

and checkpoints such as T-cell co-stimulation, APC co-

stimulation, T-cell co-inhibition, and checkpoint genes

(Figure 3J). Additionally, TNF and CTLA4 were enriched in

cluster A. These findings collectively suggest that cluster A

exhibited greater immunogenicity but worse prognosis.
B

C D

A

FIGURE 4

Development of a risk model. (A, B) The outcomes of Lasso regression. (C) Risk model depicted as a forest map. (D) Chord diagram of signature
correlation. * means p < 0.05, ** means p < 0.01.
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3.4 Risk model construction and validation

Utilizing Lasso regression, we reduced the number of PR-

CMRGs to 10, and subsequently, 5 genes (TFRC, SORD,

SLC11A2, FKBP4, and AANAT) were identified as the prognostic

signature through stepwise regression, which yielded the lowest AIC

(n=144.54) (Figure 4A). The forest plot visualization of the

prognostic model indicated that TFRC, SLC11A2, FKBP4, and

AANAT with HR > 1 were associated with worse survival,

whereas SORD with HR < 1 correlated with favorable survival

(Figures 4B, C). All signatures had p-values < 0.05, indicating the

independence of each gene as a prognostic indicator. The

correlation of the risk signature was depicted (Figure 4D).
Frontiers in Oncology 09
The risk score prediction model was formulated as follows: RS =

TFRC * 0.649 + SORD * -0.503 + SLC11A2 * 0.886 + FKBP4 * 1.232 +

AANAT * 2.867. This algorithm was used to computed each sample’s

risk score.

The “surv_cutpoint” function was used to generate a cutoff

value, which was then applied to split the ES samples in GSE17674

into two risk groups. Upon examining risk scores distribution and

survival status, the high-risk group exhibited a more dismal

prognosis than the low-risk group, which became evident.

(Figures 5A, B). This distinction between risk groups was

validated using the PCA method (Figure 5C). The survival curve

for Kaplan-Meier with a p-value of 6.013e-09 indicated a

significant correlation between risk groups and survival rates
B

C D

E F

A

FIGURE 5

The prognostic significance of signatures in GSE17674. (A–F) The data includes the distribution of risk scores, survival status, PCA analysis results, K-
M survival analysis results, time-ROC analysis results, and a heatmap of the signature.
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(Figure 5D). The time-dependent ROC curve with AUC values of

0.876, 0.883, and 0.979 at 1, 3, and 5 years respectively

demonstrated the risk model’s strong performance in terms of

specificity and sensitivity (Figure 5E). A heatmap was created to

provide a clear visualization of the signature profile between the

two groups (Figure 5F).

To evaluate the risk model’s accuracy, we utilized the

signatures on three external datasets: GSE63155, GSE63156 and

the ICGC dataset. Employing the RS formula, we calculated each

sample’s risk score in the three test datasets. Samples were

classified as different risk groups based on the cutoff value

produced by the “surv_cutpoint” function (Figures 6A, B). Risk
Frontiers in Oncology 10
scores and survival status distribution was visualized, highlighting

worse outcome in the high-risk group. The PCA plot confirmed

the clear separation in the two groups (Figure 6C). Subsequently,

time ROC curves, heatmaps and K-M survival curves were

generated using methods similar to those in the training dataset

(Figures 6D-F). A parallel conclusion was drawn through Kaplan-

Meier survival analysis, revealing p-values of 5.173e-03, 8.152e-03,

and 3.701e-03 in GSE63155, GSE63156, and the ICGC dataset,

respectively. The timeROC results reflected commendable AUC

values for 1, 3, and 5 years in GSE63155 (0.798, 0.813, 0.815),

GSE63156 (0.898, 0.843, 0.711) (Figures 7A-F), and the ICGC

dataset (0.797, 0.619, 0.712) (Figures 8A-F). These results
B

C D

E F

A

FIGURE 6

Prognostic value of signatures in GSE63155. (A– F) Distribution of the risk scores, survival status, PCA analysis, K-M survival analysis, time-ROC
analysis, heatmap of the signature.
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substantiated the model’s ability to differentiate samples with

favorable and worse prognoses, thereby demonstrating its

potential for predictive prognosis.
3.5 Clinical features associated with
risk model

Using Kaplan-Meier survival method, we tested the risk model’s

prediction effectiveness across different clinical subgroups. It

demonstrated that the risk model was effective in predicting

prognosis for certain subgroups, including individuals aged 14

years and older (p<0.001), individuals less than 14 years

(p=0.007), females (p<0.001), males (p<0.001), individuals with

primary stage cancer (p<0.001), and those with metastatic stage
Frontiers in Oncology 11
cancer (p=0.002) (Figure 9A). The fact that risk scores produced the

greatest AUC values was confirmed by ROC curves that plotted risk

scores against clinical variables (age, sex, and stage) for1,3, and 5

years (Figures 9B, C). Furthermore, a box plot was employed to

display the distribution of risk scores across different molecular

clusters and clinical subgroups (Figure 9D). An alluvial diagram

showcased that samples associated with females, adults, metastasis,

and cluster A exhibited elevated risk scores (Figure 9E).
3.6 Establishment and validation
of nomogram

To assess the risk score prognostic independence, Cox

regression analysis was performed. According to both the
B

C D

E F

A

FIGURE 7

The prognostic significance of gene expression profiles in dataset GSE63156. (A–F) The information contains the distribution of risk scores, survival
status, PCA analysis results, K-M survival analysis results, time-ROC analysis results, and a heatmap of the signature.
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univariate and multivariate regression analysis, the risk score

significantly affected ES prognosis, indicating that it was an

independent prognostic factor (p<0.05).While no significant

prognostic associations were observed with clinical features

(Figures 10A, B). Subsequently, the risk level and clinical features

were used to build a predictive nomogram. (Figure 10C). The 1-, 3-,

and 5-year calibration curves showed that the ideal and predictive

curves were well aligned (Figure 10D).

3.7 Immune infiltration analysis

Using ssGSEA analysis, we determined the abundance of

different immune cells. The results showed that whereas activated

CD4 T cells were more common in the high-risk group, central

memory CD4 T cells and plasmacytoid dendritic cells were much

more prevalent in the low-risk group (Figure 11A).
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Further analysis indicated that Type 2 T helper cells and

Activated CD4 T cells were significantly increasing in the high-

expression group of TRFC and SORD, whereas Central memory CD4

T cells and Immature B cells were more abundant in the group with

reduced expression of TRFC and SORD. In the case of FKBP4,

the low-expression group exhibited enrichment of Gamma delta T

cells, Type 1 T helper cells, Natural killer cells, and Central memory

CD4 T cells. On the other hand, the group with high expression had

elevated quantities of activated CD4 T cells. Low-expression of

AANAT was associated with enriched Type 1 T helper cells.

SLC11A2 groups did not exhibit differences in immune cells

(Figures 11B-F) (Table 2).

The heatmap and lollipop plots highlighted correlations between

immune cells and signatures (Figures 11G-I). Notably, the association

between TFRC and Activated CD4 T cells was positive, with the

highest r=0.73, while SORD displayed a negative correlation with T
B

C D

E F

A

FIGURE 8

Value of signatures for prognosis ICGC dataset. (A–F) Risk score distribution, survival status, principal component analysis, K-M survival, time-ROC,
and signature heatmap.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1388868
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1388868
follicular helper cells and Neutrophils with r=-0.58. These findings

imply a potential collaboration between risk signatures and immune

cells in influencing ES clinical prognosis.

The findings presented above lend support to the notion that

samples in the low-risk group exhibit better prognoses, likely due to

heightened immune cell infiltration. These results offer potential

evidence for the feasibility of immunotherapy in ES. However,

further validation through additional studies is necessary to solidify

these findings.
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3.8 Sensitivity of chemotherapeutic drugs

Employing the “pRRophetic” package, clinical data was used to

investigate the differential chemotherapeutic response in different risk

groups. The findings showed that NU.7441 and ABT.263 were

expected to be beneficial for the low-risk group, whereas exhibited

greater benefit from AKT.inhibitor.VIII, AS601245, AUY922,

Bleomycin, Tipifarnib, PHA.665752, MG.132, JNK.9L, BMS.708163,

Erlotinib, and Imatinib in the high-risk group (Figure 12).
B C

D E

A

FIGURE 9

Clinical features associated with risk model. (A) Perform K-M survival analysis on age, sex, and stage subgroups; (B) Conduct ROC analysis to
evaluate the risk score and clinical features (sex, age, stage) at 1, 3, and 5 years; (C) Calculate the C-index for the risk score and clinical features (sex,
age, stage); (D) Examine the distribution of the risk score among clusters and clinical subgroups; (E) Create an alluvial diagram to visualize the
relationship between molecular clusters, risk groups, and clinical features.
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3.9 Differentially expressed genes between
risk groups and functional enrichment

A total of ninety genes that exhibited differential expression were

discovered in the GSE17674 dataset, visualized through volcano and

circular heatmap representations (Figures 13A, B).GO terms like

Mitotic sister chromatid segregation, sister chromatid segregation,

and chromosome, centromeric region were shown to be prevalent,

according to functional enrichment analysis. In terms of KEGG

pathways, the analysis was primarily associated with DNA

replication, Cell cycle, and Ribosome biogenesis in eukaryotes

(Figures 13C, D).

The GSVA resu l t s ind i ca t ed tha t the h igh- r i sk

group exhibited pathways enrichment, including pancreas_beta_cells,

s p e rma t o g e n e s i s , e 2 f _ t a r g e t s , g 2m_ ch e c k p o i n t , r a s _

signaling_dn, and others. Conversely, pathways like heme_metabolism,

tgf_beta_signaling,androgen_response,apoptosis,interferon_

alpha_response,fatty_acid_metabolism,uv_response_dn,p53_pathway,

xenobiotic_metabolism,adipogenesis,peroxisome,interferon_

gamma_response,and kras_signaling_up,pancreas_beta_cells,

spermatogenesis, e2f_targets, g2m_checkpoint, ras_signaling_dn were

more prevalent in the group at low risk. (Figure 13E).

Byheme_metabolism,tgf_beta_signaling,androgen_response,apoptosis,

interferon_alpha_response,fatty_acid_metabolism,uv_response_dn,
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p53_pathway,xenobiotic_metabolism,adipogenesis,peroxisome,

interferon_gamma_response,kras_signaling_up,and spermattogenesis

e2f_targets g2m_checkpoint kras_signaling_dn were showed in the

high risk group (Figure 13F).
4 Discussion

The prognosis of ES remains poor despite comprehensive

treatment strategies (20). Proto-oncogenes and tumor suppressor

genes undergo a number of genetic and epigenetic modifications

over the course of Ewing’s sarcoma development (21). As a vital

micronutrient, copper is involved in many different physiological

processes. According to earlier studies, altering copper metabolism

may prevent the growth and invasion of cancer cells (22).

Additionally, there have been the development of therapeutic

strategies that specifically focus on copper or proteins involved in

copper metabolism (23, 24).This work aims to examine the function

of CMRGs in ES, Given the significance of copper in cancer.

The purpose of this study is to investigate the prognostic

potential of CMRGs in ES. Using univariate Cox regression, we

identified 22 CMRGs as prognostic indicators. The Kaplan-Meier

analysis revealed notable disparities in survival rates between the

groups with high and low expression of these PR-CMRGs. Notably,
B

C D

A

FIGURE 10

Independence of the risk model in GSE17674. (A, B) The results of univariate and multivariate COX regression analysis. (C) Nomogram for predicting
1, 3 and 5-year OS. (D) The calibration plots for predicting 1, 3, 5-years OS. *** means p < 0.001.
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seven PR-CMRGs—DAXX, CCS, MTF2, F8, SLC11A2, IL1A, and

FKBP4—displayed differential expression in ES samples. Moreover,

the expressions of seven PR-CMRGs were valided in MSCs, RD-ES

and A673.Functional enrichment analysis, encompassing GO and

KEGG pathways, revealed key functions and pathways through

which these PR-CMRGs impact ES prognosis. These included

responses to metal ions, transition metal ion transport, copper

ion binding, and pathways related to various human cancers. These

findings emphasized the link between copper metabolism and the

formation and advancement of cancer.

To comprehend the molecular subtypes of ES based on PR-

CMRGs, unsupervised clustering identified two distinct molecular
Frontiers in Oncology 15
clusters with differing survival rates. Additionally, these

clusters exhibited distinct immune cell infiltration patterns,

highlighting the potential involvement of the immune system in

ES prognosis.

Prognostic risk models provide valuable insights into predicting

cancer results. Such models can offer information about survival

likelihood, risk of recurrence, and potential treatment responses,

assisting clinicians in making well-informed treatment decisions.

Given the significant role of CMRGs in ES, a risk model was

established based on these genes.

There is no study suggested that the mechanism of TFRC,

SORD, SLC11A2, FKBP4, and AANAT in cuproptosis. But in this
B

C D

E F

G H I

A

FIGURE 11

(A) Evaluation of immune cell infiltration between high and low risk groups (high: blue vs. low: red). (B–F) Boxplot of immune cell infiltration in
differential TRFC,SORD,FKBP4,AANAT and SLC11A2 expression groups(high: blue vs. low: red). (G–I) Correlation of signatures and infiltrated immune
cells, immune related pathways. * means p < 0.05, ** means p < 0.01, *** means p < 0.001 and ns means no significance (p>0.05).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1388868
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1388868
study, it is demonstrated that TFRC, SORD, SLC11A2, FKBP4, and

AANAT associated with survival and immune infiltration. The

potential mechanism need further research. In this study, we

identified TFRC, SORD, SLC11A2, FKBP4, and AANAT as a risk

signature for ES. The prognostic model constructed using these

genes demonstrated that TFRC, SLC11A2, FKBP4, and AANAT,

each with a HR greater than 1, were associated with increased risk,

while SORD, with an HR less than 1, was a favorable prognostic

factor. The efficacy of the risk signature was comprehensively
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assessed through the utilization of Kaplan-Meier survival and

ROC curves in training dataset and three validation datasets. The

correlation between the risk group and survival rates was

consistently observed, and the signature’s specificity and

sensitivity were robustly validated.

The TFRC gene in humans is responsible for encoding the

transferrin receptor protein 1, controlling intracellular iron levels.

Increased expression of TFRC promotes ferroptosis during CVB3

infection by recruiting Sp1 to the nucleus (25). TFR1, which mainly
TABLE 2 Differential immune cell infiltration in differential TRFC,SORD,FKBP4,AANAT and SLC11A2 expression groups.

TFRC SORD SLC11A2 FKBP4 ANNAT

High
expression

low
expression

High
expression

low
expression

High
expression

low
expression

High
expression

low
expression

High
expression

low
expression

Activated CD4
T cell

up up up

Central
memory CD4
T cell

up up up

Gamma delta
T cell

up

Immature
B cell

up

Natural
killer cell

up up

Type I
Thelper cell

up up

Type 2
Thelper cell

up up
fr
FIGURE 12

Chemotherapeutic response between risk groups. Boxplot of drugs benefited for samples in high and low risk groups.
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regulates cellular iron intake (26), binds to transferrin that is laden

with iron, becomes surrounded by vesicles coated with clathrin, and

then gets taken up by cells (27). TFR1 imports extracellular iron into

cells, supporting the cellular iron store and being essential for

ferroptosis (28). There is a close relationship between the iron and

copper metabolic fares. The study demonstrated that the presence of

Cu and Zn hindered the absorption of Fe, whereas the presence of Fe

hindered the absorption of Cu (29). Thus, TFRC maybe change
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homeostasis of cellular iron to intervene copper metabolism.

SORD is a dehydrogenase/reductase protein and plays a role in the

metabolism of glucose (30). Studies have indicated SORD’s

involvement as a cuproptosis-related gene in coronary artery

disease (31). SLC11A2 is a key protein that aids the absorption of

iron and its influence extends to breast and colon cancer progression

(32, 33). Divalent metal ion transporter 1 (DMT1; often referred to as

SLC11A2) has the ability to transport several divalent metal ions such
B

C D

E F

A

FIGURE 13

Analysis of differentially expressed genes (DEGs) and functional enrichment results. (A, B) Visualization of DEGs between various risk categories using
a volcano plot and heatmap. (C, D) A ridgeplot displaying the GO and KEGG data by GSEA. (E, F) The results of GSVA analysis in groups classified as
high and low risk. * means p < 0.05, ** means p < 0.01.
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as Fe2+, Mn2+, Cu2+, Zn2+, Cd2+, and Pb2+. It is possible that

DMT1 also plays a role in the absorption of Cu. Therefore,

maintaining an appropriate copper concentration is crucial for

cellular function (34). The protein FKBP4, often referred to as

FKBP52, is an immunophilin. Linked to HSP90, it aids in

assembling various protein complexes (35, 36). Acting as a scaffold,

FKBP4 promotes interactions among key components of multiple

cancer-promoting signaling pathways (37, 38). FKBP52 is a

constituent of the copper efflux mechanism, potentially

contributing to neuroprotection against copper toxicity (39).

AANAT serves as the rate-limiting enzyme in melatonin synthesis.

However, it is unclear the role of AANAT in copper metabolism.

According to current study, O-GlcNAcylation of YY1 targets

SLC22A15 and AANAT, which promotes carcinogenesis in

colorectal cancer cells (40). To sum up, our results showed that

TFRC, SORD, SLC11A2, FKBP4, and AANAT maybe novel genes

played significant roles in Ewing’s sarcoma.

A nomogram visually presents a prediction model, forecasting a

patient’s prognosis based on clinical features. It also identifies

significant prognosis-affecting factors by comparing patient

survival rates. The risk score was validated as an independent

prognostic factor by both univariate and multivariate Cox

regression analysis. Subsequently, a nomogram was constructed

for convenient ES prognosis prediction. The accuracy of survival

prognosis prediction for ES was evaluated by calibration curves at 1,

3, and 5 years.

We use ssGSEA analysis to explore the functions of PR-CMRGs

in different risk groups. Remarkably, a significant number of

pathways connected to the immune system showed enrichment in

the low-risk group. Copper chelation in tumor cells increased CD8+

T and NK cell influx, resulting in slowing tumor growth (41).

Consequently, we hypothesized a close connection between copper

metabolism and anti-tumor immunity. We then proceeded to

scrutinize the variance in the TME between the two groups.

Notably, augmented levels of immune cell infiltration correlated

with a more favorable prognosis.

Given that the levels of immune checkpoints can predict

immunotherapy response (42), we conducted a more in-depth

examination of the differences in the levels of thirteen

immunological checkpoints in the two groups. Our findings unveiled

that NU.7441 and ABT.263 were benefit for the low-risk group, while

AKT inhibitor VIII, AS601245, AUY922, Bleomycin, Tipifarnib,

PHA.665752, MG.132, JNK.9L, BMS.708163, Erlotinib, and Imatinib

showed greater advantages for the high-risk group. These results

collectively pointed towards the potential of PR-CMRGs to offer

guidance for immunotherapy in individuals diagnosed with ES.

Nonetheless, this study remains certain limitations merit.

Initially, PR-CMRGs construction and validation depend on

public databases, necessitating subsequent validation through

future multicenter and prospective investigations. Secondly,

further experimental endeavors are imperative to authenticate the
Frontiers in Oncology 18
individual and collective functions of the five genes encompassed

within PR-CMRGs in ES.

To conclude, the study uncovered the significant influence of

the interplay between copper metabolism and immunity on the

progression of ES. For ES patients, the prognostic model based on 5

PR-CMRGs was developed and its prediction efficiency was well

demonstrated. This model can be conducive to prognostic

prediction and may provide a guidance on immunotherapy.
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