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Background: Rhabdomyosarcoma(RMS) is the most common soft tissue

sarcoma in children and single nucleotide polymorphisms(SNPs) in certain

genes influence risk of RMS. Although FOXO3 had been reported in multiple

cancers including RMS, the role of FOXO3 polymorphisms in RMS remains

unclear. In this case-control study, we evaluated the association of FOXO3

SNPs with RMS risk and prognosis in children.

Methods: Four FOXO3 SNPs(rs17069665 A>G, rs4946936 T>C, rs4945816 C>T

and rs9400241 C>A) were genotyped in 110 RMS cases and 359 controls. The

associations between FOXO3 polymorphisms and RMS risk were determined by

odds ratios(ORs) with 95% confidence intervals(CIs). The associations of

rs17069665 and rs4946936 with overall survival in RMS children were

estimated using the Kaplan-Meier method and log-rank test. Functional

analysis in silico was performed to estimate the probability that rs17069665

and rs4946936 might influence the regulation of FOXO3.

Results:We found that rs17069665 (GG vs. AA+AG, adjustedOR=2.96; 95%CI [1.10-

3.32]; P=0.010) and rs4946936 (TC+CC vs. TT, adjusted OR=0.48; 95%CI [0.25-

0.90]; P=0.023) were related to the increased and decreased RMS risk, respectively.

Besides, rs17069665(P<0.001) and rs4946936(P<0.001) were associated with

decreased and increased overall survival in RMS patients, respectively. Functional

analysis showed that rs17069665 and rs4946936 might influence the transcription

and expression of FOXO3 via altering the bindings to MYC, CTCF, and/or RELA.

Conclusions: This study revealed that FOXO3 polymorphisms influence the RMS

susceptibility and prognosis in children, and might altered the expression of

FOXO3. FOXO3 polymorphism was suggested as a biomarker for RMS

susceptibility and prognosis.
KEYWORDS

FOXO3, single nucleotide polymorphisms (SNPs), rhabdomyosarcoma (RMS),
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Introduction

Rhabdomyosarcoma (RMS) is a myogenic tumor that arises

from cells committed to skeletal muscle differentiation (1, 2).

Although relatively rare, RMS is the most common soft tissue

sarcoma and the third most prevalent extracranial solid tumor in

children (3, 4). Despite of developments in the therapy and

management of RMS patients in the past decades, the etiology of

RMS remains unclear and the prognosis of RMS is also still poor (3,

5). Cancer occurs due to environmental exposure and/or genetic

factors. In RMS initiation and development, genetic change has

been suggested to play a vital role (3). One prevalent type of genetic

variation in human disease is single nucleotide polymorphisms

(SNPs). SNPs of certain genes have been validated to influence the

incidence and outcome of multiple cancers including RMS (6, 7).

However, many SNPs in genes associated with RMS are still not

discovered and need to be explored.

Forkhead Box O3(FOXO3), also called Forkhead in

Rhabdomyosarcoma-Like 1 (FKHRL1), belongs to the forkhead

box O (FoxO) family of transcription factors which regulate the

transcription of genes involved in multiple cellular processes

(proliferation, apoptosis, autophagy, etc.) (8–10). Evidence

supported that the aberrant expression or dysfunction of FOXO3

was associated with various types of cancers including RMS (11–

14). In addition, gene polymorphism of FOXO3 has been validated

to influence various human disorders including cancer, such as

pancreatic cancer, colorectal cancer, active tuberculosis, polycystic

ovary syndrome, and acute lymphoblastic leukemia (ALL) (15–20).

However, the association of FOXO3 polymorphisms with

childhood RMS risk and outcome has never been reported.

In this case-control study, we conducted genotyping assay for

FOXO3 SNPs (rs17069665, rs4946936, rs4945816, and rs9400241)

and estimated the association of FOXO3 polymorphisms with RMS

risk and prognosis in children. Besides, the underlying mechanisms

involved in FOXO3 regulation by these polymorphisms were

explored via functional analysis in silico.
Materials and methods

Study subjects

In this current study, a total of 110 RMS cases and 359 non-

cancer healthy controls were recruited from Guangzhou Women

and Children’s Medical Center (GWCMC). Briefly, patients under

18 years old with RMS were identified with histological

confirmation and enrolled in this study by pediatric clinicians.

Each case was newly diagnosed and provided a detailed medical

record. Patients with other malignancies, secondary disorders, or

chemotherapy/radiotherapy records were excluded. Thus, 110

children with RMS were recruited during June 2012 to June 2019,

and 359 age- and sex-matched healthy volunteers were collected as

controls. The controls were randomly selected from children

receiving routine physical examinations. All individuals included

in this study were ethnic Han Chinese. Before participation, a

written informed consent for each case was obtained in advance.
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This study was conducted under the guideline of the Institutional

Review Board of GWCMC.
SNP Selection and genotyping

In this study, four SNPs were selected using data from SNPinfo

and NCBI dbSNP databases as described previously (21–23).

Briefly, the selection was based on three criteria as the following:

(1) SNPs with the minor allele frequency (MAF) >5% in Chinese

population; (2) located in or near the FOXO3 gene (i.e., 3’-UTR or

5’-UTR); (3) affecting splicing activity, transcription factor binding

sites (TFBS) or miRNA-binding sites activity. At last, rs17069665

A>G, rs4946936 T>C, rs4945816 C>T, and rs9400241 C>A were

retrieved for further analyses.

For genotyping, DNA was extracted from peripheral blood

sample of each participant using the TIANamp DNAKit

(TianGen, Beijing, China). In the genotyping assays, the

corresponding SNP probes and primers (ABI, Massachusetts,

USA) were used to genotype these four SNPs as previously

described (21). For quality control, 10% samples were selected

randomly for direct sequencing (24, 25), and a concordance rate

of 100% was obtained.
Functional analysis in silico

The associations of rs17069665 A>G and rs4946936 T>C with

FOXO3 expression were determined using the expression

quantitative trait loci (eQTL) analysis in GTEx portal (https://

www.gtexportal.org/home/) (26). The probability that these two

polymorphisms might influence the regulation of FOXO3 was

estimated by using the Roadmap Epigenome Browser (27, 28), the

ENCODE Project (29, 30), and TFBIND software (31). In brief,

promoter and enhancer were predicted via DNase hypersensitivity

(DHS) and histone modification of muscle cells in Roadmap

Epigenomics data. TFBIND was used to evaluate whether FOXO3

polymorphism rs17069665 A>G or rs4946936 T>C altered any

TFBS, and then ENCODE ChIP-seq experiments of MYC, CTCF,

and RELA (Experiment Series: ENCSR000DLR, ENCSR000ANS,

ENCSR000EBD) were used to assess the binding signals and motifs

overlapping rs17069665 or rs4946936.
Statistical analyses

The demographic variables and genotype distribution of each

SNP between the RMS case and control groups were compared

using a 2-sided c 2 test. For each SNP in the control group, Hardy-

Weinberg equilibrium (HWE) was assessed using goodness-of-fit

chi-square test. The strength of the association between FOXO3

polymorphism and RMS susceptibility was estimated using logistic

regression analysis with odds ratios (ORs) and 95% confidence

intervals (CIs), adjusting for age and sex. False-positive report

probability (FPRP) was conducted for significant findings, as

described previously (32). We adopted OR of 2.00 and 0.50 for
frontiersin.org
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risk and protective effects, respectively. FPRP values < 0.2 were

considered noteworthy. Overall survival was estimated with

Kaplan-Meier method, and then differences between subgroups

were compared using the log-rank test. All statistical analyses

were performed with SAS software and GraphPad Prism software;

a two-sided P < 0.05 was considered to be statistically significant.
Results

Characteristics of subject

Totally, 110 RMS cases and 359 healthy controls were finally

enrolled in this study. The detailed demographic characteristics are

all summarized in Table 1. Briefly, no significant difference in the

age (P = 0.947) or sex (P = 0.613) distribution was found between

cases and controls. According to histological classification, 74

(67.27%) cases were diagnosed as embryonal RMS (ERMS), 27

(24.55%) cases as alveolar RMS (ARMS), and 9 (8.18%) cases as

other subtypes including anaplastic and mixed RMS. In addition,

other information including risk level, clinical stage, and site of

origin were also included in Table 1.
Associations between FOXO3 gene
polymorphisms and RMS susceptibility

According to the SNP selection strategy, four SNPs (rs17069665

A>G, rs4946936 T>C, rs4945816 C>T, and rs9400241 C>A) that

overlap with TFBS or miRNA-binding sites were selected

(Supplementary Table S1). The genotype frequencies of FOXO3

SNPs in all 110 cases and 359 controls and their association with

RMS risk were displayed in Table 2. All these four SNPs were in

HWE (PHWE > 0.05) among the control. Significant differences

between RMS cases and controls were observed for rs17069665

A>G (P = 0.011) and rs4946936 T>C polymorphism (P = 0.025) in a

recessive (GG vs. AA+AG) and a dominant (TC + CC vs. TT)

model, respectively. After adjustment with age and sex, all these 2

polymorphisms, namely rs17069665 G allele (GG vs. AA+AG:

adjusted OR = 2.96; 95% CI [1.10-3.32]; P = 0.010) and

rs4946936 C allele (TC+CC vs. TT: adjusted OR=0.48; 95%CI

[0.25-0.90]; P=0.023), were significantly related to the increased

and decreased RMS risk, respectively. The remaining 2

polymorphisms (rs4945816 C>T and rs9400241 C>A), however,

were not found to be in association with RMS risk.
Subgroup and stratification analyses

To further explore the association of the FOXO3 gene rs17069665

A>G and rs4946936 T>C polymorphisms with RMS susceptibility, we

performed subgroup and stratification analyses in terms of age, sex,

histological classification, risk level, clinical stage, and site of origin. As

shown in Table 3, rs17069665 (GG vs. AA+AG) and rs4946936 (TC

+CC vs. TT) were both associated with RMS in male (adjusted
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OR=3.33, 95% CI [1.16-9. 57], P =0.026; adjusted OR=0.36; 95% CI

[0.17-0.78], P=0.009; respectively), in children aged < 10 years

(adjusted OR=2.98, 95% CI [1.29-6.87], P =0.011; adjusted OR=0.45;

95% CI [0.24-0.86], P=0.016; respectively), in children with tumor of

stage II (adjusted OR=9.95, 95% CI [2.73-36.23], P =0.001; adjusted

OR=0.16; 95% CI [0.05-0.50], P=0.002; respectively), and in children

with tumor in genitourinary system (adjusted OR=5.03, 95% CI [1.29-

19.57], P =0.020; adjusted OR=0.25; 95% CI [0.08-0.73], P=0.012;

respectively). In addition, rs17069665 (GG vs. AA+AG) was related to

RMS in children with ERMS (adjusted OR=3.59, 95% CI [1.47-8.76], P

=0.005), in children with tumor in high risk level (adjusted OR=3.57,

95% CI [1.28-9.90], P =0.015), in children with tumor of stage IV

(adjusted OR=4.65, 95% CI [1.19-18.22], P =0.028), and in children

with tumor in trunk and limbs (adjusted OR=4.00, 95% CI [1.20-

13.34], P =0.024). Rs4946936 (TC+CC vs. TT) was related to RMS in

children with tumor in medium risk level (adjusted OR=0.33, 95% CI

[0.14-0.76], P =0.009) and in children with tumor in head and neck

(adjusted OR=0.24, 95%CI [0.06-0.95], P =0.043). In the FPRP analysis

(Supplementary Table S2), most of the above significant findings

remained noteworthy at the prior probability level of 0.25

(FPRP<0.200), which further strengthen the significant associations

of rs17069665 and rs4946936 with RMS.
Overall survival analyses

The above results indicated that FOXO3 polymorphisms,

rs17069665 and rs4946936, influenced RMS risk in children.

However, it’s not clear whether they influence the prognosis of

RMS. Therefore, we evaluated the associations of rs17069665 and

rs4946936 with overall survival in RMS patients. The results were

described in Figure 1. For rs17069665, RMS patients with GG allele

had a poor overall survival than those with AA/AG (Figure 1A, P <

0.001). Compared with rs4946936 TT, TC/CC allele significantly

contributed to the increased overall survival in RMS patients

(Figure 1B, P < 0.001). The results suggested that FOXO3

polymorphisms were associated with the prognosis in RMS children.
Functional analysis

To explore the possible mechanisms by which rs17069665 and

rs4946936 influence the risk and prognosis of RMS, we evaluated

the probability of rs17069665 and rs4946936 polymorphism

altering expression regulation of FOXO3. In the eQTL analysis,

rs17069665 G allele was associated with lower expression of FOXO3

gene (P = 8.52×10-4) (Supplementary Figure S1A). Rs4946936 C

allele displayed a trend of high expression of FOXO3, although no

significance was achieved (P = 3.32×10-1) (Supplementary Figure

S1B). The Roadmap Epigenomics data showed that rs17069665

(Supplementary Figure S2A) and rs4946936 (Supplementary Figure

S2B) both overlapped DHS marks and histone modifications related

to the enhancer and promoter in multiple tissue types. These were

further supported by H3K9ac, H3K27ac, H3K4me1, H3K4me3, and

DHS ChIP data in muscle cells (Figures 2A, B). TFBIND analysis
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showed that rs17069665 altered the binding affinity to transcription

factors including ARNT, BHLHE40, MYC, MYOD, NKX2-5 and

USF. Rs4946936 altered the binding affinity to CAP1, CTCF, MYB,

RELA and SETDB1. However, ENCODE ChIP-seq analysis showed

that only MYC binds to DNA motif overlapping rs17069665

(Figure 3A). MYC has a higher preference for the non-risk allele

A than risk allele G (Figure 3B). As for rs4946936, only CTCF and

RELA bind to DNA motif overlapping it (Figure 3C). CTCF and

RELA have higher preferences for the non-risk allele C than risk

allele T (Figure 3D). The results revealed that rs17069665 and

rs4946936 might influence the transcription of FOXO3 via altering

the bindings to MYC, CTCF and/or RELA.
Frontiers in Oncology 04
Discussion

In this case-control study with 110 RMS cases and 359 healthy

controls, we evaluated the potential association of FOXO3 gene

polymorphisms with RMS risk and prognosis in Chinese children.

Among these four SNPs of FOXO3 in this study, we found that

rs17069665 (GG vs. AA+AG) was significantly associated with

increased RMS risk and poor prognosis, rs4946936 (TC+CC vs.

TT) was significantly associated with decreased RMS risk and good

prognosis. To our knowledge, the current study is the first one

exploring the association between FOXO3 polymorphisms

and RMS.
TABLE 1 Frequency distribution of selected characteristics in RMS cases and cancer-free controls.

Variables RMS Cases (n=110) Controls (n=359) P a

No. % No. %

Age range, years 0.10-13.9 0.50-13.0 0.947

Mean ± SD 3.21 ± 3.10 4.85 ± 2.38

<10 104 94.55 340 94.71

≥10 6 5.45 19 5.29

Sex 0.613

Female 44 40.00 134 37.33

Male 66 60.00 225 62.67

Histological subtype

Embryonal 74 67.27

Alveolar 27 24.55

Others 9 8.18

Risk level

Low 14 12.73

Medium 44 40.00

High 52 47.27

Site

Head and neck 11 10.00

Trunk and limbs 33 30.00

Genitourinary system 19 17.27

Thoracic, abdominal and pelvic cavities 42 38.18

Others 5 4.55

Clinical stage

I 7 6.36

II 14 12.73

III 63 57.27

IV 21 19.09

NA 5 4.55
frontier
SD, standard deviation; NA, not available.
aTwo-sided c2 test for distributions between RMS cases and cancer-free controls.
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As amember of FOXO transcription factor family, FOXO3, as well

as FOXO1, -4 and -6, controls transcription of target genes by binding

to the Forkhead Response Element (33–35). Compared with the other

three FOXO members, FOXO3 seemed to be more predominant in

controlling cancer progression, although they potentially regulate the

same target genes (36, 37). FOXO3 has been demonstrated to regulate

various genes playing key roles in multiple cellular process including

proliferation, apoptosis, drug resistance and stem cell properties (38–

42). For instance, FOXO3 impaired the cancer stem cell phenotype of

squamous cell carcinoma by controlling the transcriptional activity of
Frontiers in Oncology 05
SOX2 (11). The activation of FOXO3 sensitized tumors to anti-PD-1

therapy by inhibiting c-Myc and STAT3 (43). FOXO3 inhibited cell

proliferation and induced apoptosis in colorectal cancer by regulating

BIM expression (44). Certainly, FOXO3 is also regulated at multiple

levels including genetic regulation and epigenetic modification

(transcription, post-transcription, translation and post-translation)

(40). FOXO3 protein was phosphorylated by proteins including ERK

and AKT, which resulted in its inactivation and degradation (37, 45).

FOXO3 gene polymorphisms were also investigated in multiple

cancers, such as leukemia, pancreatic cancer, and hepatocellular
TABLE 2 Logistic regression analysis of associations between FOXO3 polymorphisms and RMS susceptibility.

Genotype Cases
(N=110)

Controls
(N=359)

P a Crude OR
(95% CI)

P Adjusted OR
(95% CI) b

P b

rs17069665 (HWE=0.7104, A/G: wt/mut)

AA 71 (64.55) 241 (67.13) 1.00 1.00

AG 28 (25.45) 105 (29.25) 0.91 (0.55-1.48) 0.693 0.90 (0.55-1.47) 0.668

GG 11 (10.00) 13 (3.62) 2.87 (1.23-6.69) 0.014 2.89 (1.24-6.73) 0.014

Additive(GG vs. AG vs. AA) 0.158 1.29 (0.91-1.83) 0.159 1.31 (0.92-1.87) 0.165

Dominant(AG+GG vs. AA) 39 (35.45) 118 (32.87) 0.615 1.12 (0.72-1.76) 0.615 1.12 (0.71-1.75) 0.633

Recessive(GG vs. AA+AG) 99 (90.00) 346 (96.38) 0.008 2.96 (1.29-6.80) 0.011 2.98 (1.29-6.86) 0.010

rs4946936 (HWE=0.3811, T/C: wt/mut)

TT 17 (15.45) 29 (8.08) 1.00 1.00

TC 37 (33.64) 158 (44.01) 0.40 (0.20-0.80) 0.010 0.39 (0.19-0.78) 0.010

CC 56 (50.91) 172(47.91) 0.55 (0.28-1.09) 0.086 0.55 (0.28-1.08) 0.083

Additive (CC vs. TC vs. TT) 0.542 0.91 (0.66-1.25) 0.542 0.91 (0.66-1.25) 0.560

Dominant (TC + CC vs. TT) 93 (84.55) 330 (91.92) 0.023 0.48 (0.25-0.91) 0.025 0.48 (0.25-0.90) 0.023

Recessive (CC vs. TT + TC) 54 (49.09) 187 (52.09) 0.582 1.13 (0.74-1.73) 0.582 1.14 (0.74-1.76) 0.542

rs4945816 (HWE=0.4398, C/T: wt/mut)

CC 15 (13.64) 30 (8.36) 1.00 1.00

CT 38 (34.55) 158 (44.01) 0.49 (0.24-1.15) 0.145 0.49 (0.24-1.13) 0.139

TT 57 (51.82) 171(47.63) 0.67 (0.34-1.33) 0.248 0.67 (0.34-1.33) 0.248

Additive (TT vs. CT vs. CC) 0.878 0.98 (0.70-1.35) 0.878 0.98 (0.71-1.36) 0.902

Dominant (CT + TT vs. CC) 95 (86.36) 329 (91.64) 0.442 1.18 (0.77-1.81) 0.442 1.19 (0.78-1.84) 0.410

Recessive (TT vs. CC + CT) 53 (48.18) 188 (52.37) 0.100 0.58 (0.30-1.12) 0.103 0.57 (0.30-1.11) 0.099

rs9400241 (HWE=0.7986, C/A: wt/mut)

CC 16 (14.55) 30 (8.36) 1.00 1.00

CA 38 (34.54) 151 (42.06) 0.47 (0.26-1.27) 0.347 0.46 (0.23-1.27) 0.324

AA 56 (50.91) 178 (49.58) 0.59 (0.30-1.16) 0.127 1.70 (0.86-3.36) 0.124

Additive (AA vs. CA vs. CC) 0.500 0.89 (0.65-1.23) 0.500 0.89 (0.65-1.24) 0.513

Dominant (CA +AA vs. CC) 94 (85.45) 329 (91.64) 0.056 0.54 (0.28-1.03) 0.059 0.53 (0.28-1.02) 0.056

Recessive (AA vs. CC+ CA) 54 (49.09) 181 (50.42) 0.808 1.06 (0.69-1.61) 0.808 1.07 (0.69-1.63) 0.774
frontier
ac2 test for genotype distributions between RMS cases and cancer-free controls.
bAdjusted for age and gender.
wt/mut, wild-type/mutation.
The bold values were statistically significant results.
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carcinoma (16, 17, 46). However, FOXO3 polymorphisms have never

been reported in RMS. It is urgent to conduct relevant investigations.

In the present study, we explored the association of four FOXO3

SNP sites (rs17069665, rs4946936, rs4945816 and rs9400241) with

RMS. Rs17069665 was previously reported to increase ALL

susceptibility (17), but had not been reported in other cancers.

Rs4946936 was found to be associated with ALL (47), thyroid

cancer (48), and head and neck cancer (49), but not with

hepatocellular carcinoma (46). In this study, we found that

rs17069665 and rs4946936 polymorphisms were associated with

the increased and decreased RMS risk, respectively, and influence

prognosis, for the first time. Rs17069665 is located in the intron one

of FOXO3 gene, which overlaps with the FOXO3 promoter and

enhancer. In the analyses of transcription factor binding,
Frontiers in Oncology 06
rs17069665 was found to disrupt the binding to MYC showing

preferential binding of the non-risk allele A. Rs4946936, which is

located in the 3’-UTR of FOXO3, was also found to overlap with the

promoter and enhancer regions and to alter the binding to CTCF

and RELA showing preferential binding of the non-risk allele C.

SNP-gene expression analysis indicated that these two

polymorphisms influenced the expression of FOXO3. Considering

the tumor suppressing function of FOXO3, rs17069665 and

rs4946936 might influence RMS risk and prognosis via regulating

the expression of FOXO3 by altering the bindings to MYC, CTCF

and/or RELA. The above potential mechanisms need to be validated

in future studies.

As for the rest two SNPs (rs4945816 and rs9400241), both of

which are located in the 3’UTR of FOXO3, no association between
TABLE 3 Subgroup and stratification analysis of FOXO3 polymorphisms with RMS susceptibility.

Variables rs17069665
(cases/controls)

Adjusted OR a P a rs4946936
(cases/controls)

Adjusted OR a P a

AA+AG GG (95% CI) TT TC+CC (95% CI)

Age, years

<10 93/327 11/13 2.98 (1.29-6.87) 0.011 17/28 87/312 0.45 (0.24-0.86) 0.016

≥10 6/19 0/0 0.36 (0.05-2.50) – 0/1 6/18 999 (0.01-999) 0.984

Gender

Female 40/129 4/5 2.48 (0.64-9.72) 0.191 4/10 40/124 0.81 (0.24-2.72) 0.729

Male 59/217 7/8 3.33 (1.16-9. 57) 0.026 13/19 53/206 0.36 (0.17-0.78) 0.009

Histological subtype

Embryonal 65/346 9/13 3.59 (1.47-8.76) 0.005 11/29 63/330 0.51 (0.24-1.07) 0.075

Alveolar 26/346 1/13 1.11 (0.14-8.87) 0.925 5/29 22/330 0.36 (0.12-1.03) 0.056

Others 8/346 1/13 3.61(0.41-31.76) 0.247 1/29 8/330 0.69 (0.08-5.75) 0.730

Risk level

Low 12/346 2/13 4.59(0.92-22.90) 0.063 2/29 12/330 0.52 (0.11-2.45) 0.410

Medium 41/346 3/13 1.83 (0.50-6.77) 0.365 9/29 35/330 0.33 (0.14-0.76) 0.009

High 46/346 6/13 3.57 (1.28-9.90) 0.015 6/29 46/330 0.68 (0.27-1.73) 0.415

Site

Head and neck 10/346 1/13 2.52(0.30-21.15) 0.396 3/29 8/330 0.24(0.06-0.95) 0.043

Trunk and limbs 29/346 4/13 4.00(1.20-13.34) 0.024 3/29 30/330 0.83 (0.24-2.91) 0.767

Genitourinary system 16/346 3/13 5.03(1.29-19.57) 0.020 5/29 14/330 0.25(0.08-0.73) 0.012

Thoracic, abdominal and pelvic cavities 39/346 3/13 2.00 (0.54-7.34) 0.297 6/29 36/330 0.54 (0.21-1.39) 0.203

Others 5/346 0/13 0.01 (0.01-999) 0.985 0/29 5/330 999 (0.01-999) 0.977

Clinical stage

I 7/346 0/13 0.01 (0.01-999) 0.981 2/29 5/330 0.20(0.04-1.14) 0.069

II 10/346 4/13 9.95(2.73-36.23) 0.001 5/29 9/330 0.16(0.05-0.50) 0.002

III 59/346 4/13 1.78 (0.56-5.66) 0.331 5/29 58/330 1.00 (0.37-2.69) 0.996

IV 18/346 3/13 4.65(1.19-18.22) 0.028 4/29 17/330 0.37 (0.12-1.20) 0.097
frontier
aAdjusted for age and sex.
The bold values were statistically significant results.
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them and RMS risk was found. Several previous studies investigated

the relationships between them and cancer risks. Rs4945816 was

reported in studies on ALL and thyroid cancer, but no association

was found (17, 48). Rs9400241 was associated with ALL and

melanoma risks (17, 50). Along with the previous studies, our

study indicates that the genetic variation of FOXO3 is complex,

depending on cancer types. Besides, the variety in ethnicity and

sample composition need to be taken into consideration.

Although this study is the first to investigate the association of

FOXO3 polymorphisms with RMS risk and prognosis, several

limitations should be considered. First, all participates were

recruited from one hospital in south China, which may cause

selection bias. Second, only 4 SNPs were genotyped in the present

study and more potentially functional SNPs should be done in the

future. Third, the sample size in this study was still not large enough

because of the low incidence of RMS in China. Therefore, larger

multicenter studies are warranted to further confirm the roles of
Frontiers in Oncology 07
FOXO3 in RMS. Finally, other factors including environment

exposure and dietary intake were not available in this study. The

functions of FOXO3 polymorphisms in the progression of RMS also

need to be further explored.
Conclusion

In conclusion, the current study explored the association of

FOXO3 polymorphisms (rs17069665, rs4946936, rs4945816 and

rs9400241) with RMS in Chinese children and firstly demonstrated

that rs17069665 was associated with increased RMS susceptibility

and poor prognosis, while rs4946936 was associated with decreased

RMS susceptibility and good prognosis, and that the two

polymorphisms might influence the transcription of FOXO3 via

altering the binding to MYC, CTCF and/or RELA. This study

indicated that FOXO3 polymorphism might serve as a biomarker
A B

FIGURE 1

Overall survival of patients with RMS. (A) Survival curve of RMS patients with rs17069665 allele AA/AG or GG; (B) Survival curve of RMS patients with
rs4946936 allele TC/CC or TT.
A

B

FIGURE 2

Rs17069665 and rs4946936 both overlap promoter and enhancer of FOXO3 gene. H3K4me1, H3K4me3, H3K9ac, H3K27ac, and DHS ChIP-seq
signals at rs17069665 (A) and rs4946936 (B) loci.
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for RMS susceptibility and prognosis. Certainly, larger multicenter

studies, as well as functional experiments, are encouraged to further

elucidate the role of FOXO3 polymorphism and the underlying

mechanisms in RMS.
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FIGURE 3

Rs17069665 and rs4946936 modulated the binding to MYC, RELA and/or CTCF. (A) MYC ChIP-seq signal at the rs17069665 locus; (B) Predicted
preferential binding of MYC to the non-risk allele A of rs17069665; (C) RELA and CTCF ChIP-seq signals at the rs4946936 locus; (D) Predicted
preferential bindings of RELA and CTCF to the non-risk allele C of rs4946936.
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