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Breast cancer stands as the most prevalent malignancy among women, with

radiotherapy serving as a primary treatment modality. Despite radiotherapy, a

subset of breast cancer patients experiences local recurrence, attributed to the

intrinsic resistance of tumors to radiation. Therefore, there is a compelling need

to explore novel approaches that can enhance cytotoxic effects through

alternative mechanisms. Traditional Chinese Medicine (TCM) and its active

constituents exhibit diverse pharmacological actions, including anti-tumor

effects, offering extensive possibilities to identify effective components capable

of overcoming radiotherapy resistance. This review delineates the mechanisms

underlying radiotherapy resistance in breast cancer, along with potential

candidate Chinese herbal medicines that may sensitize breast cancer cells to

radiotherapy. The exploration of such herbal interventions holds promise

for improving therapeutic outcomes in the context of breast cancer

radiotherapy resistance.
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1 Introduction

Breast cancer stands as the most prevalent cancer among women globally (1), ranking

second in cancer-related mortality in female (2). Radiotherapy has become a widely

employed therapeutic approach for breast cancer, especially in the context of breast-

conserving surgery where it plays a crucial role in preventing local tumor recurrence post-

surgery (3). Nevertheless, some patients experience local tumor recurrence after

radiotherapy, possibly indicative of tumor resistance to radiation. Consequently,
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enhancing tumor sensitivity to radiation and overcoming

radiotherapy resistance have emerged as pressing challenges in

the field of breast cancer radiotherapy.

In recent years, multiple studies have reported the potential of

traditional Chinese herbal medicine in increasing the sensitivity of

breast cancer cells to radiotherapy, offering new avenues for

exploring novel radiotherapy sensitization strategies. Traditional

Chinese herbal medicine, with a history spanning thousands of

years, encompasses various active constituents such as alkaloids,

flavonoids, polysaccharides, tannins, and volatile oils, each

imparting diverse pharmacological effects. With multiple

therapeutic benefits, Chinese herbal medicine finds extensive

application in traditional Chinese medicine for treating various

acute and chronic conditions, including tumors.

Numerous researchers have dedicated efforts to unraveling the

molecular mechanisms through which Chinese herbal medicine

augments the sensitivity of breast cancer cells to radiotherapy.

While the body of related research remains relatively limited, it

has already yielded some promising advancements. Notably,

Chinese herbal medicine not only exhibits the potential to

enhance tumor sensitivity to radiation but may also mitigate

radiation-induced damage to normal tissues to some extent,

thereby improving the safety and efficacy of treatment.

As of now, there lacks a comprehensive and systematic review

summarizing the existing research in this field. In this article, we

conducted searches on databases such as PubMed, Scopus, andWeb

of Science, utilizing Medical Subject Headings (MeSH) terms and

relevant free terms to enhance search sensitivity. Additionally, we

reviewed key mechanisms associated with radiation resistance in

tumor cells, summarized Chinese herbal medicines with

radiosensitizing effects, and listed confirmed or potential herbal

candidates that can enhance sensitivity to radiotherapy in breast

cancer. This work aims to provide a targeted reference and guidance

for future research in this promising domain.
2 Breast cancer overview

Breast cancer poses a significant threat to women’s health

worldwide, standing as the most common malignancy and the

second leading cause of cancer-related death among females (4).

According to the ‘Cancer Statistics 2023’ report, breast cancer

constitutes approximately 31% of female cancer cases, with an

estimated addition of around 300,590 new diagnoses and over

43,700 deaths projected for 2023 (1). These statistics underscore

the profound impact of breast cancer on women’s health. Globally,

the incidence of breast cancer continues to rise, particularly in

developed countries, driven by factors associated with the so-called

‘Western lifestyle,’ including poor dietary habits, smoking, excessive

stress, and a lack of physical activity (5). Notably, in developing

countries, despite a relatively lower incidence of breast cancer, the

mortality rate surpasses that of developed nations.

Despite significant strides in early diagnosis and drug treatment for

breast cancer in recent years, it remains a substantial challenge in the

global landscape of women’s health. Exploring novel treatment

strategies is therefore crucial for reducing breast cancer mortality rates.
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Breast cancer is a highly heterogeneous and complex

disease. Current clinical prognosis and treatment decisions are

predominantly based on clinical characteristics and molecular

subtypes. Clinical features encompass histological type, tumor size,

lymph node involvement, and distant metastasis. Molecular subtypes

are classified based on hormone receptor status, Her-2 expression,

and the Ki67 index, resulting in luminal A, luminal B, HER-2 positive

non-luminal, and triple-negative breast cancer (TNBC) (6). Luminal

A, constituting 60% of breast cancers, is characterized by positive

estrogen and/or progesterone receptors (ER+ and/or PR+), with

HER2 negativity and a favorable prognosis (7). Luminal B subtype

constitutes 30% of breast cancers and is characterized by high-risk

factors within the Luminal category. It is further classified into HER2-

negative or HER2-positive subtypes. Compared to Luminal A,

Luminal B exhibits higher expression of proliferation-associated

genes marked by Ki-67. It is associated with a poorer prognosis (8,

9). HER2-positive breast cancer accounts for 10%, displaying

overexpression of HER2, while being ER- and PR-, and carrying an

unfavorable prognosis (10). TNBC, constituting 15–20% of breast

cancers, lacks expression of estrogen, progesterone, and HER2

receptors, contributing to lower treatment response and higher

invasiveness, resulting in a poorer prognosis (11).

Beyond widely used molecular subtyping, recent advancements

in tumor precision testing technologies, including genomics,

transcriptomics, proteomics, metabolomics, and epigenomics,

have gradually been applied in the diagnosis of breast cancer,

providing personalized and precise treatment references for breast

cancer patients (12–15). These technologies aid in genetic risk

prediction, molecular subtype diagnosis, treatment efficacy

prediction, and the selection of precision treatment strategies. For

instance, next-generation sequencing is recommended for the

detection of genetic susceptibility genes, high-frequency mutation

genes, target drug-related genes, and resistance genes in breast

cancer tissues and peripheral blood germ line DNA.

In 2018, the U.S. Food and Drug Administration (FDA)

approved PARP inhibitors olaparib and talazoparib for the

treatment of refractory metastatic breast cancer patients carrying

harmful germline mutations in BRCA1/2. Additionally, the FDA

approved the immune checkpoint inhibitor pembrolizumab for the

treatment of advanced refractory breast cancer patients with

mismatch repair deficiency or high microsatellite instability.

Furthermore, for complex and refractory triple-negative breast

cancer, several studies have utilized gene expression profiles to

further classify it into different molecular subtypes, facilitating

targeted therapy specific to each subtype. Currently recognized

classification systems include Lehmann’s six types, Burstein’s four

types, and the ‘Fudan classification’.

Regarding treatment, for non-metastatic breast cancer, the

primary goal is complete eradication of the tumor in the breast

and regional lymph nodes, aiming to prevent recurrence and

metastasis. Local treatment primarily involves surgery, with

postoperative adjuvant radiotherapy required for high-risk and

breast-conserving surgery patients. Systemic treatment for non-

metastatic breast cancer can be administered preoperatively

(neoadjuvant therapy) or postoperatively (adjuvant therapy).

Treatment plans are tailored based on specific molecular
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subtypes, such as hormone receptor-positive patients requiring

endocrine therapy (some patients also receiving chemotherapy),

HER2-positive patients receiving HER2-targeted antibody therapy,

often combined with chemotherapy, and triple-negative breast

cancer primarily treated with chemotherapy. For metastatic breast

cancer, the main treatment goal is to prolong patient survival and

improve symptoms. Systemic treatment takes precedence, with

surgery and radiotherapy primarily used to alleviate symptoms (16).
3 Mechanisms underlying
tumor radioresistance

The fundamental principle of radiotherapy is to utilize radiation

or ionizing energy to damage molecular structures, aiming to

achieve the goal of killing tumor cells. Radiotherapy primarily

kills tumor cells through the following mechanisms: direct effects

and indirect effects (17). Direct effects involve the direct action of

radiation or ionizing energy on molecular structures within cells,

especially DNA, leading to DNA damage, including double-strand

breaks (DSB), single-strand breaks (SSB), and damage to nucleotide

bases. Indirect effects result from the release of radiation energy,

causing water molecules in the intracellular and extracellular

environments to undergo radiation attacks, generating highly

reactive and unstable reactive oxygen species (ROS) such as

superoxide radicals (O2-) and hydroxyl radicals (OH). These ROS

further trigger oxidative stress (OS) within the cells, causing

cellular damage.

In addition to direct and indirect effects, radiotherapy can also

influence neighboring cells that are not directly irradiated through the

bystander effect. This implies that irradiated cells can release signals,

transmitting apoptosis signals to surrounding non-irradiated cells

through direct cell contact or intercellular communication, inducing

similar biological effects as the irradiated cells. Overall, these effects

collaborate to cause DNA damage, chromosomal instability,

mutations, and apoptosis in cancer cells, ultimately leading to their

demise. These mechanisms constitute the basis of how radiotherapy

kills tumor cells.

Theoretically, radiotherapy should be effective against all tumor

cells; however, in reality, there are certain tumors that exhibit poor

responsiveness to radiotherapy, leading to a higher risk of

recurrence and metastasis. This is primarily attributed to the

radioresistance of tumor cells. The radioresistance of tumors is a

complex issue, involving various mechanisms, including the

heterogeneity of tumor cells and the influence of the tumor

microenvironment. In-depth exploration of the specific

mechanisms underlying tumor radioresistance is crucial for

developing strategies to enhance the efficacy of radiotherapy.

Current research has summarized the major mechanisms

influencing tumor sensitivity to radiotherapy, encompassing the

following aspects: DNA damage repair, cell cycle arrest, tumor stem

cells, alterations in the tumor microenvironment, extracellular

vesicles and non-coding RNA, metabolic reprogramming, and
Frontiers in Oncology 03
ferroptosis. We have summarized the mechanisms underlying

radiation resistance in breast cancer in Table 1.
3.1 DNA damage repair

As previously discussed, ionizing radiation induces a broad

spectrum of DNA damage through direct effects, indirect effects,

and bystander effects. These damages primarily include double-

strand breaks (DSBs), single-strand breaks, base damage, and

interstrand cross-links, with DSBs being the most severe form of

damage (18). These DNA lesions can pose significant obstacles to

the adaptation and survival of tumor cells, thereby promoting cell

death. However, tumor cells gradually evolve a series of complex

and intricate mechanisms to cope with these damages, primarily

through the activation of DNA damage repair pathways. DNA

damage repair mechanisms encompass mismatch repair, base

excision repair, nucleotide excision repair, and double-strand

break repair.

In the process of DSB repair, non-homologous end joining

(NHEJ) and homologous recombination are two critical pathways.

When DNA damage occurs, the DNA damage checkpoint is initially

activated, delaying mitosis, and providing more time for DNA repair

(19–21). Subsequently, DNA damage sensors such as ATRIP,

Rad24p, gH2AX, NBS1, BRCA1/2, Ku70/80, and RNA polymerase

recognize damage signals and recruit core kinases of DNA damage

response (DDR), including Ataxia Telangiectasia Mutated protein

kinase (ATM), Ataxia Telangiectasia and Rad3-related protein kinase

(ATR), and DNA-dependent protein kinase (DNA-PK) (22–26).

Upon activation, these kinases recruit and activate enzymes

involved in the DNA damage repair process, such as PNKP, Tdp-1,

and APE-1. Ultimately, the XPCC4-XLF-LIG4 complex reconnects

the broken ends of DNA (27, 28) (Figure 1).

Inhibitors targeting key enzymes in the DNA damage process

have been shown to enhance the efficacy of radiotherapy. For example,

DNA-PKcs inhibitors have been demonstrated to increase the

sensitivity of multiple myeloma, nasopharyngeal carcinoma, and

glioblastoma to radiotherapy (69–71). Similarly, inhibitors of the

DNA repair enzyme poly (ADP-ribose) polymerase (PARP) have

been shown to increase the sensitivity of breast cancer, prostate cancer,

pancreatic cancer, and ovarian cancer to radiotherapy (72–74). In

breast cancer, preliminary clinical evidence supports this notion. A

clinical trial focusing on triple-negative breast cancer suggests that the

combined application of radiotherapy and PARP inhibitors, especially

in the presence of BRCA1/2 mutations, can enhance the efficacy of

radiotherapy by indirectly increasing the frequency of unrepaired

DSBs in the base excision repair pathway, demonstrating good safety

and tolerability (75).

Furthermore, inhibitors targeting single-stranded DNA binding

protein Replication protein A (RPA) and X-ray repair cross-

complementing 1 (XRCC1) have also shown the potential to

increase the sensitivity of various tumors, including breast cancer,

liver cancer, and head and neck squamous cell carcinoma, to

radiotherapy (76).
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3.2 Cell cycle arrest

The cell cycle is a collective term for a series of events in the

cellular life process that promote cell growth and division into two

new daughter cells. The cell cycle primarily consists of four stages:

G1 phase (the growth phase before DNA synthesis), S phase (DNA

replication/synthesis phase), G2 phase (the final preparation phase

before cell division), and M phase (mitosis) (77, 78). The regulation

of the cell cycle depends on a series of checkpoints that ensure cells

must correctly complete all crucial processes of the current stage

before entering the next stage. For instance, the G1/S checkpoint

ensures the cell’s size and DNA integrity are suitable for DNA

replication, while the G2/M checkpoint ensures the accuracy of the

DNA replication process and prepares the cell for division (79).

In normal cells, the P53 protein plays a crucial regulatory role in

the G1/S checkpoint. When DNA damage occurs, the action of the

P53 protein leads to a G1 phase pause, preventing entry into the S

phase and initiating DNA damage repair mechanisms. Conversely,

in tumor cells, the regulatory factors of the G1/S checkpoint often

malfunction, allowing tumor cells with DNA damage to easily

progress into the S phase (80). However, tumor cells can buy

time for DNA damage repair by inducing arrest in the G2/M

phase (81).

ATM (Ataxia-telangiectasia mutated) protein is a critical

regulator of cell cycle checkpoints and belongs to the

phosphatidylinositol 3-kinase-related protein kinase family.

Under the influence of ionizing radiation, the ATM protein

becomes activated, a process involving dimer dissociation,

autophosphorylation, and phosphorylation of downstream

proteins (such as p53 and Chk2). As a key regulator of the cell

cycle checkpoint, the P53 protein induces G1/S phase arrest by

activating p21 protein. Simultaneously, the Chk2 pathway can

regulate the transition of the G2/M phase when the cell division

cycle protein 2 (Cdc2)/cyclinB complex is activated (29–32)

(Figure 2). Studies have shown that elevated expression of ATM

is associated with radioresistance in various tumors, including

breast cancer, lung cancer, and gliomas, while ATM inhibitors

can enhance the sensitivity of these tumor cells to radiotherapy (33).

Recent research has also revealed a novel tumor G2/M phase

arrest mechanism: tumor cells exposed to radiation induce the

cleavage of their own DNA by activating the expression of Caspase-

activated DNase (CAD), thereby achieving arrest in the G2 phase of

interphase cell division and gaining time for DNA damage repair

caused by radiotherapy (29). In summary, G2/M phase arrest plays

a crucial role in the radioresistance of tumor cells, and targeting cell
TABLE 1 Mechanisms underlying radiotherapy resistance in
breast cancer.

Substance Mechanism References

DNA
damage repair

DNA damage repair mechanisms
include mismatch repair, base excision
repair, nucleotide excision repair, and
double-strand break repair, among
others. When DNA damage occurs,
DNA damage checkpoints are activated
first. DNA damage sensors such as
ATRIP, Rad24p, gH2AX, NBS1,
BRCA1/2, Ku70/80, and RNA
polymerase recognize the damage
signals and recruit core kinases of the
DNA damage response (DDR). These
kinases then recruit and activate
enzymes involved in the DNA damage
repair process, such as PNKP, Tdp-1,
and APE-1.

(18–28)

Cell cycle arrest Ionizing radiation activates the ATM
(Ataxia-telangiectasia mutated) protein,
a process that involves dimer
dissociation, autophosphorylation, and
phosphorylation of downstream
proteins such as p53 and Chk2. High
expression of ATM is associated with
radiation resistance. Additionally,
tumor cells exposed to radiation induce
breaks in their own DNA by activating
the expression of Caspase-activated
DNase (CAD), leading to arrest in the
G2 phase of the cell cycle and
subsequent DNA damage repair.

(29–33)

Apoptosis Following irradiation, radiation-
resistant tumor cells can inhibit
apoptosis by modulating the
interaction network of the Bcl family of
proteins. This modulation involves
upregulation of anti-apoptotic proteins
such as Bcl-2 and Bcl-XL, as well as
downregulation or inactivation of pro-
apoptotic proteins such as Bax
and Bak.

(34–41)

Regulation of
Cancer Stem Cells

Tumor stem cells enhance their
resistance to radiation therapy through
various mechanisms, including
dormancy, enhanced DNA repair
capacity, upregulation of cell cycle
control mechanisms, scavenging of free
radicals, and interactions with the
stromal components in the tumor
microenvironment. These adaptations
collectively contribute to the increased
resistance of tumor cells
to radiotherapy.

(42–51)

Ferroptosis Overexpression of the iron death
suppression genes GLC7A11 and
GPXA can induce resistance to
tumor radiotherapy.

(52–54)

Regulation of
Tumor
microenvironment

Hypoxic conditions can induce the
transition of tumor cells from an
epithelial phenotype to a mesenchymal
phenotype and enhance radiation
resistance through increased levels of
hypoxia-inducible factor 1 (HIF-1).
Cancer-associated fibroblasts (CAFs)

(55–68)

(Continued)
TABLE 1 Continued

Substance Mechanism References

induce epithelial-mesenchymal
transition in tumor cells and secrete
CXCL1, which inhibits the expression
of the reactive oxygen species (ROS)
scavenging enzyme superoxide
dismutase 1. This leads to increased
ROS accumulation after radiation,
resulting in radiation resistance.
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cycle arrest at this stage becomes a significant focus for improving

the sensitivity of tumor radiotherapy.
3.3 Apoptosis

Apoptosis, also known as programmed cell death, is a finely

regulated process of cellular self-destruction. It can occur through

intrinsic pathways (involving Bcl-2-mediated mitochondrial

cytochrome c release) or extrinsic pathways mediated by the

expression of death receptor ligands (34). Apoptosis plays a

crucial role in various biological processes, including organism

development, tissue remodeling, and responses to cellular damage

or diseases. Under normal physiological conditions, apoptosis

contributes to maintaining stable cell numbers and eliminating

damaged or abnormal cells, preventing them from becoming

potential sources of pathology. Apoptosis is closely related to the

occurrence and treatment of tumors. “Apoptosis evasion” is an

important survival capability of tumor cells to protect themselves

from radiation damage when DNA damage repair fails (35).

Research has shown that radiation-resistant cells can inhibit
Frontiers in Oncology 05
apoptosis by modulating the Bcl family interaction network

(Figure 3). Upregulating anti-apoptotic proteins such as Bcl-2 and

Bcl-XL, and downregulating or inactivating pro-apoptotic proteins

such as Bax and Bak, has been confirmed to increase radiation

resistance of malignant tumors, including breast cancer, lung

cancer, mesothelioma, pancreatic cancer, to radiotherapy (36–41).
3.4 Regulation of cancer stem cells

In the field of radiation oncology, the exploration of Cancer

Stem Cells (CSCs) has become a crucial research direction. As a

unique cellular subset within tumors, CSCs possess the

characteristics of sustained self-renewal and differentiation,

widely recognized as the major driving force behind tumor

recurrence and metastasis (82). Despite their relatively small

proportion within the overall tumor cell population, they exhibit

potent tumorigenic capabilities and can survive in adverse

growth environments, propelling tumor development and

spread (83, 84) . Current research indicates that the

mechanisms through which CSCs develop resistance to
FIGURE 1

Mechanisms of Radioresistance Caused by DNA Damage Repair in Breast Cancer. DNA damage includes double-strand breaks, single-strand breaks,
base damage, and interstrand cross-links. Radiation-induced DNA damage response activates the DNA repair pathway, where double-strand breaks
(DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). DNA damage triggers DNA
damage sensors, which recognize the damage signals and recruit core kinases of DNA damage response (DDR), thereby activating enzymes involved
in DNA damage repair processes. Inhibition of key enzymes in DNA damage repair has been shown to enhance the efficacy of radiotherapy.
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radiotherapy involve multiple aspects (42–46). These include the

dormant tendency of CSCs, enabling them to evade attacks

during radiotherapy; enhanced DNA repair capabilities,

allowing effective repair of radiation-induced DNA damage;

upregulated cell cycle control mechanisms, further reinforcing

their resistance to treatment; and robust free radical clearance

abilities, helping reduce oxidative stress caused by radiotherapy

(47). Additionally, CSCs interact specifically with stromal

components in the tumor microenvironment, enhancing their

survival and proliferative capacities (48–51) (Figure 4). To

overcome this radiotherapy resistance, researchers have begun

exploring inhibitors targeting specific signaling pathways in

CSCs, such as inhibitors against Notch and Wnt/b-catenin.
Early clinical trials of these novel drugs have shown potential

in improving tumor sensitivity to radiotherapy. Through this

approach, combining traditional radiotherapy with targeted

treatments against CSCs could pave the way for new avenues

to enhance the effectiveness of cancer therapy.
Frontiers in Oncology 06
3.5 Ferroptosis

Ferroptosis is a specific type of cell death induced by lipid

peroxidation and relies on the presence of iron ions. Unlike

traditional forms of cell death such as apoptosis, necrosis, or

autophagy, ferroptosis is initiated by lipid peroxidation leading to

membrane damage, ultimately triggering cell death (52). Research

indicates that radiotherapy can induce iron death in tumor cells

through various mechanisms (53, 54). On one hand, radiotherapy

can promote lipid peroxidation and iron death by inducing the

generation of reactive oxygen species (ROS) and overexpression of

ACSL4, a lipid metabolism enzyme essential for iron death. On the

other hand, radiotherapy can reduce the expression of the antioxidant

system subunit SLC7A11 through activation of the p53 pathway,

thereby alleviating its inhibitory effect on glutathione synthesis and

promoting iron death. Conversely, overexpression of iron death

inhibitory genes, such as SLC7A11 and GPXA, can induce resistance

to radiotherapy in tumors (53) (Figure 5).
FIGURE 2

Mechanisms of Radioresistance Caused by Cell Cycle Arrest in Breast Cancer. Cell-cycle checkpoints are activated in response to DNA damage
induced by ionizing radiation (IR). ATM kinase is primarily activated by DNA double-strand breaks (DSBs), mediating the initial response to DSBs and
cell-cycle arrest through CHK2 activation. P53 activates the G1/S checkpoint via p21, promoting DNA repair or inducing apoptosis or senescence.
DNA single-strand breaks (SSBs) activate ATR kinase, which, through CHK1 action, further activates the S-phase checkpoint and G2/M checkpoint.
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3.6 Regulation of tumor microenvironment

Tumor microenvironment is a critical area in the growth and

development of tumors, characterized by its complexity in features

and components. This environment not only encompasses tumor

cells but also includes extracellular matrix, various chemokines and

cytokines, vascular networks, immune cells, and numerous other

molecules (85, 86). Studies indicate that hypoxia, a low-oxygen

condition, is one of the important features of the tumor

microenvironment (55). Under hypoxic conditions, tumor cells

can exhibit 2 to 3 times enhanced resistance to radiation (56).

Hypoxia contributes to increased resistance to radiation in several

ways. On one hand, it induces tumor cells to undergo epithelial-to-

mesenchymal transition, enhancing resistance to radiation therapy

(57). On the other hand, hypoxia leads to the upregulation of

hypoxia-inducible factor-1 (HIF-1). HIF-1 promotes the secretion

of VEGF by tumor cells, protecting tumor vascular endothelial cells

and increasing their tolerance to radiation (58) (Figure 6).

Moreover, HIF-1 activation can stimulate key glycolytic enzymes

to generate NADPH and glutathione, clearing reactive oxygen

species (ROS) produced after radiation and reducing DNA

damage (59, 60). Additionally, the production of a large amount

of lactate is believed to enhance tumor radioresistance through the

GPR81/mTOR/HIF-1/STAT3 pathway (61). Preliminary clinical

studies suggest that hyperbaric oxygen therapy and hypoxia-
Frontiers in Oncology 07
activated prodrugs, such as nitroimidazole, may improve the

effectiveness of radiotherapy (62). Cancer-associated fibroblasts

(CAFs) in the tumor microenvironment also play a crucial role in

influencing tumor radiotherapy sensitivity (Figure 6). These cells

can secrete various cytokines, growth factors, chemokines, and

extracellular matrix remodeling molecules, promoting tumor

growth (63–65) Studies show that CAFs, on one hand, induce

epithelial-mesenchymal transition in tumor cells, enhancing their

resistance to radiotherapy (66, 67). On the other hand, CAF-

secreted CXCL1 inhibits the expression of the ROS scavenging

enzyme superoxide dismutase 1, leading to increased ROS

accumulation after radiation, thereby strengthening DNA damage

repair and mediating radiation resistance (68). Furthermore,

the tumor immune microenvironment is an indispensable part of

the tumor microenvironment and plays a critical role in the

development of radiation resistance in tumors (87)(Figure 6). For

instance, Ionizing radiation can upregulate PD-L1 expression

through various pathways, diminishing the cytotoxic effects of

CD8+ cytotoxic T lymphocytes (CTLs) against tumors.

Combining radiotherapy with anti-PD-L1 therapy has been found

to reduce immune escape and enhance the anti-tumor effects of

radiotherapy. Furthermore, the combination of radiotherapy with

anti-CTLA-4 and other immune modulatory therapies can

synergize the effect of radiotherapy. Additionally, radiotherapy

promotes the release of immune-suppressive chemokines CCL2
FIGURE 3

Mechanisms of Radioresistance Related to Apoptosis in Breast Cancer. Cell apoptosis occurs via intrinsic pathways regulated by the Bcl-2 family
activating CaspaseC or extrinsic pathways mediated by the expression of death receptor ligands. Radiation-resistant cells can inhibit apoptosis by
modulating the interaction network of the Bcl family.
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and CCL5, activates the immune-suppressive cytokine TGF-b,
secretes activin A, and locally accumulates extracellular

adenosine, collectively resulting in the recruitment of regulatory T

cells, immunosuppressive (M2-type) macrophages, and myeloid-

derived suppressor cells (MDSCs), impeding the activation and

function of CD8+ T cells, mediating tumor immune resistance, and

inhibiting the efficacy of radiotherapy (88, 89).
4 Traditional Chinese medicine and
radiotherapy resistance

Traditional Chinese Medicine (TCM) has a history spanning

thousands of years in the treatment of tumors and is widely applied

in the comprehensive therapy of cancer. In addition to being used

independently, TCM is often employed as an adjunctive measure,

combined with conventional treatments such as surgery,

radiotherapy, and chemotherapy, to enhance the overall

effectiveness of cancer treatment. Chinese herbal medicine is

believed to offer substantial advantages, including the inhibition

of tumor progression, improvement of the efficacy of chemotherapy
Frontiers in Oncology 08
and radiotherapy, enhancement of immune system function, and

reduction of side effects. Unlike Western medicines composed of

purified compounds, traditional Chinese herbal formulations may

consist of multiple herbs and components, acting on various cellular

mechanisms and molecular targets simultaneously. Even

compounds isolated from herbs may exhibit multiple effects.

Traditional Chinese Medicine has shown promise in the

treatment of breast cancer. It has been demonstrated to have

beneficial effects in conjunction with radiotherapy by altering

molecular signaling pathways, making it an effective agent for

enhancing radiosensitivity (Table 2).
4.1 Curcumin

Curcumin, derived from Curcuma longa, is a diarylheptanoid

also known as diferuloylmethane [1,7-bis(4-hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione]. It is a natural

antioxidant with various bioactivities believed to be beneficial for

human health. Curcumin’s main actions include antioxidation,

anti-inflammation, anti-tumor, immune modulation, and
FIGURE 4

Mechanisms of Radioresistance Caused by Cancer Stem Cells in Breast Cancer. Cancer stem cells induce radioresistance through enhanced DNA
repair capability, self-renewal, cell cycle arrest, scavenging of free radicals, dormancy, and interactions with stromal components in the
tumor microenvironment.
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neuroprotection. The potential anti-tumor properties of curcumin

are mediated through multiple mechanisms, including the

inhibition of cell proliferation, migration, invasion, angiogenesis,

induction of G2/M cell cycle arrest, apoptosis, and paraptosis.

Studies indicate that curcumin appears to be a crucial miRNA

regulator in breast cancer. Curcumin interactswith various carcinogenic

and anti-cancerousmiRNAs involved indifferent stages of breast cancer.

After treating various breast cancer cell lines with curcumin, miR181b,

miR-34a, miR-16, miR-15a, and miR-146b-5p are upregulated, while

miR-19a and miR-19b are downregulated. These effects lead to the

inhibition of tumor occurrence andmetastasis, alongwith the induction

of apoptosis (90). In breast cancer, Wang et al. found that curcumin

inhibits the proliferation and promotes apoptosis of MCF-7 breast

cancer cells. The mechanism is associated with curcumin

downregulating the miR21/PTEN/Akt pathway expression (91).

In breast cancer, based on transcriptomics and metabolomics

research, Minafra et al. discovered that curcumin, in combination

with radiotherapy, induces molecular imbalances involved in

apoptosis induction, inflammatory processes, cell cycle regulation,

and tyrosine metabolism in MCF7 and MDA-MB-231 breast cancer

cells. Specifically, curcumin, when used in combination with

radiation therapy, has been demonstrated to have dual effects on

promoting cell apoptosis. Firstly, it can increase the levels of

intracellular calcium ions (Ca2+) and reactive oxygen species

(ROS) within the mitochondria, thereby enhancing mitochondrial
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permeability and facilitating the formation of apoptotic bodies, thus

participating in intrinsic apoptosis. Secondly, curcumin can also

upregulate the expression levels of “death activators” such as Fas

ligand, TRAIL, and TNF-a, thereby participating in extrinsic

apoptosis. On the other hand, curcumin sensitizes cells to

radiation therapy by inhibiting the expression of various proteins

associated with cell survival, proliferation, angiogenesis, invasion,

and metastasis, such as Bcl-2, COX-2, cyclin D1, VEGF, MM9, and

ICAM-1. In summary, through its antioxidant and anti-tumor

effects, curcumin sensitizes the cells to radiotherapy (92).

Yang et al. found that in breast cancer stem cells, curcumin bound

to glucose-conjugated gold nanoparticles significantly reverses

radioresistance under hypoxic conditions. The molecular mechanism

involves inhibiting hypoxia-inducible factor 1-alpha (HIF-1a) and heat
shock protein 90 (HSP90) expression while increasing ROS levels,

confirming the radiosensitizing effect of curcumin on breast

cancer (93).

The efficacy of combining curcumin with radiotherapy has been

preliminarily explored in small-sample clinical studies. A

randomized, double-blind, placebo-controlled clinical trial

involving 30 breast cancer patients undergoing radiotherapy

found that co-administration of curcumin during radiotherapy

reduced the severity of radiation-induced dermatitis (94).

Similarly, another randomized, triple-blind, placebo-controlled

trial on ‘The Impact of Nanocurcumin on Radiation-Induced
FIGURE 5

Mechanisms of Radioresistance Caused by Ferroptosis in Breast Cancer. Radiotherapy induces ferroptosis in tumor cells through multiple pathways.
Radiation promotes lipid peroxidation and ferroptosis by inducing reactive oxygen species (ROS) production and overexpression of ACSL4 and
LPCAT3. Radiation decreases the expression levels of antioxidant system subunits SLC7A11 and SLC1A2 by activating the p53 pathway, thereby
reducing their inhibition of glutathione synthesis levels and promoting ferroptosis. Overexpression of ferroptosis-inhibiting genes SLC7A11 and GPXA
induces tumor radiotherapy resistance.
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Skin Reactions in Breast Cancer Patients’ indicated that although

the effect was not significant, the use of nanocurcumin alleviated

radiation-induced skin toxicity, particularly in pain relief (154).
4.2 Scutellaria baicalensis

Scutellaria baicalensis, commonly known as Huangqin, is a

traditional Chinese medicinal herb, and its roots are extensively

used in traditional Chinese medicine. Huangqin contains various

chemical components, among which flavonoids, including Wogonin,

baicalein, baicalin, are some of the major constituents. These

components are believed to possess multiple pharmacological

activities, including anti-inflammatory, antioxidant, antimicrobial,

and anti-tumor effects. Wogonin (5,7-dihydroxy-8-methoxyflavone)
Frontiers in Oncology 10
is an O-methylated flavone, belonging to the polyphenolic flavonoid

class. This compound is derived from the roots of Huangqin or

traditional Chinese medicine Huangqin and has been used in

traditional Chinese medicine to treat hepatitis, diarrhea,

infections, inflammation, hypertension, cardiovascular diseases,

neurodegenerative diseases, and tumors.

Scutellaria baicalensis and its active components (baicalein,

baicalin, wogonin, wogonoside, oroxylin A, and skullcapflavone)

exhibit anti-breast cancer activity through various mechanisms,

including inhibiting proliferation, inducing apoptosis, blocking

invasion and metastasis, overcoming drug resistance, and

regulating non-coding RNA. Additionally, mechanisms such as

senescence, autophagy, angiogenesis, and glycolysis play roles in

their anti-breast cancer activity. Moreover, multiple signaling

pathways contribute to the anti-tumor effects of Huangqin, such
FIGURE 6

Mechanisms of Radioresistance Associated with the Tumor Microenvironment in Breast Cancer. The tumor microenvironment is a significant factor
influencing the sensitivity of breast cancer to radiotherapy. Hypoxia is one of the key characteristics within the tumor microenvironment. On one
hand, hypoxia can induce the transition of tumor cells from an epithelial phenotype to a mesenchymal phenotype. On the other hand, it can
increase the expression of hypoxia-inducible factor 1 (HIF-1), promoting the secretion of vascular endothelial growth factor (VEGF) by tumor cells,
thereby enhancing radiation resistance. The tumor microenvironment comprises extracellular matrix, various chemokines and cytokines, vascular
networks, immune cells, and numerous other molecules. Alterations in the tumor microenvironment contribute to radiotherapy resistance, leading
to cell survival, angiogenesis, and tumor growth in breast cancer.
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as NF-kB, Wnt/b-catenin, SATB1, Bcl-2 family proteins, Caspase,

PI3K/Akt, mTOR, ERK, p38-MAPK, TGF-b/Smad, and Hippo/

YAP pathways (95).

Research by Park J R and colleagues found that Huangqin

extract (SBGE) acts on MCF-7 breast cancer cells, increasing the

sub-G1 phase ratio, inhibiting mitochondrial membrane potential,

and inducing cell apoptosis by downregulating Bcl-2 and

upregulating Bax. Huangqin induces caspase-dependent apoptosis

in MCF-7 breast cancer cells by activating the mitogen-activated

protein kinase (MAPK) signaling pathway and inducing reactive

oxygen species generation (96). Studies by CZ Wang et al. revealed

that a Huangqin extract (SbF1) without baicalin blocks the S and

G2/M phases of human breast cancer MCF-7 cells, significantly

increasing apoptosis induction (97). Wogonin inhibits stem cell-like

features (such as mammosphere formation, side population, Oct3/4

and ABCG2 expression, and CD44highCD24low population) and

induces apoptosis in radiation-resistant and chemoresistant MDA-

MB-231 human breast cancer cells by upregulating IFIT2 (98).

Several studies have identified Nrf2 and HIF-1a signaling

pathways as important targets for breast cancer radioresistance

(99). Wang et al. identified upregulation of Nrf2 and HIF-1a in

radioresistant breast cancer cells. They demonstrated that the

combination of Wogonin and radiation therapy effectively

suppressed DNA methylation and histone deacetylation in

radioresistant breast cancer cells, leading to epigenetic upregulation

of CpG site methylation in the Keap1 promoter region. Subsequently,

this epigenetic modification resulted in decreased expression of Nrf2

and HIF-1a, significantly promoting apoptosis in breast cancer cells

and reducing radiation resistance in breast cancer (100). However,

some research indicates that Wogonin treatment reduces the survival

rate of MCF-7 breast cancer cells in a dose- and time-dependent

manner. Pre-treatment of cells with 5 and 10 µM concentrations of

Wogonin for three days before irradiation resulted in increased
TABLE 2 Mechanisms of radiotherapy sensitivity by combined traditional
Chinese medicine and radiotherapy.

Substance Mechanism References

Curcumin MiRNA Modulators, Downregulation of
miR-21/PTEN/Akt Pathway, Promotion of
Apoptosis, Induction of Apoptosis,
Regulation of Cell Cycle, and Elevation of
ROS Levels.

(90–94)

Scutellaria
baicalensis

NF-kB, Wnt/b-catenin, SATB1, Bcl2
family proteins, Caspase, PI3K/Akt,
mTOR, ERK, p38-MAPK, TGF-b/Smad,
and Hippo/YAP pathways increase the
sub-G1 phase ratio, suppress
mitochondrial membrane potential, induce
apoptosis by downregulating Bcl-2 and
upregulating Bax, caspase-dependent
apoptosis, block S and G2/M phases,
upregulate IFIT2 to inhibit tumor stem
cells, and inhibit the Nrf2/HIF-
1a pathway.

(95–103)

Artemisinin Increase micronucleus frequency (MNF)
and micronucleated cell frequency
(MNCF), inhibit stem cell phenotype, b-
catenin, and MMP-9, trigger reactive
oxygen species (ROS) production and
inhibit glutathione-S-transferase (GST)
activity, increase apoptosis induction, cell
cycle arrest, and impede DNA damage
response, and increase NO generation
inducing cell cycle arrest at the G2/
M phase.

(104–109)

Resveratrol Autophagy, regenerative gene (REG) III
expression, hinders DNA damage repair,
G2/M arrest of the cell cycle, induces
necrosis and aging, decreases Bax/Bcl-2
ratio and increases caspase 8 activity,
affects oxidative cell metabolism, enhances
the expression of apoptotic genes Bax, p53,
and caspase 8, inhibits HIF-1a, inhibits
angiogenesis, and induces anti-
tumor immunity.

(110–118)

Huaier Autophagy, expression of Regenerating
islet-derived protein III (REGIII), hinder
DNA damage repair, cell cycle G2/M
phase arrest, induce necrosis and
senescence, decrease Bax/Bcl-2 ratio and
enhance caspase 8 activity, impact
oxidative cellular metabolism, enhance
expression of apoptosis genes Bax, p53,
caspase 8, inhibit HIF-1a, suppress
angiogenesis, induce anti-tumor immunity.

(119–122)

Berberine Inhibit cell cycle progression, promote cell
apoptosis, suppress tumor stem cells,
induce G2/M phase cell cycle delay,
downregulate homologous recombination
repair protein RAD51, induce
mitochondrial ROS production and
activate mitochondrial apoptosis, regulate
tumor microenvironment via PI3K/HIF-1
pathway to overcome hypoglycemia and
hypoxia, target Rad51 and epithelial-
mesenchymal transition.

(123–135)

Triptolide
and celastrol

Reduce HMGB1 expression, induce
autophagy and affect phosphorylation of
p38 mitogen-activated protein kinase,

(136–144)

(Continued)
TABLE 2 Continued

Substance Mechanism References

extracellular signal-regulated kinase (Erk)
1/2, and mammalian target of rapamycin
(mTOR), inhibit GRP78 protein
expression, induce cell apoptosis, M/G2
phase arrest, suppress the PI3K/Akt
signaling pathway, increase PARP
cleavage, JNK and p53 expression, inhibit
HSP70 and Akt expression, modification
by the antioxidant thiol molecule.

Withaferin Increase ROS production levels, upregulate
PARP cleavage, downregulate Bcl-2
expression, and activate JNK and p38
signaling pathways, leading to G2/M and
pre-G1 phase arrest, as well as modulation
of BCL2/Bax signaling cascade.

(145–147)

CAPE Induce gH2AX foci and cell apoptosis,
enhance Akt/mTOR phosphorylation,
hinder cell migration, reduce the
expression of DNA repair proteins RAD50
and RAD51, induce cell cycle arrest at S/
G2 phase, elevate reactive oxygen species
(ROS) levels, modulate lncRNA, deplete
GSH, and inhibit NF-kB activity.

(148–153)
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radioresistance compared to untreated cells, suggesting thatWogonin

induces radioresistance inMCF-7 breast cancer cells (155). Therefore,

further in-depth research is needed to explore the effective

components and doses of Huangqin in overcoming radioresistance.

Furthermore, Huangqin demonstrates the ability to overcome

radioresistance in various common malignant tumors. Wogonin

regulates the radiation sensitivity of cervical cancer cells in vitro

through miR-183 and the JAK2/STAT3 signaling pathway (101).

Wogonin inhibits the progression of esophageal squamous cell

carcinoma by targeting HIF-1A and enhances its sensitivity to

radiotherapy (102). Wogonin may reverse radioresistance in

colorectal cancer by acting on the SULT2B1 target (103).
4.3 Artemisinin

Artemisinin, derived from the Artemisia annua plant, is a

natural compound primarily used to treat malaria, fever, and

neurological disorders. Additionally, it exhibits anticancer activity,

and recent studies suggest its potential as an anti-tumor agent

against various solid tumors, including breast cancer.

In human breast cancer cells MDA-MB-435 with p53 mutations,

treatment with artemisinin on top of radiotherapy results in higher

micronucleus frequency (MNF) and micronucleated cell frequency

(MNCF), possibly leading to increased radiosensitivity (104).

Polyphenols extracted from artemisinin exhibited anticancer effects

inMDA-MB-231 human breast cancer cells through the inhibition of

protein expressions associated with cancer stem cells (CSCs), the

epithelial to mesenchymal transition (EMT), and cancer progression

markers. These markers include overexpressed stem cell markers

(CD44 and Oct 3/4), b-catenin, and MMP-9, which are observed in

radioresistant breast cancer cells (105). Dihydroartemisinin induces

the generation of reactive oxygen species (ROS) and inhibits

glutathione-S-transferase (GST) activity, thereby enhancing

radiosensitization in human glioma cells (106). The semi-synthetic

derivative of artemisinin, artesunate, selectively downregulates

survivin, increasing radiosensitivity in neuroblastoma cells by

inducing apoptosis, cell cycle arrest, and hindering DNA damage

response (107). Artesunate enhances radiosensitivity in human non-

small cell lung cancer A549 cells by increasing NO production and

inducing G2/M cell cycle arrest (108). Artesunate induces

radiosensitivity in cervical cancer cells by causing G2/M cell cycle

arrest and apoptosis both in vitro and in vivo (109).
4.4 Resveratrol

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is a polyphenol

found in common foods such as pistachios, peanuts, mulberries,

blueberries, and grapes. Renowned for its diverse biological

activities and medicinal properties, resveratrol is one of the most

well-known and distinctive stilbene derivatives. It exhibits

antioxidant, anti-inflammatory, cardioprotective, neuroprotective,

and anticancer effects, making it a therapeutic agent for various

diseases, including diabetes, cardiovascular disorders,

inflammation, and cancer. Resveratrol demonstrates a dual nature
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(110); on one hand, it can enhance cellular radioresistance,

particularly advantageous for protecting healthy tissues during

radiotherapy. On the other hand, numerous studies suggest that it

can increase cancer cells’ sensitivity to radiation (111).

In a study, the radiosensitizing mechanism of resveratrol was

associated with increased autophagy and apoptosis (112). Mikami

et al. also demonstrated that resveratrol could enhance radiation

efficacy through the Regenerating Islet-Derived (REG) III

expression pathway (113). In other research, combining

resveratrol with ionizing radiation delayed the repair of radiation-

induced DNA double-strand breaks (DSB) and prolonged G2/M

phase arrest, inducing apoptosis (114).

A study found that adding resveratrol treatment to irradiated

breast cancer MCF-7 cells induced necrosis/senescence. Furthermore,

it observed the activation of the extrinsic apoptosis pathway by

reducing the Bax/Bcl-2 ratio, increasing caspase 8 activity, affecting

oxidative cell metabolism, elevating oxidative proteins, lipids, and

membrane damage, while reducing antioxidant enzyme activity.

Resveratrol exhibits radiosensitizing effects on breast cancer (115).

Similarly, research confirms that the synergistic action of resveratrol

and radiation enhances the expression of apoptosis genes, such as

Bax, p53, and caspase 8, leading to cell apoptosis (116). Resveratrol

analogue HS-1793 improves tumor tissue perfusion and hypoxia

status under low oxygen conditions by inhibiting HIF-1a,
suppressing angiogenesis, and enhancing radiosensitivity in mouse

breast cancer cells (117). Another study suggests that HS-1793

enhances the efficacy of radiotherapy by inducing antitumor

immunity in breast tumor growth (118).
4.5 Huaier

Huaier, also known as Poria fungus, is an official fungus used in

Traditional Chinese Medicine (TCM). It is a sandy-colored mushroom

belonging to the phylum Basidiomycota. It is believed to have various

medicinal properties such as clearing heat, detoxification, nourishing

blood, and moistening yin. In cancer treatment, extracts from Huai’er

have demonstrated diverse biological functions. Huaier extracts exhibit

anti-tumor effects in variousmalignant tumors (119), withmechanisms

including sensitizing to radiotherapy, inducing apoptosis, anti-

angiogenesis, reversing drug resistance, inhibiting metastasis, and

activating the immune system (120, 121).

According to Ding et al., based on HTA 2.0 microarray results,

Huai’er extracts were found to damage genes related to the cell

cycle, cell division, cell cycle phases, and DNA repair. Treatment of

cells with Huaier at a concentration of 4 mg/ml for 24 hours

resulted in a significant increase in the proportion of cells in the

G0/G1 phase. Subsequently, within 24 hours after irradiation,

MCF-7 cells exposed to 6 Gy of radiation exhibited a G2/M phase

block. However, in cells pre-treated with Huaier, this radiation-

induced G2/M phase block was not prominently observed. Ku70

and Ku86 are markers of non-homologous end joining (NHEJ),

while RAD51 is associated with homologous recombination (HR).

In both MCF-7 and MDA-MB-468 cells, Huaier pre-treatment led

to a time-dependent decrease in RAD51 levels following irradiation

with 6 Gy (at 0, 2, 6, and 24 hours) compared to control cells.
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However, there were no significant changes in the protein levels of

Ku70 and Ku86. Subsequent in vitro experiments confirmed that

Huaier, by downregulating proteins associated with cell cycle

regulation in MCF-7 and MDA-MB-468 breast cancer cells,

induced G0/G1 arrest, prolonged the duration of g-H2Ax foci

after radiotherapy, and increased the radiosensitivity of breast

cancer cells by downregulating RAD51, disrupting the

homologous recombination (HR) pathway for DNA repair (122).
4.6 Berberine

Berberine, an isoquinoline alkaloid derived from various

medicinal herbs such as Coptis chinensis, exhibits a wide range of

pharmacological and biochemical effects. Known for its

antimicrobial, anti-inflammatory, and anti-tumor properties,

berberine is extensively used in China to treat gastrointestinal

discomfort. Furthermore, berberine demonstrates anti-tumor

activity against various cancer cells, often through the inhibition

of cell cycle progression and promotion of apoptosis (123–129).

Treating MCF-7 and MDA-MB-468 breast cancer cells with

berberine at a concentration of 15 mM and subjecting them to

various doses of X-rays (ranging from 1 to 4 Gy), resulted in a

decrease in RAD51 protein levels compared to control cells.

Specifically, in cells pre-treated with 15 mM berberine for 24

hours, the levels of RAD51 protein were significantly reduced at

specific time points after X-ray irradiation (0, 2, 6, and 24 hours).

These findings highlight the potential of berberine as a

radiosensitizer in the treatment of human breast cancer, as it

exerts its effects through G2/M phase cell cycle arrest and the

downregulation of the homologous recombination repair protein

RAD51, ultimately increasing the therapeutic efficacy of radiation

therapy (130). Monitoring changes in the expression of the tumor

stem cell markers OCT4 and SOX2 reveals that berberine enhances

the cytotoxic effect of radiotherapy by targeting cancer stem cells

(131). Additionally, 13-ethyl berberine (13-EBR) exerts pro-

apoptotic effects in radiotherapy-resistant breast cancer cell lines

by inducing mitochondrial ROS production and activating the

mitochondrial apoptosis pathway (132).

In a study by Zeng et al., low-dose berberine modulates the

tumor microenvironment through the PI3K/HIF-1 pathway,

overcoming radiation resistance in cervical cancer cells under low

glucose and hypoxic conditions (133). Wang et al. discovered that

berberine enhances the radiosensitivity of osteosarcoma by

targeting Rad51 and inhibiting epithelial-mesenchymal transition

(134). Liu et al. found that berberine increases the radiosensitivity of

esophageal cancer cells by downregulating the homologous

recombination repair protein RAD51 (135).
4.7 Triptolide and celastrol

Triptolide and Celastrol are two natural compounds extracted

from the Tripterygium wilfordii. In traditional Chinese medicine,

they have been used to treat inflammatory conditions such as

rheumatoid arthritis, and in recent years, they have garnered
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scientific attention due to their diverse biological activities,

including anti-inflammatory, antioxidant, and anti-tumor effects.

Triptolide, a diterpenoid triepoxide extracted from the Thunder

God Vine in China, exhibits the ability to inhibit cancer cell

proliferation in vitro and suppress tumor growth and metastasis

in vivo. Jiang et al. reported that triptolide inhibits the growth of

breast cancer cells by reducing HMGB1 expression both in vitro and

in vivo (136). Triptolide induces autophagy and affects the

phosphorylation of p38 mitogen-activated protein kinase,

extracellular signal-regulated kinase (Erk) 1/2, and mammalian

target of rapamycin (mTOR), leading to autophagy and apoptosis

in breast cancer cells (137).

In a study by Li et al., triptolide significantly inhibited the expression

of GRP78 protein in radiotherapy-resistant nasopharyngeal carcinoma

cells (CNE2-SR) and induced apoptosis and M/G2 phase arrest,

suggesting that triptolide may serve as a potential radiosensitizer for

NPC treatment (138). Triptolide markedly increased the radiosensitivity

of human glioma U251 cells by suppressing the PI3K/Akt signaling

pathway (139). In comparison to radiation alone, lung cancer cells

treated with triptolide in combination with radiation promoted

apoptosis, with observed increases in PARP cleavage, JNK, and p53

expression, while HSP70 and Akt expression were inhibited (140).

Celastrol, a triterpenoid compound extracted from the Thunder

God Vine, is commonly used to treat inflammation and autoimmune

diseases. Recently, the potential anti-cancer activity of celastrol has

gained widespread attention. Celastrol can inhibit the proliferation of

various tumor cells and suppress tumor initiation, progression, and

metastasis in various cancer models. Celastrol regulates the

expression of pro-inflammatory cytokines, MHC II, HO-1, iNOS,

NF-kB, Notch-1, AKT/mTOR, CXCR4, TRAIL receptors DR4 and

DR5, CHOP, JNK, VEGF, adhesion molecules, proteasome activity,

topoisomerase II, potassium channels, and heat shock response (141).

Gao et al. found that celastrol enhances TRAIL-induced

apoptosis by downregulating cell survival proteins, including

cFLIP, IAP-1, Bcl-2, Bcl-xL, survivin, and XIAP, and upregulating

death receptor expression through ROS-mediated CHOP pathway

(142). Studies on a mouse lung cancer model revealed that the novel

radiosensitizer celastrol, when combined with ionizing radiation,

has therapeutic effects, maximizing the treatment efficacy against

non-small cell lung cancer (143). In non-small cell lung cancer cells,

celastrol mediates radiation sensitization through the modification

of the antioxidant molecule thioredoxin. Research indicates that

celastrol impairs DNA damage processing and increases apoptosis

in prostate cancer PC-3 cells, rendering PC-3 cells sensitive to

radiation both in vitro and in vivo (144).
4.8 Withaferin

Withaferin is a steroidal compound found in Ashwagandha,

also known as Indian ginseng, and is believed to possess various

pharmacological activities, including potential anticancer effects,

anti-inflammatory properties, and neuroprotective effects.

U937 lymphoma cells were treated with different concentrations

of withaferin A (0, 0.3, 0.5, and 1 mM) along with increasing doses of

X-ray radiation (from 0 to 10 Gy). However, most experiments were
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conducted under conditions of sublethal doses of 0.5 mM withaferin

A and 10 Gy radiation, as under these conditions, withaferin A in

combination with radiation effectively induced nearly 40% of cell

death, accompanied by typical morphological changes indicative of

apoptosis, such as cell shrinkage, cytoplasmic condensation, and

nuclear condensation. Administration of withaferin A followed by

radiation resulted in increased levels of ROS production, upregulation

of PARP expression, downregulation of Bcl-2, and activation of JNK

and p38 signaling pathways. These pathways are known to be

activated in response to various cellular stressors, such as ROS

(145). Similar effects were observed in other cell lines within the

same study, including Caki (renal cancer), SK-Hep1 (hepatic cancer),

MDA-MB-231 (breast cancer), and HeLa (cervical cancer) cells,

when treated with 4 mM of Withaferin A followed by exposure to

10 Gy of X-ray radiation (146).

In in vitro experiments with breast cancer cells, Withania

induced G2/M and pre-G1 phase arrest in MDA-MB-231 cells

and pre-G1 phase arrest in MCF7 cells. Flow cytometry analysis

revealed that in the experimental group, consisting of MDA-MB-

231 and MCF7 breast cancer cell lines treated with Withania prior

to irradiation, there was an increased percentage of apoptotic cells

(including early, late, and necrotic cells) compared to the control

group, which only received irradiation. Additionally, it altered

BCL2/Bax signal transduction and triggered apoptosis in breast

cancer cells exposed to g radiation (147).
4.9 Caffeic acid phenethyl ester

Caffeic acid phenethyl ester (CAPE) is a major polyphenol

extracted from bee propolis. CAPE exhibits various medicinal

properties, including antiviral, anti-inflammatory, and antioxidant

effects. It is considered to have anticancer effects on different tumor

cell lines and has been confirmed as a radiosensitizer in certain

types of cancer.

CAPE enhances the radiosensitivity of MDA-MB-231 (estrogen

receptor-negative) and T47D (estrogen receptor-positive) breast

cancer cell lines by prolonging radiation-induced DNA damage.

CAPE inhibits clonogenic formation and sustains radiation-induced

DNA damage in both cell lines, with a more pronounced effect in

T47D cells. Given the structural similarity between CAPE and

estrogen, CAPE may be more effective in estrogen receptor-positive

T47D cells than in estrogen receptor-negative MDA-MB-231 cells

(148). Pre-treating MDA-MB-231 and T47D breast cancer cells with

1 µM CAPE for 72 hours prior to irradiation with 6 Gy and 8 Gy, the

experiment measured the quantity of DNA strand breaks at four

different time points. The results demonstrated that CAPE reduced

the viability of both cell lines in a dose- and time-dependent manner.

The radiosensitizing ability of CAPE in breast cancer cells may

primarily operate through DNA damage repair mechanisms.

Combination treatment of CAPE with gamma-ray therapy renders

androgen-independent prostate cancer DU145 and PC3 cells more

sensitive to radiation. Mechanistically, combined treatment induces g
H2AX foci and apoptosis, enhances Akt/mTOR phosphorylation, and

impedes cell migration. The joint action of CAPE and ionizing

radiation (IR) leads to intensified DNA damage and cell death by
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reducing RAD50 and RAD51 proteins involved in DNA repair (149).

Furthermore, CAPE treatment sensitizes lung cancer cells to radiation

by promoting apoptosis and inducing cell cycle arrest at S/G2 phase,

associated with post-treatment depletion of glutathione (150). In mice

hepatoma (H22) cells, co-treatment with CAPE and 60Cog radiation
shows potential radiosensitizing effects, as evidenced by reduced cell

viability, altered cell cycle, increased apoptosis, and elevated reactive

oxygen species (ROS) levels. Additionally, high-throughput

sequencing identified 46 differentially expressed lncRNAs in H22

cells post-CAPE treatment, including 24 upregulated and 22

downregulated lncRNAs. Representative lncRNAs (LNC-004553,

LNC-000751, and LNC-000561) were selected for validation using

quantitative real-time polymerase chain reaction (qRT-PCR) after

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses (151). CAPE treatment sensitized CT26

colorectal adenocarcinoma cells to radiation, possibly through GSH

depletion and inhibition of NF-kB activity, without causing toxicity to

bone marrow, liver, and kidneys (152). CAPE exerts antiproliferative

and radiosensitizing effects on medulloblastoma cells by reducing the

G2/M fraction, downregulating cell cycle protein B1 expression, and

promoting apoptosis (152). Subsequent studies support the anti-

proliferative and radiosensitizing effects of CAPE on

medulloblastoma, likely achieved through GSH consumption,

increased ROS activity, and NF-kB activity inhibition (153).
5 Future directions

Breast cancer is the most common malignancy in women and

ranks second in female malignancy-related mortality. Radiotherapy

plays a crucial role in the comprehensive treatment of breast cancer,

with different molecular subtypes corresponding to distinct treatment

strategies and prognoses. Considering cancer characteristics,

overcoming radiotherapy resistance to enhance tumor cure rates is

a pressing issue for scientists. A systematic elucidation of the

molecular mechanisms underlying radiotherapy resistance in breast

cancer can assist in the targeted selection of appropriate drugs to

improve radiotherapy sensitivity.

Traditional Chinese medicine (TCM) has a rich history spanning

thousands of years, offering abundant resources for further drug

development. This review highlights potential herbal candidates to

enhance radiotherapy sensitivity in breast cancer. Natural compounds

derived from traditional Chinese herbs, such as curcumin, baicalein,

artemisinin, resveratrol, Tremella fuciformis, berberine, triptolide,

celastrol, withaferin, and caffeic acid phenethyl ester, have shown

efficacy in increasing radiotherapy sensitivity in breast cancer.

Curcumin, through its ability to promote intrinsic and extrinsic

apoptosis and inhibit the expression of proteins associated with cell

survival, proliferation, angiogenesis, invasion, and metastasis, exerts its

antioxidant and anti-tumor effects, rendering cells sensitive to radiation

therapy. Wogonin can epigenetically regulate the Keap1 gene,

inhibiting the Nrf2/HIF-1a pathway, inducing apoptosis in breast

cancer cells, and alleviating acquired radioresistance. Polyphenols

derived from artemisinin exhibit anticancer effects in radiotherapy-

resistant MDA-MB-231 human breast cancer cells by inhibiting the

protein expressions associated with CSCs, EMT, and cancer
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progression markers. The radiosensitizing mechanism of resveratrol is

associated with increased autophagy and cell apoptosis. Huaier

downregulates proteins associated with cell cycle regulation in breast

cancer cells, thereby regulating G0/G1 cell cycle arrest. It also

downregulates RAD51, which interferes with the homologous

recombination (HR) pathway involved in DNA damage repair,

resulting in increased radiosensitivity of breast cancer cells. Berberine

enhances radiation sensitivity in irradiated breast cancer cells by

regulating cell cycle arrest at the G2/M phase and downregulating

RAD51 protein. Withaferin, in combination with radiation therapy,

induces G2/M and pre-G1 phase arrest in breast cancer cell lines. It

modulates the BCL/BAX protein family to promote cell apoptosis,

thereby increasing the radiosensitivity of breast cancer cells. Caffeic acid

phenethyl ester (CAPE) reduces DNA damage repair capacity in breast

cancer cells, which is beneficial in overcoming resistance to

radiation therapy.

However, due to the complex composition of traditional Chinese

medicine, it may contain hundreds of different chemical components.

These components can interact in multiple ways, thereby producing

sensitizing effects in radiotherapy. Currently, our understanding of the

specific mechanisms by which herbal medicine components enhance

radiotherapy remains limited, requiring further research to unravel

their mysteries. At present, research on the relationship between

traditional Chinese medicine and resistance to radiotherapy in breast

cancer is mostly based on in vitro experiments. There is a lack of large-

sample clinical trial evidence to support the radiosensitizing effect of

traditional Chinese medicine on breast cancer. Additionally, the

sensitizing effects of TCM in radiotherapy may vary among

individuals, and determining the appropriate dosage of TCM is also

a significant concern. In the future, a broader range of research and

clinical trials should be conducted to attain a comprehensive

understanding of this field.
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