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Background: Basement membranes (BMs) have recently emerged as significant

players in cancer progression and metastasis, rendering them promising targets

for potential anti-cancer therapies. Here, we aimed to develop a novel signature

of basement membrane-related genes (BMRGs) for the prediction of clinical

prognosis and tumor microenvironment in hepatocellular carcinoma (HCC).

Methods: The differentially expressed BMRGs were subjected to univariate Cox

regression analysis to identify BMRGs with prognostic significance. A six-BMRGs

risk score model was constructed using Least Absolute Shrinkage Selection

Operator (LASSO) Cox regression. Furthermore, a nomogram incorporating the

BMRGs score and other clinicopathological features was developed for accurate

prediction of survival rate in patients with HCC.

Results: A total of 121 differentially expressed BMRGs were screened from the

TCGA HCC cohort. The functions of these BMRGs were significantly enriched in

the extracellular matrix structure and signal transduction. The six-BMRGs risk

score, comprising CD151, CTSA, MMP1, ROBO3, ADAMTS5 and MEP1A, was

established for the prediction of clinical prognosis, tumor microenvironment

characteristics, and immunotherapy response in HCC. Kaplan-Meier analysis

revealed that the BMRGs score-high group showed a significantly shorter overall

survival than BMRGs score-low group. A nomogram showed that the BMRGs score

could be used as a new effective clinical predictor and can be combined with other

clinical variables to improve the prognosis of patients with HCC. Furthermore, the

high BMRGs score subgroup exhibited an immunosuppressive state characterized

by infiltration of macrophages and T-regulatory cells, elevated tumor immune

dysfunction and exclusion (TIDE) score, as well as enhanced expression of immune

checkpoints including PD-1, PD-L1, CTLA4, PD-L2, HAVCR2, and TIGIT. Finally, a

multi-step analysis was conducted to identify two pivotal hub genes, PKM and

ITGA3, in the high-scoring group of BMRGs, which exhibited significant

associations with an unfavorable prognosis in HCC.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1388016/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1388016/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1388016/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1388016/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1388016/full
https://orcid.org/0009-0007-8742-5683
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1388016&domain=pdf&date_stamp=2024-07-12
mailto:lidy0408@sohu.com
mailto:dingxiangming@zzu.edu.cn
https://doi.org/10.3389/fonc.2024.1388016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1388016
https://www.frontiersin.org/journals/oncology


Abbreviations: AUC, area under the curve; BM, basem

basement membrane-related gene; CAMs, cell adhe

extracellular matrix; EMT, epithelial-mesenchymal

Ontology; HCC, hepatocellular carcinoma; KEGG, K

Genes and Genomes; LASSO, least absolute shrinkage

OS, overall survival; PCA, principal component analysis

Survival; PPI, protein–protein interaction; ROC

characteristics; TCGA, The Cancer Genome Atlas; T

burden; TME, tumor microenvironment.

Li et al. 10.3389/fonc.2024.1388016

Frontiers in Oncology
Conclusion: Our study suggests that the BMRGs score can serve as a robust

biomarker for predicting clinical outcomes and evaluating the tumor

microenvironment in patients with HCC, thereby facilitating more effective

clinical implementation of immunotherapy.
KEYWORDS

basement membrane, hepatocellular carcinoma, tumor microenvironment,
prognosis, immunotherapy
Introduction

Hepatocellular carcinoma (HCC) is a common malignancy

worldwide, with its incidence continuously increasing (1). In

2020, it was the third leading cause of cancer-related deaths (2).

HCC has various histological types, making early detection and

predicting postoperative recurrence vital for better patient

outcomes (3). Despite treatments like chemotherapy, targeted

therapy, immunotherapy, surgery, and liver transplantation, the

prognosis remains poor with low five-year survival rates (4). Given

HCC ’s complex molecular character is t ics and tumor

microenvironment (TME), further investigation is needed.

Understanding the molecular mechanisms of HCC and TME,

identifying novel biomarkers for predicting clinical outcomes and

serving as therapeutic targets are essential.

Basement membranes (BMs) are specialized components of the

extracellular matrix, including laminins, type IV collagens, nidogens,

proteoglycans, and growth factors. They provide structural support,

determine tissue morphology, and act as diffusion barriers. BMs play

crucial roles in tumor invasion and metastasis (5–8) and are targets

for autoantibodies in immune diseases (9). Recent studies indicate

that BM stiffness impacts metastatic development. For instance, the

prognosis of breast cancer, kidney cancer, and melanoma is linked to

the BM protein Netrin-4 (10). Changes or degradation in BM

components are associated with poor tumor prognosis (11, 12).

BMs significantly affect various types of tumors (13). However,

research on the relationship between BM-related gene expression

and clinicopathological features or prognosis in HCC is limited,

necessitating further investigation.

The TME is a complex ecosystem surrounding the tumor (14),

consisting of tumor cells and stromal components like extracellular
ent membrane; BMRG,

sion molecules; ECM,

transition; GO, Gene

yoto Encyclopedia of

and selection operator;

; PFS, Progression-Free

, receiver operating

MB, tumor mutation
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matrix (ECM), BMs, vasculature, immune cells, and fibroblasts (15).

During the early stages of tumor growth, dynamic interactions

between cancer cells and TME components support cancer cell

survival, local invasion, and metastasis (16). The cellular

composition of HCC’s tumor-immune microenvironment (TIME)

significantly affects tumor initiation, progression, and therapeutic

response (17). Although the interaction between BMs and TME has

been studied in various cancers, research on HCC remains limited.

In this study, we identified differentially expressed BM-related

genes (BMRGs) between tumor and normal samples and

investigated genes related to survival and prognosis. A prognostic

risk model was developed using data from The Cancer Genome

Atlas (TCGA), categorizing HCC patients into high-risk and low-

risk groups based on median risk scores. This model was validated

using the Gene Expression Omnibus (GEO) database to assess

immune cell infiltration, gene mutations, drug sensitivity, and

immunotherapy response between high-risk and low-risk patients.

Additionally, a protein-protein interaction (PPI) network was

constructed to identify the top 10 central genes. We explored the

relationships between these central genes, immune cells, clinical

traits, and survival prognosis. Our findings suggest that BMRGs

could serve as therapeutic targets and prognostic indicators for

HCC, and the risk scoring models may enable personalized

treatment approaches.
Materials and methods

Data acquisition and compilation

This study utilized data from TCGA (https://portal.gdc.cancer.gov)

(50 samples of healthy liver and 374 samples of HCC) and GEO

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520)

(242 HCC samples) databases to collect clinical information and

transcription profiling data of patients with HCC. Gene IDs were

converted into corresponding gene symbols using the human gene

annotation file, with mean values used for multiple probes targeting

the same gene ID. The TCGA dataset was used as the training set,

while the GEO dataset served as the testing set. A total of 224

BMRGs previously identified in other studies were retrieved

(Supplementary Table 1) (18), and their expression matrix was
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extracted for subsequent analysis after data matching, filtering,

and correction.
Enrichment analysis of the differentially
expressed genes

The “Limma” R package was utilized for differential expression

analysis of BMRGs in normal and cancer tissue samples, with

statistical significance defined as FDR< 0.05 and LogFC< 0.585,

resulting in the identification of 585 genes exhibiting significant

differential expression. Subsequently, the differentially expressed

genes (DEGs) underwent GO and KEGG pathway enrichment

analysis using the “Clusterprofiler” R package to elucidate their

biological characteristics and cellular functional pathways.

Statistical significance was determined based on P-values and

adjusted P-values< 0.05. Finally, visualization of the enrichment

analysis results was performed using the “ggplot2” and “goplot” R

packages. Gene mutation data were obtained from the TCGA

database to calculate tumor mutation burden (TMB) in HCC

patients, while exploration of DEG mutation frequency was

conducted using the “Maftools” R package.
Development and validation of a
prognostic risk score model

First, the prognostic outcomes were integrated with the

expression levels of DEGs in each sample. In the training set,

univariate Cox regression analysis was employed to identify genes

associated with prognosis among DEGs. Genes with P-values< 0.05

were selected for analyzing the association between gene mutation

frequency and mutated genes in HCC samples from the training set

using the “Maftools” R package. Subsequently, a Least Absolute

Shrinkage Selection Operator (LASSO) Cox regression analysis was

performed using the “glmnet” R package to further refine

prognostic-related genes and develop a prognostic risk score

model for predicting overall survival (OS) in HCC samples. The

risk score for each sample was calculated using the following

formula.

Risk score =o
i

1
(Coefi ∗ExpGenei)

The “Coef” represents non-zero regression coefficients obtained

through LASSO Cox regression analysis (Supplementary Table 2),

while “ExpGene” denotes the expression value of a gene derived

from a prognostic risk score model. All samples were stratified into

high-risk and low-risk groups based on the median risk score, and

Kaplan-Meier analysis was conducted using the log-rank test to

compare overall survival differences between these two groups.

Time-dependent receiver operating characteristic (ROC) curves

were generated using the “Survival ROC” package in R to

evaluate the predictive accuracy of prognostic risk scoring

patterns. Finally, the validity and applicability of the prognostic

risk scoring model were further assessed in an independent test set.
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Principal component analysis

To comprehensively investigate the distinct disparities between

the high-risk and low-risk score groups, we successfully employed

the “Limma” package in R to conduct principal component analysis

(PCA) on the gene expression profiles before and after

implementing the prognostic risk score model within our training

dataset. Initially, PCA was performed on all DEGs associated with

the basement membrane, followed by an examination of gene

expression profiles derived from the prognostic risk score model

using PCA. Ultimately, these PCA results were visually presented

on a two-dimensional graph utilizing the “ggplot2” package.
Association between risk score and
clinical characteristics

The risk scores for each sample were integrated with the

corresponding clinical information, encompassing gender, age,

pathological stage, and TNM stage. The relationship between the

risk score and clinical characteristics was investigated using the

“limma” R package. Based on these clinical characteristics, the

samples were stratified into two groups to facilitate comparison of

differences in risk scores. Statistical significance was determined by

considering P-values< 0.05.
Reveal nomograms for prognosticating OS

The overall survival of individual patients with HCC was

further investigated by developing nomograms using the “rms”

package in R, incorporating age, gender, pathological stage, and

prognostic risk score models. The predictive ability of these

nomograms was evaluated through ROC curves and

calibration plots.
Characteristics of the high-risk group were
compared with those of the low-risk group

Gene Set Enrichment Analysis (GSEA) was conducted on the

“c2.cp.kegg.v7.4.symbols” gene sets obtained from the molecular

signature database using the “org.Hs.eg.db” and “clusterProfiler”

packages to assess differences in biological processes between high-

risk and low-risk groups (https://www.gsea-msigdb.org/gsea/

msigdb/). Additionally, single-sample gene set enrichment

analysis (ssGSEA) was performed using the “GSVA” and

“GSEABase” R packages to visualize infiltration fractions of 16

immune cells and activity levels of 13 immune-related pathways as

ssGSEA scores. To predict the potential impact of immune

checkpoint blockade, we also examined expression levels of PD-1,

PD-L1, CTLA4, PD-L2, Havcr2, and TIGIT (19). Furthermore, we

utilized the “PRRophetic” R package to predict semi-inhibitory

concentrations of Sorafenib, Sunitinib, Erlotinib, and Gemcitabine

in each sample as indicators for their effectiveness in inhibiting
frontiersin.org
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specific biological or biochemical functions (20). Lastly, we

employed the Tumor Immune Dysfunction and Exclusion (TIDE)

online database (http://TIDE.dfci.harvard.edu/) to forecast

immunotherapy efficacy in both high-risk and low-risk

populations; statistical significance was considered when P-value<

0.05 (21).
Network of PPI

Firstly, the transcription profiling data of high-risk and low-risk

scoring groups were compared using the ‘limma’ R package.

Differentially expressed genes were identified based on a false

discovery rate<0.05. The differentially expressed genes were then

analyzed using the STRING online database (version: 11 5; https://

cn.string-db.org/) to generate a PPI network with an interaction

score >0.70 (high confidence). Subsequently, Cytoscape software

(version: 3.9.1) was utilized for further processing and visualization

of the PPI network data. The top 10 most central genes were

screened using the cytoHubba plugin (version: 0.1). Next, all

samples were stratified into high-expression and low-expression

groups using the ‘cut off’ R package. Kaplan-Meier analysis was

performed to assess survival differences between these two groups.

Finally, we investigated immune cell infiltration patterns and

clinical features associated with prognosis-related central genes.
Statistical analysis

The Wilcoxon rank-sum test was employed to compare

differences between the two groups. Kaplan-Meier analysis was

utilized to evaluate survival disparities between high-risk and low-

risk score groups. Multivariable Cox regression analysis was

conducted to identify independent predictors of OS in HCC.

ROC curves were plotted to assess the predictive validity of

prognostic risk scoring models and nomograms. All statistical

analyses were performed using R 4.0.2, with a significance level

set at P< 0.05.

Additional materials and methods details are provided in the

online Supplementary Material.
Results

Identification of differentially expressed
BMRGs in HCC

We present the study’s flow chart in Supplementary Figure 1. A

comprehensive analysis of the expression levels of 224 BMRGs in

tumor and normal samples from the TCGA database, we identified

121 DEGs in the TCGA HCC cohort (P< 0.05, FDR< 0.585).

Among these, 113 genes were upregulated, and 8 genes were

downregulated in tumor samples. Figures 1A and B illustrate the

heat map and volcano plot of DEGs between tumor and normal

samples, respectively.
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Function and pathway enrichment analysis
of DEGs

The biological functions of the differentially expressed BMRGs

were further determined through GO annotation and KEGGpathway

enrichment analyses. The identified BMRGs were primarily

associated with extracellular matrix organization, extracellular

structure organization, and cell-substrate adhesion in terms of

biological processes (BP). In relation to cellular components (CC),

the BMRGs were mainly enriched in collagen-containing

extracellular matrix, basement membrane, and endoplasmic

reticulum lumen. Regarding molecular functions (MF), the BMRGs

predominantly exhibited roles as extracellular matrix structure

constituents and cell adhesion molecule binders (Figure 1C). The

top 80 significantly enriched genes and pathways are displayed in

Figure 1D. KEGG pathway enrichment analysis revealed significant

enrichments for ECM-receptor interaction, focal adhesion, human

papillomavirus infection, and PI3K-Akt signaling pathway

(Figure 1E). Figure 1F presents the top 45 significantly enriched

genes and pathways. Collectively, these findings indicate a substantial

correlation between BMRGs and extracellular matrix-associated

functions and pathways in HCC progression.
Development of the BMRGs

The TCGA-HCC cohort was utilized as the training set in this

study, leading to the identification of 121 BMRGs. Univariate Cox

analysis revealed 31 BMRGs significantly associated with OS

(Figure 2A). Analysis of the somatic mutation spectrum in these

prognostic genes demonstrated a mutation frequency of 24.53% in

the HCC samples (n=371), with a total of 91 cases exhibiting mutations

(Figure 2B). ROBO1 exhibited the highest mutation frequency,

followed by ADAMTS9, ITGB5, SLIT1, Lamb1, ADAMTS7, CSPG4,

POSTN, ITGAM, ADAM17, ITGA3, LAMC1,MEP1A, ITGA2, ITGAV,

NID1, LAMA4, MMP14, PTPRF, ROBO3, SMC3 and ITGB1, while no

mutations were observed in other genes. Further analysis revealed

positive associations between Robo1 and ITGAM, ADAMTS9 and

CSPG4, ITGA2 and LOXL2, NID1 and CD151 (Figure 2C). These 31

genes were included in a LASSO Cox regression analysis based on the

TCGA-HCC cohort. The analysis identified six genes, namely CD151,

CTSA, MMP1, ROBO3, ADAMTS5, and MEP1A, which were used to

construct the risk score model for BMRGs (Figures 2D, E). The risk

score for each sample was calculated using the following formula: risk

score = (0.00102 × expression of CD151) + (0. 192 × expression of

CTSA) + (0. 165 × expression of MMP1) + (0.0739 × expression of

ROBO3) + (0.302 × expression of ADAMTS5) + (0.0203 × expression

of MEP1A).
Prognostic significance of the
BMRGs score

The established risk score model based on BMRGs was employed

to effectively stratify the HCC cohorts into two distinct subgroups:
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high-risk and low-risk groups (Figures 3A, B). In this risk model,

TCGA-HCC patients were classified into a high-risk group (n = 185)

and a low-risk group (n = 185) using the median risk score as the

cutoff, while GEO-HCC patients were divided into a high-risk group
Frontiers in Oncology 05
(n = 111) and a low-risk group (n = 110). Notably, in both the

training and test sets, the low-risk group exhibited significantly

improved clinical outcomes compared to the high-risk group

(P-value< 0.05) (Figures 3C, D). The distribution of risk scores in
A B

D

E F

C

FIGURE 1

Differential expression and functional enrichment analysis of basement membrane-related genes (BMRGs) in hepatocellular carcinoma (HCC)
patients from the TCGA Cohort. (A) Heatmap displaying the expression patterns of 121 BMRGs between tumor samples and normal samples in the
TCGA-HCC cohort. (B) Volcano plot showing the differential expression of BMRGs between tumor and normal samples. (C, D) Go analysis of
basement membranes (BMs)-related differential genes in HCC. (E, F) KEGG analysis of BMs-related differential genes in HCC.
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relation to age, gender, pathological stage, and TNM stage of HCC

was analyzed. Although there were no significant differences observed

in the association between risk scores and age, gender, or M stage,

higher risk scores were associated with elevated T, N, and

pathological stages (Supplementary Figure 2). Univariate prognostic

Cox analysis revealed that both pathological stage and risk score

independently served as prognostic factors. This finding was further

confirmed by multivariate Cox analysis (P-values< 0.05) (Figures 3E,

F). The model’s reliability was assessed using ROC curves, yielding

area under the curve (AUC) values of 0.773, 0.695, and 0.643 for years

1, 3, and 5, respectively (Figure 3G). Additionally, the risk model

demonstrated an AUC of 0.643 (Figure 3H). These findings provide

evidence supporting the reliability of the basement membrane risk

model in predicting HCC progression.
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A nomograph for predicting survival

To accurately predict the probability of OS, we developed a

nomogram that integrated the BMRGs score with other

clinicopathological features, including gender, age, and pathological

stage. The predictive performance of the nomogram for 1-year, 3-year,

and 5-year OS in patients with HCC was assessed (Figure 4A). The

calibration curve demonstrated close alignment with the ideal curve,

indicating high predictive accuracy (Figure 4B). Furthermore, ROC

curve analysis was conducted to validate the utility of the nomogram

and calculate the AUC for risk assessment as well as for age, gender,

and pathological stage prediction (Figure 4C). Notably, our nomogram

exhibited the highest AUC value among all factors evaluated, indicating

its superior prognostic accuracy. Univariate and multivariate Cox
A B

D E

C

FIGURE 2

Univariate Cox regression analysis, mutation spectrum, and LASSO regression analysis of BMRGs in HCC. (A) Univariate Cox regression analysis of
BMRGs in HCC patients from the TCGA cohort. (B) Mutation spectrum of the top 31 prognostic BMRGs in HCC patients. The waterfall plot shows
the types and frequencies of mutations in these genes across 371 HCC samples. (C) Co-occurrence and mutual exclusivity analysis of mutations in
the top 31 prognostic BMRGs. The heatmap shows significant correlations (P< 0.05) between gene mutations. (D) Partial likelihood deviance versus
log (Lambda) for LASSO Cox regression analysis. (E) Coefficient profiles of the top 31 prognostic BMRGs from LASSO Cox regression analysis.
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A B

D

E F

G H

C

FIGURE 3

Validation and prognostic analysis of the BMRGs risk score model in HCC patients. (A, B) Principal component analysis (PCA) plots showing the
distribution of high-risk and low-risk HCC patients in the TCGA cohort (A) and the GEO cohort (B). (C, D) Kaplan-Meier survival curves displaying the
overall survival (OS) of high-risk and low-risk HCC patients in the TCGA cohort (C) and the GEO cohort (D). (E, F) Univariate and multivariate Cox
regression analyses in the TCGA cohort (E) and the GEO cohort (F) showing that the risk score is an independent prognostic factor for OS in HCC
patients (P< 0.001). (G) Area under the curve (AUC) value of HCC in 1, 3 and 5 years. (H) Receiver operating characteristic (ROC) curve of risk score
and clinicopathological characteristics in HCC.
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analyses performed on data from the training set confirmed that our

nomogram served as an independent prognostic factor (P-value< 0.05)

(Figures 4D, E). Collectively, these findings provide comprehensive

validation of both the clinical applicability and predictive power

associated with our BMRGs-based prognostic model.
TME characteristics in different
BMRGs subgroups

To comprehensively analyze TME, we utilized CIBERSORTx to

calculate the infiltration degree of immune cell profiles. Our findings

revealed a significant increase in the abundance of activated dendritic

cells (aDCs), immature dendritic cells (iDCs), macrophages, T helper
Frontiers in Oncology 08
1 (Th1) cells, T helper 2 (Th2) cells, and regulatory T cells (Tregs) in

the BMRGs high-risk group. Conversely, the BMRGs low-risk group

exhibited a significantly increased abundance of natural killer (NK)

cells (Figure 5A). Immune function analysis demonstrated that APC

co-stimulation, CCR signaling pathway activation, checkpoint

regulation, HLA expression modulation, MHC class I antigen

presentation enhancement and parainflammation-related functions

were highly active in the high-risk group. In contrast, Type II IFN-

Response immune-related functions were prominently activated in

the low-risk group (Figure 5B). Furthermore, our results indicated

that the high-risk group had lower Tumor Immune Dysfunction and

Exclusion (TIDE) scores compared to the low-risk group (Figure 5C),

suggesting enhanced effectiveness of immunotherapy within this

subgroup. Risk score and drug sensitivity analysis revealed higher
A

B

D E

C

FIGURE 4

Construction and validation of the nomogram for predicting OS in HCC patients. (A) Nomogram for predicting 1-year, 3-year, and 5-year OS in HCC
patients. (B) Calibration curves for the nomogram. The observed OS rates are plotted against the nomogram-predicted OS rates for 1-year, 2-year,
and 3-year survival. (C) ROC curves for the nomogram, risk score, age, gender, and stage. (D, E) Univariate (D) and multivariate (E) Cox regression
analyses of the nomogram and other clinical variables.
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drug sensitivity to Sorafenib, Sunitinib, and Gemcitabine among

patients classified into the high-risk group as opposed to those

assigned to the low-risk category. However, Erlotinib displayed

reduced drug sensitivity within the high-risk group (Figures 5D-G).

Given its significance in checkpoint inhibitor immunotherapy

approaches, we also investigated associations between risk scores

and key immune checkpoints. Our findings indicated elevated levels

of PD-1, PD-L1, CTLA4, PD-L2, HAVCR2, and TIGIT expression

within individuals classified into the high-risk group (Figure 5H),

thereby indicating an existence of immunosuppression within this
Frontiers in Oncology 09
subgroup. In conclusion, the quantification of BMRGs risk score

represents a novel and reliable biomarker for evaluating prognosis

associated with immunotherapy.
PPI network of DEGs in high-risk and low-
risk groups

The interactions between DEGs in high-risk and low-risk

groups were analyzed using the STRING online database,
A B

D E

F G H

C

FIGURE 5

Tumor microenvironment (TME) characteristics and drug sensitivity in HCC patients stratified by BMRG risk score. (A) Immune cell infiltration in high-
risk and low-risk patients. (B) Analysis of immune function in high-risk and low-risk patients. (C) Tumor immune dysfunction and exclusion (TIDE)
scores for high-risk and low-risk patients. (D-G) Drug sensitivity analysis in high-risk and low-risk patients. (H) Analysis of differences in key immune
checkpoints between high-risk and low-risk patients. The symbols *, **, and *** represent P-values of < 0.05, < 0.01, and < 0.001, respectively.
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revealing a complex PPI network (Supplementary Figure 3A). The

PPI network data were further processed and visualized using

Cytoscape software, highlighting the intricate interactions among

DEGs (Supplementary Figure 3B). Hub genes were identified

using the cytoHubba plugin in Cytoscape, resulting in the
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selection of ten key genes within the network, namely MUC1,

MUC6, MUC5AC, ENO2, PKM, CXCL8, ITGA3, COL3A1,

GCNT1, and LIF (Figure 6A). These hub genes were sequenced

using the degree method, as detailed in Supplementary Table 2.

Differential analysis revealed that PKM and ITGA3 are
A

B

D E

F G

C

FIGURE 6

Interaction network, expression analysis, survival analysis, and stage-wise expression of ITGA3 and PKM in HCC. (A) Protein-protein interaction (PPI) network
of differentially expressed genes (DEGs) identified in high-risk and low-risk groups. The network was constructed using the STRING database and visualized
with Cytoscape software. (B) Comparison of ITGA3 expression levels between normal and tumor samples. (C) Comparison of PKM expression levels between
normal and tumor samples. (D) Survival curves for patients with high and low PKM expression. (E) Survival curves for patients with high and low ITGA3
expression. (F) Comparison of PKM expression levels across different tumor stages. (G) Comparison of ITGA3 expression levels across different tumor stages.
The symbols *** represent P-values of < 0.001.
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significantly overexpressed in HCC patients compared to normal

samples (P< 0.05) (Figures 6B, C). Moreover, both PKM and

ITGA3 showed a significant association with survival outcomes,

where higher gene expression correlated with worse prognosis (P<

0.05) (Figures 6D, E). Furthermore, PKM expression was found to

increase with tumor stage progression, indicating its potential

involvement in the advancement of HCC (Figure 6F). In contrast,

ITGA3 expression did not show a significant correlation with

tumor stage, although a decreasing trend in advanced stages was

observed (Figure 6G). These results suggest that PKM and ITGA3
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could serve as potential biomarkers and therapeutic targets

for HCC.
PKM2/ITGA3 are significant upregulated in
HCC samples and predicts poor prognosis

To further validate the association of PKM2 and ITGA3 with

HCC at the clinical level, we first examined the mRNA levels of

PKM2 and ITGA3 in 165 paired HCC and corresponding adjacent
A B

D

E

F

C

FIGURE 7

Significant upregulation of PKM2 and ITGA3 in HCC tissues and their prognostic implications. (A) Relative mRNA expression levels of PKM2 in 165
paired HCC and adjacent nontumor specimens, measured by quantitative RT-PCR. (B) Relative mRNA expression levels of ITGA3 in the same 165
paired HCC and adjacent nontumor specimens, measured by quantitative RT-PCR. (C, D) Western blot analysis of PKM2 (C) and ITGA3 (D) protein
levels in HCC and adjacent nontumor specimens. (E) Kaplan-Meier survival curves showing overall survival (left) and progression-free survival (right)
of HCC patients based on PKM2 expression levels. (F) Kaplan-Meier survival curves showing overall survival (left) and progression-free survival (right)
of HCC patients based on ITGA3 expression levels. The symbols *** represent P-values of < 0.001.
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nontumor specimens by quantitative RT-PCR (RT-qPCR). PKM2

and ITGA3 mRNA levels were significantly elevated in HCC

specimens compared to adjacent nontumor specimens

(Figures 7A, B).

We then assessed the protein levels of PKM2 and ITGA3 in

paired HCC specimens. Western blot assay showed that PKM2 and

ITGA3 were significantly elevated in HCC specimens compared to

adjacent nontumor specimens (Figures 7C, D).

To explore the clinical significance of PKM2 and ITGA3, HCC

patients were categorized into two groups based on RT-qPCR,

negative or positive of PKM2/ITGA3. Notably, Kaplan-Meier

analysis revealed that higher PKM2 or ITGA3 levels were

associated with worse OS and worse Progression-Free Survival

(PFS) in HCC patients (Figures 7E, F). Clinicopathological

characterization indicated that PKM2 or ITGA3 overexpression

was associated with age, serum AFP, TNM stage, BCLC stage,

tumor number, tumor size, and microvascular invasion (Table 1).

Multivariate analysis demonstrated that PKM2 and ITGA3 are

significant and independent predictors of OS and PFS in HCC

patients (Supplementary Tables 3, 4). In conclusion, our data
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suggest that regulation of PKM2 and ITGA3 may predict poor

prognosis in HCC patients.
GSEA of the BMRGs

To investigate the biological functions associated with BMRGs,

we employed GSEA to analyze the TCGA cohort. We identified 37

pathways that were significantly enriched in the high-risk group

and 8 pathways in the low-risk group (P< 0.05). Notably, the top

five enrichment pathways in the high-risk group included cell

adhesion molecules (CAMs), cytokine-cytokine receptor

interaction, ECM-receptor interaction, focal adhesion, and

neuroactive ligand-receptor interaction (Supplementary

Figure 4A). Conversely, the top five enrichment pathways in the

low-risk group comprised beta-alanine metabolism, fatty acid

metabolism, linoleic acid metabolism, primary bile acid

biosynthesis and retinol metabolism (Supplementary Figure 4B).

These findings underscore the distinct biological processes that are

activated in high-risk and low-risk groups, providing insights into
TABLE 1 Correlation between PKM2/ITGA3 and clinicopathological characteristics of HCC in human HCC tissues from independent cohorts.

Variables PKM2 expression ITGA3 expression

Negative
(n = 90)

Positive
(n = 75)

P Value Negative
(n = 99)

Positive
(n = 66)

P Value

Age ≤60 years 49 26 0.011 55 20 0.001

>60 years 41 49 44 46

Sex Female 28 21 0.663 28 21 0.626

Male 62 54 71 45

HBV No 26 15 0.188 25 16 0.883

Yes 64 60 74 50

Serum AFP ≤400ng/ml 68 44 0.021 74 38 0.021

>400ng/ml 22 31 25 28

aTNM stage I-II 84 55 <0.001 90 49 0.004

III 6 20 9 17

bBCLC stage 0-A 78 50 0.002 85 43 0.002

B~C 12 25 14 23

Tumor number Single 73 46 0.005 81 38 0.001

Multiple 17 29 18 28

Tumor size ≤5cm 56 33 0.019 64 25 0.001

>5cm 34 42 35 41

Microvascular invasion Absent 65 38 0.004 68 35 0.042

Present 25 37 31 31

Cirrhosis Absent 41 19 0.007 43 17 0.021

Present 49 56 56 49
HBV, hepatitis B virus; AFP, alpha-fetoprotein; TNM, tumor–node–metastasis; BCLC, Barcelona Clinic Liver Cancer; HR, hazard ratio; CI, confidence interval.
aAmerican Joint Committee on Cancer 8th edition staging for hepatocellular carcinoma.
bBarcelona Clinic Liver Cancer systems, 2022.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1388016
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1388016
the molecular mechanisms underlying the progression and

treatment response of HCC.
Discussion

Despite significant advancements in early detection, targeted

therapy, and immunotherapy for HCC over the past decades, OS in

HCC patients remain low. Therefore, there is an urgent need to

comprehensively understand the pathogenesis and mechanisms

underlying HCC development and identify potential clinical

therapeutic targets. BMs play a pivotal role in regulating cell

polarity, differentiation, migration, and survival processes (22,

23). BM proteins are also the targets of autoantibodies in immune

diseases, and defective expression of BM proteins is a key

pathogenic aspect of cancer, diabetes, and fibrosis (24, 25).

Previous studies have demonstrated a significant association

between BM components and cancer progression, thus they can

be considered as potential targets for inhibiting tumor growth (10–

12). Although numerous studies have utilized molecular markers

based on genes to predict prognosis in HCC patients (26), no

studies have systematically utilized BMRGs to predict the prognosis

of HCC patients. Exploring the role of different BMRGs in HCC is

helpful to understand the role of BMs in the occurrence and

development of HCC and to guide effective treatment strategies.

In this study, we employed univariate Cox regression analysis

and LASSO Cox regression analysis to establish a prognostic risk

score model based on the differential expression of 121 BMRGs in

tumor and normal liver tissue samples from the TCGA and GEO

cohorts. This model was utilized to predict OS in patients with

HCC, aiming to gain deeper insights into the role of these genes in

HCC pathogenesis. Significant differences were observed in the

survival outcomes between high-risk and low-risk score groups

among HCC patients, which were further validated using an

independent dataset. These findings suggest that the prognostic

risk score model holds potential for identifying patients with poor

survival, while also serving as an independent prognostic factor

according to multivariate analysis. Furthermore, we constructed a

nomogram that effectively evaluated clinical survival for individual

patients. Subsequently, functional enrichment analysis revealed a

correlation between differential expression of BMRGs and the

occurrence and progression of HCC.

Immunotherapy aims to harness the intrinsic immune molecules

within TME for cancer prevention. In our analysis of immune

function, we observed distinct TME among different risk groups of

HCC. Specifically, in the high-risk group, most immune cell

populations exhibited elevated levels except for NK cells.

Furthermore, the activity of various other immune pathways was

significantly higher compared to the Type II IFN Response pathway.

Consequently, we hypothesize that the diminished presence of NK

cells in high-risk populations may contribute to their survival

disadvantage. This highlights a promising avenue for future

research, stimulating NK cell-mediated immune responses and

reinforcing immunotherapy alongside other treatment strategies to

effectively eliminate tumor cells. Notably, activation of type II

interferon (IFN) response in the low-risk group underscores its
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close association with HCC progression. Interferons are classified

into three types, type I (IFN-a and IFN-b), type II (IFN-g), and Type
III (27). IFN-a represents a crucial therapeutic approach for patients

with liver cancer (28). The activation of interferon-stimulated gene

(ISG) transcription is initiated by the binding of IFN-a to its receptor

and subsequent mediation of signal transduction. These genes

determine the biological outcomes associated with STAT1 signal

transduction, including immune function modulation, cell

proliferation inhibition, and apoptosis induction (29).Recent

research has demonstrated that IFN-a can effectively impede HCC

growth and induce apoptosis (30). IFN-g is primarily released by

antigen-recognized and activated T cells (31), which triggers B7-H1

gene expression in lung cancer cells, cholangiocarcinoma cells, head

and neck cancers, as well as HCC through the JAK/STAT1 pathway

(31–34). NK cell-secreted IFN-g plays a significant role in

maintaining dormancy to prevent liver metastasis while also

preserving dormancy itself (35), aligning with the survival

advantage observed in low-risk groups.

Risk score and drug sensitivity analysis revealed that patients

with a high-risk score exhibited sensitivity to three commonly used

drugs for HCC, namely Sorafenib, Sunitinib, and Gemcitabine.

Conversely, patients with a low-risk score demonstrated increased

sensitivity to Erlotinib. These findings present a novel approach for

guiding clinical treatment of liver cancer. Our study identified an

association between different risk scores and the expression of

immune checkpoint molecules in HCC, including PD-1, PD-L1,

CTLA4, PD-L2, HAVCR2, and TIGIT. Notably, PD-1 may play a

crucial role in promoting cancer development. Combining PD-1

blockade with mTOR pathway targeting could potentially enhance

the antitumor efficacy against cancer (36, 37). Moreover, elevated

expression of PD-L1 in HCC leads to exhaustion of follicular helper

T-cells and impairs cytokine expression as well as B-cell help,

functionally contributing to tumor progression towards advanced

stages (38). Consequently, patients with high-risk scored HCC

might derive benefits from immune checkpoint inhibitor therapy.

PPI network was constructed based on the DEGs between high-

risk and low-risk groups, and subsequently, 10 hub genes were

identified. Significantly, PKM and ITGA3 exhibited statistical

significance (P< 0.05) in both differential analysis and survival

analysis. These two genes are highly expressed in HCC and belong

to the high-risk gene category. Moreover, higher expression levels of

these genes correlate with worse prognosis. Specifically, pyruvate kinase

M2 isoform (PKM2), a crucial enzyme involved in glycolysis, facilitates

glucose conversion into lactic acid within cancer cells under aerobic

conditions (39, 40).. Additionally, phosphorylation of PKM2 along

with STAT3 inhibition has been shown to impede lung cancer cell

proliferation effectively (41). The PKM2 inhibitor can moderately

attenuate the proliferation of tumor cells (42, 43). In a HIF-1a-
dependent manner, the key glycosylase PKM2, induced by liver

cancer cell-derived fibrin 1, simultaneously regulates the antitumor

properties of glycosylated macrophages and inflammation-mediated

PD-L1 expression. Importantly, while an increase in PKM2-regulated

glycolytic macrophages predicts a poor prognosis for patients, blocking

PD-L1 on these cells abolishes PD-L1 dominated immunosuppression

and unleashes intrinsic antitumor properties (44). This finding is

consistent with our current results. ITGA3, also known as integrin
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a3, belongs to the integrin family and interacts with numerous ECM

proteins. It mediates cell-cell adhesion and cell-matrix adhesion while

bridging external and internal cellular structures (45). Although ITGA3

is widely expressed in normal organisms, under the influence of tumor

gene induction, changes in chromatin structure along with high

expression of growth factors and their receptors disrupt its

expression pattern leading to tumorigenesis. Notably, ITGA3 has

been identified as a negative prognostic factor for pancreatic cancer

(46), head and neck cancer (47), and tongue squamous cell carcinoma

(48). These two central gene activation states exhibit an increasing

infiltration of active immune cells, suggesting that immunotherapy

may potentially modify survival outcomes in patients with a

poor prognosis.

Our clinical sample study further validated these findings. The

PKM gene produces two protein isoforms through alternative splicing,

the M2 isoform (PKM2) is expressed at higher levels than the M1

isoform (PKM1), and PKM2 is the predominant isoform in all human

cancer cell lines (49). Therefore, we chose PKM2 for further validation.

PKM2 and ITGA3 are significant upregulated in HCC tissues and are

closely associated with poor clinicopathological characteristics and

prognosis. Future research should aim to validate and expand upon

the findings of this study, focusing on the mechanistic roles of BMs,

developing targeted therapies, optimizing combination treatments, and

integrating multi-omics data. Such efforts will enhance our

understanding of HCC and improve therapeutic strategies, ultimately

leading to better patient outcomes.

In conclusion, we have developed a risk model for BMRGs in

HCC patients. Our study suggests that the BMRGs score can serve

as a robust biomarker for predicting clinical outcomes and

evaluating the tumor microenvironment in patients with HCC.

This may help clinicians to better assess the prognosis of patients,

formulate personalized treatment strategies, and ultimately improve

the therapeutic outcomes and survival rates of HCC patients.
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