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Classification of multiple primary
lung cancer in patients with
multifocal lung cancer:
assessment of a machine
learning approach using
multidimensional genomic data
Guotian Pei1†, Kunkun Sun2†, Yingshun Yang1†, Shuai Wang1,
Mingwei Li3, Xiaoxue Ma3, Huina Wang3, Libin Chen3,
Jiayue Qin3, Shanbo Cao3, Jun Liu1 and Yuqing Huang1*

1Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third
Hospital), Beijing, China, 2Department of Pathology, Peking University People’s Hospital,
Beijing, China, 3Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
Background: Multiple primary lung cancer (MPLC) is an increasingly well-known

clinical phenomenon. However, its molecular characterizations are poorly

understood, and still lacks of effective method to distinguish it from

intrapulmonary metastasis (IM). Herein, we propose an identification model

based on molecular multidimensional analysis in order to accurately

optimize treatment.

Methods: A total of 112 Chinese lung cancers harboring at least two tumors (n =

270) were enrolled. We retrospectively selected 74 patients with 121 tumor pairs

and randomly divided the tumor pairs into a training cohort and a test cohort in a

7:3 ratio. A novel model was established in training cohort, optimized for MPLC

identification using comprehensive genomic profiling analyzed by a broad panel

with 808 cancer-related genes, and evaluated in the test cohort and a

prospective validation cohort of 38 patients with 112 tumors.

Results: We found differences in molecular characterizations between the two

diseases and rigorously selected the characterizations to build an identification

model. We evaluated the performance of the classifier using the test cohort data

and observed an 89.5% percent agreement (PA) for MPLC and a 100.0% percent

agreement for IM. The model showed an excellent area under the curve (AUC) of

0.947 and a 91.3% overall accuracy. Similarly, the assay achieved a considerable

performance in the independent validation set with an AUC of 0.938 and an

MPLC predictive value of 100%. More importantly, the MPLC predictive value of

the classification achieved 100% in both the test set and validation cohort.

Compared to our previous mutation-based method, the classifier showed

better k consistencies with clinical classification among all 112 patients (0.84

vs. 0.65, p <.01).
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Conclusion: These data provide novel evidence of MPLC-specific genomic

characteristics and demonstrate that our one-step molecular classifier can

accurately classify multifocal lung tumors as MPLC or IM, which suggested that

broad panel NGS may be a useful tool for assisting with differential diagnoses.
KEYWORDS

MPLC: multiple primary lung cancer, IM: intrapulmonary metastasis, NSCLC: non-small
cell lung cancer, GGO: ground-glass opacity, comprehensive genomic characteristics,
molecular classifier, machine learning
1 Introduction

Lung cancer is one of the most commonly diagnosed cancer and

the leading cause of cancer-related death worldwide (1, 2). Recently,

multifocal lung cancer has been detected more frequently, which

may be attributed to the advancement of imaging diagnostic

technology and the emphasis on early lung cancer screening (3),

and the identification of multifocal lung cancer has become an

increasingly common clinical problem. Nevertheless, no accurate

method was built to distinguish multiple primary lung cancer

(MPLC) from intrapulmonary metastases (IM), which is

extremely important for the clinical management of lung cancer

patients since it affects staging, prognostication and therapeutic

choices (4). Indeed, MPLC tends to confer lower staging and a

better prognosis than IM, with the main therapies being radical

surgery and stereotactic body radiotherapy (5), while IM may need

aggressive chemotherapy or targeted therapies (4, 6–10).

In 1975, Martini and Melamed first proposed criteria to

distinguish MPLC and IM. Their criteria, based on pathological

features, have been widely put into routine clinical use, but it is still

challenging to separate IM from MPLC when histological types are

identical in the absence of molecular characteristics. With the

development of molecular biology and next-generation

sequencing (NGS), researchers have been exploring the use of

genomic technologies for the classification of lung cancers, but

most studies only focus on one or a few genes for classification

purposes (3, 11–16) while molecular profiling of MPLC rarely

reported (17). Despite the clinical utility in defining tumor
; IM, intrapulmonary
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lineages, driver mutations have been reported to lead to

misclassification of tumor lineages in some challenging cases (18).

Currently, several studies observed 27% - 33% discordance with the

histological or clinicopathologic criteria by a few hot spot genes

(18–20) and no studies have used machine models based on

comprehensive genomic characteristics to identify these

two diseases.

More comprehensive molecular characteristics may have

important implications for our understanding of tumor biology

and differential diagnosis in MPLC. Intratumor heterogeneity

(ITH) may be required for tumor evolution and has been

detected with respect to genetic alterations, which originate and

accumulate clonally or subclonally in the course of tumor

progression and response to therapy (21–23). Genomic instability

makes cancer cells particularly prone to accumulate genetic

alterations and has been shown to increase in human

metastases (24).

Here, we comprehensively examined the genomic profiles of

MPLC and developed a novel random forest (RF) model by using

molecular features that are significantly different between MPLC

and IM to separate them. To the best of our knowledge, this is the

first model by machine learning to identify MPLC using integrated

multidimensional molecular features.
2 Materials and methods

2.1 Study design and participants

The overall study design is illustrated in Figures 1A, B. We

expanded the study population and upgraded the diagnostic

approach from our previous study (11). The main inclusion

criteria for patients used to develop and validate the diagnostic

classifiers included patients with complete clinicopathological

information, a confirmed diagnosis of lung cancer, and tissue

samples available for NGS who had at least two lung cancer

lesions. The main exclusion criteria included patients with

inconclusive histologic decisions for MPLC or IM based on

histologic analyses, those with suspected lung metastasis of

cancers other than lung cancer and those who received
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neoadjuvant therapies. A total of 112 Chinese lung cancer patients

who underwent surgical resection or biopsy by endobronchial

ultrasound-guided transbronchial needle aspiration (EBUS-

TBNA) at the Department of Thoracic Surgery of Beijing Haidian

Hospital between November 2018 and July 2021 were enrolled. We

separated 121 tumor pairs from 74 patients retrospectively into

training and test cohorts in a ratio of 7:3 to build the model. In the

training phase, we analyzed the molecular feature of 41 MPLC (91

lesions) and 10 IM patients (25 lesions) to find variant candidate

biomarkers. In the test phase, 19 patients who were diagnosed with

MPLC (43 lesions) and 4 patients with IM (9 lesions) were

retrospectively recruited to test the performance of the model. In

the validation phase, we prospectively recruited 38 patients between

August 2021 and May 2022 as an independent validation cohort to

verify the model, including 32 patients with MPLC and 6 patients

with IM, consisting of 90 lesions and 12 lesions, respectively.

Two pulmonary pathologists blinded to clinical and genomic

data performed independent histologic reviews. The multifocal lung

cancers in each patient were diagnosed as MPLC or IM based on

American College of Chest Physicians (ACCP) guidelines (25).
Frontiers in Oncology 03
According to the ACCP criteria, tumors with the same

histological subtype located in different lung lobes without lymph

node metastasis or systemic metastasis, and the time period between

tumors in a pair was less than 4 years were considered as MPLC. IM

was associated with lymphatic or systemic metastases and/or an

interval of less than 2 years. In addition, different histological

subtypes, tumors with the same histological subtype but different

mutations, and carcinoma in situ were defined as MPLC. The main

radiological and pathological features of the tumors in these

patients are shown in Figures 1C, D, respectively.
2.2 Sample preparation and targeted
multigene panel sequencing

DNA was extracted from tissues and matched blood. White

blood cell samples and fresh tissue samples were extracted using a

Blood/Cell/Tissue genomic DNA extraction kit (TIANGEN).

Formalin-fixed, paraffinembedded (FFPE) tissue samples were

extracted using the GeneRead DNA FFPE Kit (Qiagen). All
A

B C

D

FIGURE 1

Graphical summary of the study design and participant flow diagram. (A) Schematic overview of the study design. (B) Participant flow diagram for
algorithm development and clinical validation. (C) Lung computed tomography (CT) scan. Red arrows indicate sites of lesions. (D) Histologic features
of lesions of MPLC and IM. Hematoxylin-eosin staining (200×) shows main histopathological images, including AIS, MIA and IAC subtypes (lepidic,
acinar and micropapillary). MPLC, multiple primary lung cancer; IM, intrapulmonary metastasis; AIS, adenocarcinoma in situ; MIA, minimally invasive
adenocarcinoma; IAC, invasive adenocarcinoma.
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extractions were performed in accordance with the manufacturer’s

instructions. Targeted sequencing was performed using an

AcornMed panel, which targeted 808 cancer-related hotspot

genes. Target‐enriched libraries were pooled and then sequenced

on the NovaSeq6000 System (Illumina Inc.) with 150 bp paired-

end sequencing.
2.3 Sequence alignment and
variant annotation

The raw sequencing reads were first subjected to quality control

by trimming adaptor sequences and removing the reads with poly-

N and low quality preprocessed by FASTP (26). Then, high-quality

reads were aligned to a human reference genome (GRCh37) with

Burrows-Wheeler Aligner (BWA) (27), and duplicate reads by PCR

were removed by Picard tools. The subsequent data preprocessing

and variant calling were based on the Sentieon Genomics pipeline

(28). Single-nucleotide variants (SNVs) and small insertions or

deletions (INDELs) were analyzed using Sentieon Genomics.

Matched genomic DNA from white blood cells was used as a

control. The recommended parameters were used, including 1) a

mutation allele frequency (AF) at least 1% for tumor tissue DNA; 2)

ignoring all silent mutations; 3) at least 10 high-quality supporting

reads. SNVs and INDELs were annotated with ANNOVAR (29).

Somatic copy number analysis was performed using PureCN (30).

GISTIC 2.0 (31) software was used to identify significant

aberrations of broad and focal events and to estimate the arm-

level copy number status based on the segmented copy number

profiles of PureCN. The driver gene hotspot mutations were defined

as described previously (11).
2.4 wGII, clonal status and ITH estimation

The wGII (weighted genomic integrity index), clonal status and

ITH analyses were performed based on ABSOLUTE (32). wGII was

determined by the total length of gain plus the loss region divided

by chromosome size. Clonal mutation was detected according to the

value of the cancer cell fraction (CCF), which was the fraction of

tumor cells carrying this mutation within a sequencing sample (32).

Mutation was classified as clonal if the estimated CCF was > 0.9 and

the Pr (clonal) was > 0.5 and as subclonal otherwise (33). ITH was

defined as the ratio of the sum of the subclonal SNV and CNV

numbers to the sum of clonal SNV and CNV numbers.
2.5 Analysis of mutational signatures and
single-base substitution patterns

The mutational signatures with 96 mutation types were

extracted for the MPLC and IM groups using the R package

MutationalPatterns (34). This algorithm, termed NMF (35), was

used to solve the well-known blind source separation problem,

which separated the original signal from a set of mixed signals. After
Frontiers in Oncology 04
that, we calculated the cosine similarity value between these

signatures and COSMIC mutational signatures (V2). Single-base

substitution pattern (transition or transversion) analysis was

performed with the R package maftools (36).
2.6 Machine learning algorithm for
model development

The MPLC classifier was established using the random forest

algorithm, a machine learning dimension reduction strategy based

on the construction of thousands of classification or regression

trees. We selected characteristics of significant differences between

MPLC and IM as candidate features to build the model. The

training datasets were used for a grid search of the best

parameters and determining the best threshold value with the

maximum Youden index of the RF model by 10 k-fold cross-

validation. We chose the model that maximized the area under the

curve (AUC) during cross-validation. The test datasets were used

for assessing the performance of the model, and an independent

validation set was used to further validate the classifier. To

minimize overfitting, a single patient was maintained as the

smallest unit when defining the training and test sets, and all

samples belonging to the same patient were considered together

as a group in the training and test sets. We reported performance as

the AUC and assessed percent agreement (PA) for MPLC and IM

PA at a specified score threshold.
2.7 Statistical analysis

Statistical analysis was performed with GraphPad Prism 8.0

software. The Wilcoxon rank-sum test, chi-square test and Fisher

test were performed when the rate or percentage was compared for

significance. Mutation spectrum figures were made with R software.

Differences in continuous variables between the groups were

analyzed by the Mann-Whitney U test or one-way ANOVA.

Pearson correlation coefficients were calculated to evaluate the

relatedness of mutations between each pair of samples. The

consistency of different classification methods was assessed using

the kappa test with SPSS version 23.0. The AUC of the receiver

operating characteristic (ROC) curve with a 95% confidence

interval (CI) was calculated using the R package pROC (37). The

random forest analyses were performed using the Python package

SKLearn. A two-sided p <.05 was considered statistically significant.
3 Results

3.1 Characteristics of patients with MPLC
and IM

The clinical characteristics of 270 tumors from 112 patients

with multifocal lung cancers included in the study are summarized

in Table 1. The three cohorts had similar clinical characteristics,
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TABLE 1 Clinical characteristics of patients and tumors with MPLC and IM.

Training cohort [N = 51] Test cohort [N = 23]
Independent validation cohort

[N = 38]

Patient characteristics MPLC [n = 41] IM [n = 10] MPLC [n = 19] IM [n = 4] MPLC [n = 32] IM [n = 6]

Age, y (range) 57 (34-76) 58 (31-72) 61 (44-78) 57.5 (41-75) 61 (36-79) 56.5 (36-82)

Gender

Male 16 (39.0%) 5 (50.0%) 8 (42.1%) 3 (75.0%) 8 (25.0%) 1 (16.7%)

Female 25 (61.0%) 5 (50.0%) 11 (57.9%) 1 (25.0%) 24 (75.0%) 5 (83.3%)

Smoking history

Smokers 12 (29.3%) 4 (40.0%) 6 (31.6%) 1 (25.0%) 6 (18.8%) 1 (16.7%)

Nonsmokers 29 (70.7%) 6 (60.0%) 13 (68.4%) 3 (75.0%) 26 (81.2%) 5 (83.3%)

Patients with different tumor chronology

Synchronous 37 (90.2%) 8 (80.0%) 15 (78.9%) 3 (75.0%) 27 (84.4%) 6 (100.0%)

Metachronous 4 (9.8%) 2 (20.0%) 4 (21.1%) 1 (25.0%) 5 (15.6%) 0 (0.0%)

Number of lesions

2 34 (82.9%) 7 (70.0%) 16 (84.2%) 3 (75.0%) 22 (68.8%) 6 (100.0%)

3 5 (12.2%) 2 (20.0%) 1 (5.3%) 1 (25.0%) 4 (12.5%) 0 (0.0%)

≥4 2 (4.9%) 1 (10.0%) 2 (10.5%) 0 (0.0%) 6 (18.7%) 0 (0.0%)

Tumor characteristics MPLC [n = 91] IM [n = 25] MPLC [n = 43] IM [n = 9] MPLC [n = 90] IM [n = 12]

Stage

AAH 2 (2.2%) 0 (0.0%) 2 (4.7%) 0 (0.0%) 6 (6.7%) 0 (0.0%)

0 8 (8.8%) 0 (0.0%) 6 (14.0%) 0 (0.0%) 10 (11.1%) 0 (0.0%)

I 78 (85.7%) 0 (0.0%) 34 (79.1%) 1 (11.5%) 72 (80.0%) 0 (0.0%)

II 2 (2.2%) 0 (0.0%) 1 (2.3%) 0 (0.0%) 1 (1.1%) 0 (0.0%)

III 0 (0.0%) 4 (16.0%) 0 (0.0%) 4 (44.4%) 0 (0.0%) 4 (33.3%)

IV 1 (1.1%) 21 (84.0%) 0 (0.0%) 4 (44.4%) 1 (1.1%) 8 (66.7%)

Histology

AAH 2 (2.2%) 0 (0.0%) 2 (4.7%) 0 (0.0%) 6 (6.7%) 0 (0.0%)

AIS 9 (9.9%) 0 (0.0%) 6 (14.0%) 0 (0.0%) 10 (11.1%) 0 (0.0%)

MIA 34 (37.4%) 3 (12.0%) 12 (27.9%) 0 (0.0%) 31 (34.4%) 0 (0.0%)

IAC 42 (46.2%) 22 (88.0%) 19 (44.2%) 9 (100.0%) 43 (47.8%) 12 (100%)

SCC 2 (2.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

IMA 1 (1.1%) 0 (0.0%) 4 (9.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

SCLC 1 (1.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Tumor location

LLL 10 (11.0%) 2 (8.0%) 8 (18.6%) 1 (11.1%) 17 (18.9%) 0 (0.0%)

LUL 21 (23.1%) 2 (8.0%) 10 (23.3%) 3 (33.3%) 21 (23.3%) 3 (25.0%)

RLL 14 (15.4%) 2 (8.0%) 8 (18.6%) 0 (0.0%) 15 (16.7%) 2 (16.7%)

RML 12 (13.2%) 4 (16.0%) 2 (4.7%) 0 (0.0%) 3 (3.3%) 0 (0.0%)

RUL 34 (37.4%) 8 (32.0%) 15 (34.9%) 0 (0.0%) 34 (37.8%) 1 (8.3%)

Extrapulmonary 0 (0.0%) 7 (28.0%) 0 (0.0%) 5 (55.6%) 0 (0.0%) 6 (50.0%)

(Continued)
F
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including age, sex and smoking history (all P > 0.05). Among the

patients, 88 had two tumors, and 24 had more than two tumors,

including 13 patients with 3 tumors and 11 patients with more than

3 tumors (range, 4 - 8).
3.2 The mutational landscape of MPLC
and IM

To explore molecular biomarkers to differentiate the two diseases,

the mutational alterations of MPLC and IM patients in the training

cohort were thoroughly investigated. The mutational spectrum of all

lesions is shown in Supplementary Figure 1. A total of 71 driver-gene

hotspot mutations were detected in 90.24% (37/41) of MPLC

patients, and the EGFR L858R, EGFR 19del and KRAS G12

mutations were the most common (Supplementary Figures 2A, B).

Further analysis revealed that there was a high discordance of driver

mutations (77.0%, 47/61) between tumors in the same patient with

MPLC. In contrast, 23 driver mutations were detected in 90.0% (9/10)

of IM patients, and the concordance rate of driver alterations was

100%. However, no significant differences were identified in the

frequencies of driver mutations between MPLC and IM patients

(Supplementary Figure 2C).
3.3 Genomic alteration correlation in MPLC
and IM among multiple lesions for
each patient

To further investigate genomic alteration patterns of MPLC and

IM, mutations were categorized into shared, branch shared and

private mutations. The distribution of all three types of mutations in

each of the patients showed that 93.59% of mutations in MPLC

patients were private mutations, while IM patients had more shared

(33.43%) and branch shared (6.00%) mutations, suggesting that

patients with MPLC had high level of interfocal heterogeneity than

IMs (Figure 2A). At the same time, Pearson correlation analysis was

performed to delineate the relationship between mutation clusters

in MPLC or IM samples. Samples from the same patient were

clustered together, and the results showed that there was limited

relatedness between lesions in MPLC patients (Figure 2B),

demonstrating a high discordance of somatic genetic alterations

between tumors, and strong clonal relatedness between lesions in

IM patients (Figure 2C), indicating that more genes were shared.
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3.4 Mutational signatures of MPLC and IM

The status of single-base nucleotide substitution was not the

same between the two groups. A predominance of the T > C

transition in MPLC (P< 0.001) and a high frequency of the T > G

transversion in IM (P = 0.010) were identified, with the proportion

of other types being nearly the same (Figure 2D). Three mutational

signatures were identified in MPLC and IM patients

(Supplementary Figures 3A, B). Signature 5 (exhibited strand bias

for T > C substitutions in the ApTpN context) was observed in both

MPLC and IM with an unknown cause. There was a very strong

enrichment of Signature 1 (associated with age) in MPLC. Three de

novomutational signatures were identified in MPLC and IM. These

results suggested that the mutational signatures of MPLC were

different from that of IM.
3.5 Copy number alterations and
chromosome instability in MPLC and IM

Analyses of arm-level somatic copy number variations (SCNVs)

by GISTIC 2.0 revealed that more amplified and lost segments were

detected in IM, with a significantly higher fraction of SCNVs than

that in MPLC (median, 0.110498 vs. 0.015841, P < 0.001)

(Figures 2E, F). We identified some amplified segments that

harbored several known oncogenes, such as EGFR (7p11.2), BRAF

(7q34), MYC (8q24.21) and TERT (5p15.33) in MPLC, as well as

EGFR (7p11.2) in IM. We also identified some lost segments,

including EGFR (7p11.2), MET (7q31.2) and RET (10q11.21), in

MPLC as well as CDKN2A (9q21) in IM. We assessed wGII and

observed that the majority of tumors showed low-to-moderate

genomic instability (median of 0.19884 and 0.0181 per tumor in

IM and MPLC, respectively). We found that IM harbored

significantly higher wGII scores than MPLC (Figure 2G, P <

0.001), indicating a higher degree of malignancy in IM.
3.6 Intratumor heterogeneity and clonality
of somatic mutations in MPLC and IM

Finally, the intratumor heterogeneity and clonal architecture of

MPLC and IM were explored. We found the ITH of IM was

significantly lower than that of MPLC, with a median of 3.07 and

42 per tumor in IM and MPLC, respectively (Figure 2H, median,
TABLE 1 Continued

Training cohort [N = 51] Test cohort [N = 23]
Independent validation cohort

[N = 38]

Tumor characteristics MPLC [n = 91] IM [n = 25] MPLC [n = 43] IM [n = 9] MPLC [n = 90] IM [n = 12]

Lymphatic metastasis

YES 1 (1.1%) 18 (72.0%) 0 (0.0%) 5 (55.6%) 2 (2.2%) 12 (100%)

NO 90 (98.9%) 7 (28.0%) 43 (100.0%) 4 (44.4%) 88 (97.8%) 0 (0.0%)
AAH, atypical adenocarcinoma hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; SCC, squamous cell carcinoma; IMA,
invasive mucinous adenocarcinoma; SCLC, small cell lung cancer; LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe.
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42.00 vs. 3.07, P < 0.001). IM had higher proportion of clonal

mutations than MPLC (Figures 2I, J, median, 24.56% vs. 2.13%, P <

0.001), as well as both mutational clonal (Figure 2K, median,

13.89% vs. 1.30%, P < 0.001) and arm-level clonal (Figure 2L,

median, 32.14% vs. 0%, P < 0.001) mutations. All of the above

results indicated that higher level of ITH and lower proportion of

clonal mutations may be characteristic of the primary tumor in

early NSCLCs.
3.7 Development and validation of the
diagnostic classifiers

We constructed a prediction model through the random forest

algorithm using ten candidate markers that had significant

differences between MPLC and IM, including the number of

common mutation sites, common hot driver mutation sites and

other common mutation sites per pair, proportion of clonal

mutations at the mutational and arm levels, SCNV segment ratio,
Frontiers in Oncology 07
the fraction of T > C transition and T > G transversion as well as

wGII and ITH.

The combination of two samples from individual patients was

used to build the classifier models at the sample level. A total of 121

tumor pairs were assigned in a 7:3 ratio for model training and

testing by stratified random sampling. The logical relationship

between the sample level and the patient level is that when the

clonal relationship of all tumor pairs in the same patient is MPLC,

the patient is classified as MPLC; otherwise, it is classified as IM. In

the training cohort, the AUC was 1.000 with an optimal threshold at

sample level (Supplementary Figure 4). We evaluated the model

performance at patient level. The classifier successfully classified all

MPLC and IM cases in training cohort, yielding a total accuracy of

100% (AUC = 1.000, Figure 3A). Then, test datasets were used to

verify the RF model. The model separated the two diseases well,

with an IM PA of 100% and an MPLC PA of 89.5% (AUC = 0.947,

95% CI 0.876-1.000, Figure 3B). Finally, we assessed the

performance of the classifiers on an independent validation

cohort. The RF model performed equally well, with an IM PA of
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FIGURE 2

Somatic alterations in MPLC and IM. (A) Comparison of the ratio of shared, branch shared, and private mutations for MPLC and IM. Shared mutations
are common mutations in all lesions of each patient; branch shared mutations are common mutations in some but not all lesions; and private
mutations are unique mutations from a particular lesion. Heatmaps showing the pairwise Pearson correlation coefficients of mutation clusters for
MPLC (B) and IM patients (C). (D) Single-base substitution patterns in MPLC and IM. The box plot shows each type of transition or transversion. The
arm-level somatic copy number alteration profiles for samples from MPLC and IM as revealed by GISTIC 2.0 (E, F). (E) The heatmap shows the
distribution of SCNVs for MPLC and IM samples. Each row represents the copy-number profile of a tumor sample across chromosomes 1 to 22. Red
indicates SCNV gain, and blue indicates SCNV loss. (F) The boxplot shows the fraction of SCNVs in MPLC and IM. Violin plots exhibiting the
comparison of the wGII (G) index and ITH (H) in MPLC and IM. The heatmap illustrates the clonality of MPLC (I) and IM (J). Violin plots exhibiting the
mutational (K) and arm-level clonal (L) proportion of MPLC and IM. ITH, intratumor heterogeneity; wGII, weighted genomic integrity index.
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100% and an MPLC PA of 87.5% (AUC = 0.938, 95% CI 0.879-

0.996, Figure 3C).
3.8 Comparison of the performance of the
RF model with mutation-only classification

Additionally, we compared the performance of the RF model

with our previous mutation-only classification (11). For the

mutation-based method, the IM PA was 100%, and the MPLC PA

was 84.2% (AUC = 0.921, 95% CI 0.837-1.000) in the test cohort

(Figure 3B). The AUC was 0.875 (95% CI 0.799-0.951), with an IM

PA of 100% and an MPLC PA of 75% in the independent validation

set (Figure 3C). Totally, the RF classifier showed better AUC than our

mutation method in both test cohort and validation cohort. Details of

the performance of the RF model showed in Supplementary Table 1.

Among all 112 patients, the RF model showed extremely high

agreement with ACCP criteria (k = 0.84; Figure 3D, upper),

whereas the k consistency between our previous mutation-only

method and the ACCP criteria was 0.65 (Figure 3D, lower). Our

results show that the RF classifier has significantly higher consistency

with ACCP criteria than the mutation-only method.

Descriptions of two representative cases (P068 and M004) are

presented below. We sequenced samples from five tumors of case

P068 which clinically diagnosed with MPLC. No shared gene was

found in all lesions and different driver hot gene sites were detected

in each tumor, including EGFR and BRAF. All five tumors showed

high proportion of C > T (Figure 4A) and lower wGII scores

(Figure 4B). However, in case M004 with IM, eight shared mutation
Frontiers in Oncology 08
gene sites were detected in four lesions, including EGFR and TP53.

The proportion of T > G (Figure 4C) and the wGII scores were high

in four lesions (Figure 4B). The results of these two patients were

clinically consistent with our RF identification model, suggested the

feasibility of using multidimensional molecular features to assist

clinical diagnosis of multiple lung cancers. Supplementary

Figures 5, 6 show the regional distribution of all somatic

mutations in 270 tumors from 92 MPLC and 20 IM.
4 Discussion

In the survey on the management of multiple lung lesions, two-

thirds of the responders performed molecular studies to assess the

genetic agreements of different lesions. However, the process of

tumor metastasis and molecular criteria remain ambiguous (38).

We first presented the application of a novel comprehensive

molecular classification algorithm for defining MPLC and IM in

patients with multiple lung cancers. This finding is encouraging in

that one-step molecular diagnosis has a high diagnostic accuracy of

94.6% with an 8% improvement compared to our previous

mutation-only method (11), and has a significant improvement

over other reported molecular methods with accuracy of about 70%

(18–20). The improved diagnostic performance of our RF model

showed that larger panels could provide more detailed mutation

information of tumors and present far greater promise of genomics

in defining tumor lineage.

Our study has several unique features. First, the very high

correlation between the classifier algorithm and the expert
A B

C D

FIGURE 3

Performance of the novel model and mutation-only classification. Receiver operating characteristic (ROC) curves of the novel diagnostic model and
previous molecular method in the training cohort (A) test cohort (B) and independent validation cohort (C) A comparison of the novel diagnostic
classifier (upper) and mutation method (lower) for detecting MPLC and IM (D) PA, percent agreement; AUC, the areas under the curves.
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pathologists’ diagnoses based on ACCP guidelines (25) validates the

accuracy of the classifier. Second, the training cohort included a

broad range of pathological subtypes, including AAH, AIS, MIA

(37.4%), IAC, SCC, IMA, and SCLC, approximating the diversity of

stage I MPLCs encountered in clinical practice. In addition, we

considered patients who had undergone resections with three or

more tumors for the first time. In contrast, most previous studies of

genomic profiling compared differences between paired IAC or

paired SCC (16, 39, 40). Third, the classifier was trained and tested

with a combination of banked and prospectively collected samples

to ensure robustness against potential differences in sample

handling and collection. Finally, many previous studies were

analyses of differential gene mutations alone (3, 13, 16); the

investigators did not use these data to build a classification

engine. Our approach is a rigorous method for the development

of molecular tests that, when properly trained and validated,

generalizes well to independent datasets.

A wide range of clinical research about the distinction between

MPLCs and IMs has been reviewed in the literature (18, 39). Studies

investigated driver mutations, lineage relationships, and somatic

rearrangements among tumors by multi-gene large panel NGS (16).

By comparison, our one-step molecular diagnostic model offers a

more streamlined and standardized approach to analyzing genetic

data, reducing the complexity associated with multi-gene panels.

This streamlined process enhances efficiency and facilitates easier

interpretation of results, leading to quicker and more accurate
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diagnoses. Additionally , our model uti l izes advanced

computational algorithms and machine learning techniques,

allowing for the identification of complex patterns and

relationships within the data that traditional mutation methods

may miss. Our approach improves diagnostic accuracy (10-20%),

including in the case of multiple lesions. In recent years,

radiomics has gained momentum towards the diagnosis of

multifocal lesions to provide a patient-based signature (41–43).

CT imaging provides valuable anatomical visualization, facilitating

the assessment of lesion morphology, size, and distribution.

Furthermore, it allows for dynamic monitoring of lesions over

time, aiding in the observation of growth patterns. Image AI

methods offer rapid and non-invasive analysis of medical imaging

data, facilitating quick diagnosis and treatment planning at a lower

cost. Nevertheless, CT imaging may have limitations in accurately

characterizing lesions, the diagnostic accuracy of CT imaging

methods is generally 75-88% (42), which is lower than that of

molecular diagnostic techniques. It is also subject to variability in

interpretation by individual expertise and involves radiation

exposure risks. Image AI interpretation relies on the quality and

quantity of training data, and their performance may be affected by

variations in imaging protocols or equipment, which is not

mature yet.

In this study, we aimed for high IM percent agreement at

patient level (> 90%) because of higher clinical utility. Our model

can provide an excellent classification performance compared with
A

B

C

FIGURE 4

Gene mutation spectrum in case P068 (MPLC) and case M004 (IM). The radiological features and regional distribution of somatic mutations
(heatmap) and single nucleotide variations (pie chart) in MPLC (A) and IM (C). The wGII score of 9 tumors from two cases (B). Blue and red dashed
line represents the median wGII score for patients with IM and MPLC, respectively. LUL, left upper lobe; RUL, right upper lobe; RML, right
middle lobe.
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our previous mutation-only method. In the test and validation

cohort, IM PA increased significantly on application of our

algorithm. Interestingly, several IMs, in whom part of the tissue

was obtained through endobronchial ultrasound-guided

transbronchial needle aspiration, have a high concordance

between clinical diagnosis and molecular diagnosis by our both

molecular methods, which indicates that the diagnosis was not

significantly affected by tissue heterogeneity due to the acquisition

of samples.

Of the 10 features rigorously selected, common hotspot and

driver mutations have been the most thoroughly studied (3, 18).

Interestingly, many pairs of independent primary tumors from

patients shared identical EGFR L858R and 19del and KRAS

G12C. However, none of the driver events was found to be

private in metastases, indicating that the majority of driver

diversity accumulated in the primary tumor, which then served as

the substrate for the selection of metastasis-competent populations.

Consistent with previous reports, canonical cancer gene mutations

in EGFR, ERBB2, and BRAF were always truncal as early as the

AAH/AIS stage, suggesting that these mutations are very early

genomic events before the acquisition of invasiveness (44).

Here, we have provided an analysis of each tumor clonal status,

which has shown that heterogeneity and branched evolution are

almost universal across MPLC patients. Our study revealed a higher

proportion of subclonal mutations (Figures 2I–L) and branch

mutations (Figure 2A) in early-stage MPLC than in advanced-

stage IM. We also observed a common pattern of extensive

subclonal diversification in MPLC, suggesting a higher level of

ITH complexity. In characterizing metastases, we showed evidence

of evolutionary bottlenecking, with metastatic lesions being more

homogeneous than primary tumors (proportion of clonal variants:

24.56 vs. 2.13). This finding suggests that genomic instability

processes at the mutational and chromosomal levels are ongoing

during tumor development. Moreover, enrolled patients with

metastatic lesions had no selection for therapeutic efforts,

resulting in fewer subclonal mutations. A pattern of high level of

ITH may be characteristic of the primary tumor.

A greater understanding of chromosomal instability is

necessary, which can alter the copy number of a multitude of

genes simultaneously. We observed widespread wGII for both

somatic CNV and mutations in IM patients. In tumors

characterized by low ITH and high wGII, metastatic competence

is acquired within the most recent common ancestor, which drives

rapid dissemination (45). Hence, a low ITH/high wGII pattern may

be prevalent in metastatic tumor of patients who are deemed

inoperable. Notwithstanding these findings, most features (8 of

10) in the model have rarely been reported to be involved in MPLC

and IM. Further investigation of these genomic characteristics

might provide insights into the pathogenesis of MPLC at an

early stage.

Our study confirmed that most multifocal lesions are tumors of

multiple primary synchronous occurrences. We found discordance

for 6 patients (P050, P014, P066, P072, P078 and P088) in the RF

model, who were diagnosed with MPLC according to the ACCP

criteria but were classified as IM according to our final classification.

Among them, we identified metastasis can occur among multifocal
Frontiers in Oncology 10
pure ground-glass opacities (pGGOs) in two cases. This finding

suggests that pGGOs can disseminate metastatic lesions, while

metastatic lesions can remain pGGOs. Long-term follow-up of

these patients will be conducted to further validate the

performance of our classifier.

This study had some limitations that warrant future work. First,

the number of patients was still limited, especially for IM. Second,

lack of independent external central cohort to evaluate the

generalizability of the model. Third, survival difference analysis

between MPLC and IM in the cohort was not included due to the

short follow-up time, but we will follow these patients actively over

a long period of time in the future. Despite the recognized

limitations of this study, it is becoming apparent that the

availability of more comprehensive genomic testing has the

potential to be an important addition to the standard staging

methods currently used clinically.

In conclusion, a novel diagnostic approach which convenient

and promising using comprehensive molecular data can allow

differentiation between MPLCs and IMs in a substantial number

of cases of multiple lung cancers with multiple pulmonary sites of

involvement, which could help doctors with precise decision-

making in routine clinical practice.
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