
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Robb Hollis,
University of Edinburgh, United Kingdom

REVIEWED BY

Tricia Roxburgh,
University of Glasgow, United Kingdom
Christianne Lok,
The Netherlands Cancer Institute (NKI),
Netherlands
Ailsa Oswald,
University of Edinburgh, United Kingdom

*CORRESPONDENCE

Tibor A. Zwimpfer

tibor.zwimpfer@unibas.ch

RECEIVED 17 February 2024

ACCEPTED 15 May 2024
PUBLISHED 04 June 2024

CITATION

Stiegeler N, Garsed DW, Au-Yeung G,
Bowtell DDL, Heinzelmann-Schwarz V
and Zwimpfer TA (2024) Homologous
recombination proficient subtypes of high-
grade serous ovarian cancer: treatment
options for a poor prognosis group.
Front. Oncol. 14:1387281.
doi: 10.3389/fonc.2024.1387281

COPYRIGHT

© 2024 Stiegeler, Garsed, Au-Yeung, Bowtell,
Heinzelmann-Schwarz and Zwimpfer. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 04 June 2024

DOI 10.3389/fonc.2024.1387281
Homologous recombination
proficient subtypes of high-
grade serous ovarian cancer:
treatment options for a
poor prognosis group
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David D. L. Bowtell2,3, Viola Heinzelmann-Schwarz4

and Tibor A. Zwimpfer2,4*

1Medical Faculty, University of Basel, Basel, Switzerland, 2Cancer Research, Peter MacCallum Cancer
Centre, Melbourne, VIC, Australia, 3Sir Peter MacCallum Department of Oncology, The University of
Melbourne, Melbourne, VIC, Australia, 4Department of Gynecological Oncology, University Hospital
Basel, Basel, Switzerland
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have

functional homologous recombination-mediated (HR) DNA repair, so-called

HR-proficient tumors, which are often associated with primary platinum

resistance (relapse within six months after completion of first-line therapy),

minimal benefit from poly(ADP‐ribose) polymerase (PARP) inhibitors, and

shorter survival. HR-proficient tumors comprise multiple molecular subtypes

including cases with CCNE1 amplification, AKT2 amplification or CDK12

alteration, and are often characterized as “cold” tumors with fewer infiltrating

lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment

approaches aim to manipulate these negative prognostic features and render

HR-proficient tumors more susceptible to treatment. Alterations in multiple

different molecules and pathways in the DNA damage response are driving

new drug development to target HR-proficient cancer cells, such as inhibitors

of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment

combinations with chemotherapy or PARP inhibitors and agents targeting DNA

replication stress have shown promising preclinical and clinical results. New

approaches in immunotherapy are also being explored, including vaccines or

antibody drug conjugates. Many approaches are still in the early stages of

development and further clinical trials will determine their clinical relevance.

There is a need to include HR-proficient tumors in ovarian cancer trials and to

analyze them in a more targeted manner to provide further evidence for their

specific therapy, as this will be crucial in improving the overall prognosis of HGSC

and ovarian cancer in general.
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GRAPHICAL ABSTRACT
Introduction

Advanced tubo-ovarian high-grade serous carcinoma (HGSC)

accounts for a majority of the disease burden and deaths from

ovarian cancer (70–80%) due to its typical late presentation and

high 5-year recurrence rate of 75% (1–3). Primary cytoreductive

surgery followed by platinum- and taxane-based chemotherapy or

neoadjuvant platinum- and taxane-based chemotherapy (NACT)

followed by interval cytoreductive surgery is the standard treatment

for HGSC (1–9). Most HGSC initially respond well to

chemotherapy. However, the majority of patients will experience

relapse with treatment resistant disease, particularly those without

BRCA mutations and without homologous recombination

deficiency (HRD) (10–13). Although there has been limited

improvement in the 5-year survival rate of most patients over the

past three decades (4, 8, 14–16), the introduction of poly(ADP-

ribose) polymerase inhibitors (PARPis) as maintenance therapy in

HGSC has had a profound impact leading to significant

improvements in progression-free survival (PFS) and

demonstrating a trend towards improved overall survival (OS),

particularly in patients with BRCA1 or BRCA2 (BRCA) mutations

and HRD (1, 3, 13, 17–29).

HRD refers to a loss of homologous recombination-mediated

DNA repair (HRR), which is a pathway responsible for the high-

fidelity repair of double-stranded DNA breaks that restores the

original DNA sequence at the site of damage. HRD contributes to

genomic instability and consequently intact HRR plays a role in

preventing malignant transformation (30, 31). HRD is caused by

inherited or somatic loss of function genetic alterations in well-

known driver genes such as BRCA1 and BRCA2, but also by

mutations or methylation of other HRR related genes and
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potentially other currently undefined mechanisms (32). Patients

with HRD HGSC are more likely to benefit from a favorable

chemotherapy response, maintenance treatment with PARPis and

consequently a longer OS (1, 33–38). However, ~50% of HGSC are

HR-proficient (HRP), an established poor prognostic marker

associated with primary platinum and PARPi resistance and

shorter survival times (36, 39, 40). Platinum-resistant ovarian

cancer is defined as disease that relapses within six months of

completing first-line treatment, and the probability of a response to

platinum re-treatment is less than 10% (33, 41, 42). In fact, HGSC

can also progress from HRD to become at least partially HRP by

reversion of HR gene alterations through secondary genetic or

epigenetic events (43–45). This acquired HR-proficiency is one of

the most well described mechanisms of acquired treatment

resistance and consequently a major clinical challenge.

HRD status in ovarian cancer is usually inferred by

measurement of BRCA mutation status and/or the extent of

cancer genome scarring associated with loss of HRR genes.

Methodologies that assess HRD typically measure the extent of

telomeric allelic imbalance, loss of heterozygosity, and large-scale

transitions (31, 46). However, these scores are based on permanent

genomic scars, thus failing to reflect the current HRD status in the

case of HRR restoration (47). An alternative is a dynamic

assessment of HR status using functional assays in ex-vivo

cultures (46). Immunofluorescence microscopy can be used to

measure the presence of RAD51 formed molecular complexes

which accumulate at sites of double-stranded DNA breaks in

HRP cells. By contrast, HRD cells are unable to form RAD51

formed molecular complexes and their absence thus provides a

functional indication of a defect in the HR pathway (48, 49).

However, such RAD51 assays are yet to be clinically validated.
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Additionally, resistance to PARPis may be driven by RAD51-

independent mechanisms and consequently cannot be detected by

RAD51 assays (50, 51). Current HRD tests vary in the number and

type of mutational features assessed, and the optimal thresholds to

classify samples as HRD or HRP are not yet well defined. Variation

in assays should be considered when evaluating the overall value of

such assays in providing prognostic and predictive information.

The heterogeneity of HGSC, including multiple molecular

subtypes even within the HRP subgroup, poses a substantial

challenge to proper prognostication and clinical management (3,

33, 36, 43, 52, 53). Treatment options for patients with platinum-

resistant, non-HRD HGSC are scarce, and the goal of treatment is

strongly focused on symptom control and palliation, delaying time

to symptomatic progression and improving quality of life (33, 53–

57). To date, apart from the antibody-drug conjugate (ADC)

mirvetuximab (Elahere®), few treatments in addition to

cytoreductive surgery and platinum- and taxane-based

chemotherapy have shown a survival benefit in this poor

prognosis group (3, 33, 42, 53–57).

Recent novel approaches to treat ovarian cancer has largely

benefitted patients with HRD HGSC, with or without BRCA-

alterations (1, 3, 13, 17–29, 58). Further progress in the treatment

of HGSC requires approaches that benefit patients with HRP

disease, who currently have limited treatment options other than

surgery. Here we summarize recent clinical and molecular findings

in HRP HGSC and provide an insight into ongoing trials of new

potential treatment options.
Characteristics of patients with
HR-proficient HGSC

Clinicopathological

Variation in outcomes between patients with HGSC is in part

determined by the molecular characteristics of the tumor, with HR-

status as one of the important determinants (Table 1). Patients with

HRP tumors have an older median age at diagnosis compared to

patients with HRD tumors (10, 11, 20, 36). A retrospective analysis

of 352 patients showed that HRP tumors required a higher number

of cycles of NACT to be considered for interval cytoreductive

surgery compared to those with germline BRCA mutations and

other defects conferring HRD, and less complete gross resection

(R0) could be achieved (11). While complete resection in primary

and interval cytoreductive surgery remains one of the strongest

prognostic features in ovarian cancer (2, 3, 62, 63), the higher

number of chemotherapy cycles and lower R0 rate also reflect an

inherently resistant tumor (18, 22–24, 26, 33).
Genomic characteristics

Extensive genomic and transcriptomic characterization has

provided insight into HGSC with HRR pathway inactivation,

most commonly caused by genetic or epigenetic alterations in the
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BRCA genes and alterations in other genes, including BRIP1,

PALB2, RAD51C, or RAD51D, which encode proteins that are

also involved in HR DNA repair (59). By contrast, the molecular

drivers of HGSC that have no apparent defects in HR are less well

defined (2).

HRP ovarian cancer cells are often characterized by genetic

alterations in signaling pathways that contribute to cell cycle

dysregulation, such as cyclin E1 (encoded by CCNE1) and cyclin

dependent kinase (CDK) genes (44). Cyclin E1 is an important

factor in the G1/S cell cycle transition through its activation of

cyclin-dependent kinase 2 (CDK2), allowing the cell to enter the S-

phase (64). Besides other cellular mechanisms, limiting the supply

of cyclin E1 ensures that the cell remains in the G1 phase by keeping

CDK2 inactive until mitogenic signals intervene (65). CCNE1

expression is dependent on E2F transcription factors that are

bound to the retinoblastoma protein (Rb) in an inactivated state

when cells are at rest. E2F is released through mitogenic stimuli

such as c-MYC which increases the expression of D-type cyclins

that in turn combine with CDK4 and CDK6 to phosphorylate and

inactivate Rb (65). Furthermore, once activated, the cyclin E1/

CDK2 complex is able to phosphorylate Rb and thus upregulate

its own expression in the form of a positive feedback loop through

the continued release of E2F, independent of mitogenic stimuli (65).

Additionally, the cyclin E1/CDK2 complex is an essential

component of the chromatin remodeling process required for
TABLE 1 Clinicopathological characteristics for Non-HRD/HRP versus
HRD HGSC.

Non-
HRD/
HRP

HRD

Median age (years) (10,
11, 20, 36)

63–64
Germline BRCA+: 54–58.5

Somatic BRCA/HRD+: 58–62

Frequency (%) (10,
11, 36)

∼50% ∼50%

Non-serous histology
subtypes (11)

20%
Germline BRCA+: 6%

Somatic BRCA/HRD+: 0%

Molecular
characteristics (59–61)

CCNE1-
amplification

AKT2-
amplification

Whole
genome

duplication

BRCA1 and BRCA2 or other HR
genes (BRIP1, PALB2,
RAD51C, RAD51D)

Median NACT cycles
required (10, 11)

4
Germline BRCA+: 3

Somatic BRCA/HRD+: 3

Rate of complete gross
resection (11)

60%
Germline BRCA+: 83%

Somatic BRCA/HRD+: 77%

Median progression-free
survival (months)
(10–13)

5.4–16.9
Germline BRCA+: 23.5–25

Somatic BRCA/HRD+: 20.2–25.2

Median overall survival
(months) (11, 17)

40.4–42.3
Germline BRCA+: 68.8

Somatic BRCA/HRD+: 69.2
Adapted from (10–13, 17, 20, 36, 59–61).
NACT, Neoadjuvant Chemotherapy; HRP, Homologous recombination proficient; HRD,
Homologous recombination deficien; HR, Homologous recombination.
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DNA replication. Overexpression of cyclin E1 increases the speed at

which cancer cells transition from G1 to the S phase (66). This can

lead to replicative stress, whole genome duplication, and further

promote the dysregulation of genes responsible for proliferation

and cell survival, which are also associated with resistance to

cytotoxic and targeted therapies (67, 68).

CCNE1 amplification is currently the best characterized driver

of HGSC with HR-proficiency. It is important to note, however, that

cyclin E1 protein overexpression itself has not been shown to be a

predictive biomarker for chemotherapy resistance in epithelial

ovarian cancer (EOC), so methods to detect amplification of a

gene (e.g. whole-genome sequencing, fluorescence in situ

hybridization, polymerase chain reaction, single nucleotide

polymorphism arrays) are required to identify the CCNE1

amplified subgroup (69). Approximately 40% of HRP HGSC

show an CCNE1 amplification, which has been shown to be an

early event in their development (43, 64). HR pathway gene

mutations and CCNE1 amplification have been shown to be

mutually exclusive (44, 60, 65). This suggests that the

pathogenesis of HGSC follows at least two distinct pathways, and

that CCNE1-amplified tumors with cyclin E1 protein

overexpression are more likely to be resistant to platinum-based

chemotherapy and PARPi due to HR-proficiency (65).

AKT2 amplification is also a poor prognostic marker in EOC

(34, 70, 71) and is associated with CCNE1 amplification (70). The

co-amplification of the serine/threonine-protein kinase AKT2 and

CCNE1 appears to be explained in part by their proximity on

chromosome 19q. Pathway analysis indicates that CCNE1-

amplified cell lines are dependent on multiple genes within the

CDK and AKT pathways, suggesting a specific dependence of

CCNE1-amplified tumors on AKT activity (70). Consequently,

combined CDK2 and AKT inhibition may have synergistic anti-

tumor activity against CCNE1-amplified tumors and hold promise

for clinical development (70). It should be noted that although

CDK4/6 inhibitors have been investigated in ovarian cancer (72), it

is the CDK2 inhibitor which is likely to be effective (73–76).

CDK12-altered HGSC represent a unique subgroup that appear

to be HR competent (36). Despite lacking the typical HRD genomic

scarring, CDK12-altered tumors have a distinct tandem duplication

signature and may be more susceptible to chemotherapy and

PARPis than other HRP tumors (77). Aside from alterations in

CCNE1, AKT2 and CDK12, the majority of HRP HGSC remain

poorly defined, and integration of genomic, immune, proteomic

and functional data is needed for their complete characterization

(78–81).
Immune profile

Tumor-infiltrating lymphocytes (TILs) are an established

prognostic factor in ovarian cancer, regardless of the extent of

surgical cytoreduction and chemotherapy (82–84). The presence of

CD8+ TILs in the tumor microenvironment is associated with

slower tumor progression, prolonged survival and may be

essential for immunotherapy response (84–86). HRD tumors have

a significantly increased CD8+/CD4+ ratio of TILs and a higher
Frontiers in Oncology 04
number of peritumoral T cells (44). This is likely due to HRD cells

accumulating a high number of somatic mutations, which is

predicted to result in the expression of more tumor neoantigens

that elicit an adaptive immune response and cytotoxic T cell

infiltration. These cells are capable of killing cancer cells (84), and

in addition to a more favorable response to chemotherapy, explains

the improved survival of patients with BRCA-mutated

ovarian cancer.

By contrast, HRP tumors are characterized by a non-inflamed

or “cold” immune phenotype, with fewer CD3+ and CD8+ TILs as

well as decreased expression of PD-1 and PD-L1 (87–89). HRP

tumors generally have a lower tumor mutational burden due to

having intact DNA repair, which, together with a low TIL density,

would predict a poor response to immune checkpoint blockade

(84). Therefore, HRP tumors may be poor candidates for targeted

immunotherapy with PD-1 and PD-L1 inhibitors as recently shown

(90–96). Recent approaches to immunotherapy for cold tumors

have focused on restoring inflammation by reprogramming

myeloid cells, stromal cells, and vascular epithelial cells (97).

Additionally, PARPi, low-dose radiotherapy, epigenetic drugs and

anti-angiogenesis therapy may enhance T cell infiltration,

suggesting their use in combination with vaccines and redirected

T-cells using chimeric antigen receptors or bispecific antibodies (84,

98). However, it should be noted that while T cell infiltration and

the expression of PD-L1 and other immune checkpoint markers

increases following chemotherapy, unlike primary disease, the

extent of infiltration does not correlate with patient survival

(99, 100).
Treatment options for patients with
HRP HGSC

Chemotherapy

Neoadjuvant chemotherapy with interval cytoreductive surgery

is currently an alternative for patients with ovarian cancer who have

a low chance of initial complete resection and chemosensitive

histologic subtypes, or poor health status (1). However, there is a

strong correlation between HR-status and response to platinum-

based chemotherapy in HGSC; patients with HRP tumors have

severely limited responses to chemotherapy, with reported median

PFS ranging from 5.4 to 16.9 months (Table 1) (10–13). The

chemoresistant nature of HRP tumors highlights the potential

benefit of favoring the currently recommended option in HGSC

(1) of primary debulking surgery followed by adjuvant platinum

and taxane-based chemotherapy in these patients.

An ancillary data analysis of the VELIA/GOG-3005 trial

focused on paclitaxel dosing schedule and BRCA mutation and

HR-status (101). Dose-dense (weekly) paclitaxel was compared to a

schedule of every three weeks showing an improved PFS with dose-

dense paclitaxel in HRP but not in BRCA-mutation or HRD tumors.

Previous clinical trials of shorter versus longer paclitaxel intervals in

ovarian cancer did not evaluate HR status and therefore further

studies are needed to confirm this finding (102, 103). Interestingly,

it has been shown that paclitaxel suppresses CDK1 expression via
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decreased BRCA1 phosphorylation, thereby reducing HR activity in

response to DNA damage and increasing sensitivity to PARPis

(104), so this combination represents a potential new treatment

strategy that needs to be further investigated in HRP HGSC.

HGSC typically involves extensive peritoneal spread and

therefore intraperitoneal chemotherapy and hyperthermic

intraperitoneal chemotherapy (HIPEC) have been evaluated in

multiple clinical trials. The goal of intraperitoneal chemotherapy

is to increase local exposure to the chemotherapeutic agent, and in

the case of HIPEC, heated chemotherapy has an additional

cytotoxic effect and increases sensitivity to platinum compounds

by inducing a transient state of HRD (105). Koole et al. analyzed the

effect of HIPEC among patients with ovarian cancer previously

enrolled in the phase III OVHIPEC1 trial (105) stratified by BRCA-

like (HRD) versus non BRCA-like (HRP) (106) or BRCA mutation

status. Although patients with HRD/BRCA-wildtype showed a

strong benefit in terms of recurrence-free survival (RFS) and a

promising trend in OS from HIPEC, this was non-significant in

HRP/BRCA-wildtype patients and absent in patients with

pathogenic BRCA mutations, both in terms of RFS and OS (58).

It appears that HRP tumors remain resistant to chemotherapy

despite hyperthermia. However, there is a lack of long-term

survival data for HIPEC, and thus the benefit of this treatment

modality remains unclear. The importance of tumor HR status in

predicting response and survival following HIPEC may be

addressed in ongoing studies (107).
Poly (ADP-ribose) polymerase inhibitors

Maintenance PARPi therapy after first-line treatment and in the

platinum sensitive recurrent setting have become standard

treatment options in patients with BRCA-mutated and HRD EOC

(1, 3). PARP is an enzyme that helps repair DNA damage and PARP

inhibition causes an accumulation of single- and double-stranded

DNA breaks (108). HRD cells are unable to effectively repair the

DNA damage, resulting in an accumulation of chromosomal

aberrations and cell death (109). As a maintenance therapy

PARPi have led to improved PFS and shown a promising trend

towards improved OS in EOC, particularly in patients with BRCA

mutant and/or HRD tumors (17, 18, 20, 21, 23, 24). While the

greatest benefit is seen in HRD cancers, an exploratory analysis of

the Phase III PRIMA trial showed improvements in PFS with

niraparib versus placebo as first-line maintenance monotherapy,

regardless of BRCA and HR-status (20). Patients with BRCA-

wildtype/HRP tumors treated with niraparib who responded to

first-line chemotherapy had a median PFS of 8.1 months versus 5.4

months for placebo, with an estimated probability of survival at 24

months of 81% in the niraparib group versus 59% in the placebo

group. Therefore, niraparib is clinically approved for use in patients

with HRP HGSC, with beneficial effects and a manageable

tolerability profile (110, 111).

An exploratory analysis of the VELIA/GOG-3005 trial (27)

showed that some patients with HRP ovarian cancer and also poor

chemosensitivity may have gained a transient, but non-significant

benefit from the addition of the PARPi veliparib to carboplatin-
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paclitaxel (median PFS 14.7 vs median 6.7 months, HR 0.62, 95% CI

0.37–1.05) (112). The authors of the study hypothesized that

veliparib may have induced a chemosensitizing effect on HRP

tumors (112, 113). In addition, the Phase III ATHENA-MONO

trial demonstrated improved PFS with rucaparib monotherapy

compared to placebo in first-line maintenance in patients with

newly diagnosed EOC without evidence of HRD (12.1 vs 9.1

months, HR 0.65, 95% CI 0.45–0.95) (13). As a result of such

findings, the ESGO-ESMO-ESP consensus guidelines state that

niraparib or rucaparib maintenance therapy may be used for

patients with HRP HGSC if they have had a complete or partial

response to first line chemotherapy or no evidence of disease (1).
Antiangiogenic treatment

Vascular endothelial growth factor (VEGF) promotes increased

vascularity and angiogenesis in response to hypoxic conditions and

is a key promoter of tumor growth (114). The anti-angiogenic

VEGF monoclonal antibody bevacizumab was the first targeted

agent to be approved for use in stage III and IV EOC, showing an

improved PFS when used in combination with chemotherapy and

as maintenance therapy in the first-line setting, however without OS

benefit (115, 116). According to the ESGO-ESMO-ESP consensus

guidelines, patients with HRP HGSC may receive platinum-based

chemotherapy with bevacizumab followed by bevacizumab

maintenance as an alternative to the option of maintenance with

rucaparib or niraparib (1). Among other mechanisms of action,

bevacizumab exposure may trigger HRD by inducing a hypoxic

cellular state that can downregulate HR-related genes such as

BRCA1/2 and RAD51 (117). In addition, the relative benefit of

bevacizumab in EOC has been shown to increase as the disease

becomes more platinum resistant (118). A retrospective analysis of

124 patients with platinum-sensitive recurrent ovarian cancer

showed extended PFS with bevacizumab in patients with cyclin

E1 overexpression (median 16.3 vs 7.1 months, P=0.010) (118).

Tumor VEGF secretion has been shown to be at least partially

responsible for the development and maintenance of ascites, and

the AURELIA trial demonstrated that the addition of bevacizumab

to chemotherapy improved ascites control. This beneficial effect is

certainly relevant for the HRP group as they are more frequently

associated with suboptimal debulking, earlier recurrence and ascites

(54). Furthermore, the combination of niraparib and bevacizumab

evaluated in the pre-specified subgroup analysis of the AVANOVA

trial showed a significant improvement in PFS compared to

niraparib alone in the HRP population (HR 0.40, 95% CI 0.19–

0.85) (119). The Phase III GOG-218 trial also showed prolonged

PFS in patients with no HRR gene mutations who received

bevacizumab in addition to standard chemotherapy with

carboplatin and paclitaxel (HR 0.71, 95% CI 0.60–0.85, P =

0.0001). This benefit was not observed in patients with HRR gene

mutations (HR 0.95; 95% CI 0.71–1.26) (120). Therefore, the ESMO

guidelines recommend that the decision on bevacizumab versus

niraparib maintenance in the HRP population should be based on

the patient’s disease and clinical characteristics, the toxicity profile

of the two drug classes, the availability of each drug, and national
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guidelines (3, 121). The ongoing Phase I/II MITO 25 trial

(NCT03462212) may provide clearer evidence about potential

therapy options by comparing whether the carboplatin-paclitaxel-

bevacizumab-rucaparib or carboplatin-paclitaxel-rucaparib arms

improve PFS compared to standard carboplatin-paclitaxel-

bevacizumab in patients with HRP HGSC.

The inhibition of VEGF receptor-3 (VEGFR3) has been shown

to decrease BRCA1 and BRCA2 expression in ovarian cancer cells

and resulted in increased chemosensitivity (122). The randomized

Phase II trial (NCT01116648) showed that the combination of

olaparib plus cediranib, a VEGF receptor 1/2/3 inhibitor,

significantly improved PFS in relapsed platinum-sensitive EOC

compared to olaparib alone (median 17.7 months vs 9 months,

P=0.005), with the greatest benefit in BRCA-wildtype patients (HR

0.32, P=0.008) (123). These results suggest that there may be greater

synergism between the two agents in HRP tumors, with the response

to olaparib in HRP tumors being enhanced by diminished HRR due

to VEGFR3 inhibition. However, experimental in vivo efficacy data

showed that the combination exhibited broad anti-tumor activity

independent of HRR and that the combination effect was largely

driven by influencing independent mechanisms affecting tumor cells

and the tumor microenvironment (124). Clinically, the combination

of cediranib and olaparib also showed some activity in the

CONVERTO trial, a single-arm Phase IIb study of the two

compounds in heavily pretreated, platinum-resistant, non-

germline BRCA-mutated patients. However, the target objective

response rate (ORR) of 20% was not reached (15.6%) and the

overall benefit was unclear (OS 13.2 months, 95% CI 9.4–16.4;

PFS 5.1 months, 95% CI 3.5–5.5) given it was a single arm study

in a disease setting where most patients are expected to progress or

die within 12 months (125). A Phase III trial [NCT02446600] in

patients with relapsed platinum-sensitive ovarian cancer found that

neither the combination of olaparib and cediranib nor olaparib

monotherapy improved PFS compared to standard chemotherapy

(126). An ongoing Phase II/III trial (NCT02502266) is evaluating

cediranib plus olaparib compared to their monotherapies and

standard chemotherapy. It remains to be determined if there is a

clinical benefit of VEGF receptor inhibitors in treating EOC,

particularly in chemoresistant HRP tumors. Future research efforts

must focus on identifying other predictive biomarkers for anti-

angiogenic therapy, as not all observed responses can be explained

by BRCA mutation or HR-status.
Secondary cytoreductive surgery

There have been significant advances in the surgical

management of HGSC with improved PFS and OS due to

intensification of surgical efforts (62, 127, 128). A multicenter,

open-label, randomized, controlled Phase III trial SOC-1

(NCT01611766) demonstrated in 357 patients with platinum-

sensitive relapsed ovarian cancer that secondary cytoreductive

surgery (SCS) followed by chemotherapy was associated with

significantly longer PFS than with chemotherapy alone (median

17.4 vs 11.9 months, HR 0.58, 95% CI 0.45–0.74, P<0.0001) (129).
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Furthermore, the DESKTOP III trial (NCT01166737) analyzed 407

patients with platinum-sensitive recurrent ovarian cancer and

showed that SCS followed by chemotherapy leads to a longer OS

than chemotherapy alone (median 53.7 vs 46.0 months, HR for

death 0.75, 95% CI 0.59–0.96, P=0.02). Patients with a complete

resection had the most favorable outcome (130). In addition to

these two positive studies, in the GOG-0213 trial, which also

included patients with platinum-sensitive, recurrent ovarian

cancer, SCS followed by chemotherapy did not result in a longer

OS than chemotherapy alone (131). There are some differences

between the trials that may explain the inconsistent results, such as

the additional use of bevacizumab in the DESKTOP III trial

(NCT01166737) or the process of selecting patients and centers

(130). Therefore, it is important that patients are appropriately

counseled about the option of SCS.

The role of surgery in patients with platinum-resistant disease

has received increasing attention (132). In fact, patients with HRP

tumors may benefit from SCS, similar to patients with low-grade

serous ovarian cancer (133). To our knowledge, only three

retrospective studies have been published analyzing the role of

SCS in patients with platinum-resistant recurrent ovarian cancer.

Both Petrillo et al. and Musella et al. showed a prolonged OS after

recurrence when SCS was combined with chemotherapy instead of

chemotherapy alone (median 32 months vs 8 months, P=0.002 and

67 months vs 24 months, P=0.035) (134, 135). However, when

evaluating these two studies, it is important to consider that they

were carried out before the PARPi era and therefore their

conclusions must be put into perspective with current treatment

options. A recent multicenter retrospective series by Tuninetti et al.

in 50 heavily pretreated platinum-resistant ovarian cancer patients

showed a statistically significant longer OS in the group of patients

who received complete cytoreduction after SCS compared to the

very low survival of patients with residual disease (meidan 33

months vs 5 months, HR 4.21, 95% CI 2.07–8.60, P=0.001) (136).

These retrospective studies did not include stratification by BRCA

mutation or HR-status, and any discussion of the extent of surgical

clearance should also consider how residual disease may be a

marker of biology that drives outcome. However, in a recent

multicenter retrospective study investigating platinum sensitive

recurrent ovarian cancer, SCS was shown to be effective in BRCA-

wildtype patients, with an improvement in post-recurrence survival

(PRS) when complete resection was performed (5-year PRS of 54%

vs 42%, P=0.048), whereas in BRCA-mutated patients, prognosis

appears to be related to molecular tumor characteristics rather than

tumor resectability (137). A current prospective randomized

controlled trial (NCT05633199) is now comparing SCS in

platinum-resistant recurrent ovarian cancer and is expected to

provide further information on whether and to what extent SCS

can be used in the “platinum-resistant” HRP HGSC subgroup.

Another advantage of SCS is to opportunistically obtain more

comprehensive information on the pathological and molecular

characteristics of HRP HGSC and how this may affect tumor

evolution and clinical outcome (127). SCS in HGSC warrants

further investigation in prospective trials, with particular

attention paid to patient BRCA and HR-status.
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Immunotherapy and antibody-
drug conjugates

Immunotherapy for HGSC has fallen short of expectations, with

immune checkpoint inhibitors so far showing limited benefit in

ovarian cancer (138–142). However, there are new, potentially

promising approaches, including ADCs that deliver a toxic

‘payload’ of chemotherapy directly to cancer cells via a linker

attached to an antibody that binds to a specific surface antigen

expressed on cancer cells (143). Mirvetuximab is a first-in-class

ADC targeting folate receptor a (FRa), a cell surface protein that is

commonly overexpressed on ovarian cancer (80–100%) and

minimally expressed on normal tissue (144–146). This ADC

incorporates the maytansinoid DM4 payload, a potent tubulin-

targeting antimitotic agent, and is the first novel agent to

demonstrate an OS benefit when used as a single agent compared

to chemotherapy alone in platinum-resistant ovarian cancer, as

shown in the MIRASOL Phase III clinical trial (NCT04209855)

(144). Patients with platinum-resistant, FRa-positive ovarian

cancer treated with mirvetuximab (n=227) experienced an OS of

16.46 months (95% CI, 4.46–24.57) vs 12.75 months (95% CI,

10.91–14.36) for the chemotherapy arm (HR 0.67, 95% CI 0.50–

0.89, P=0.005) and showed fewer Grade 3 or higher adverse events

with mirvetuximab than with chemotherapy (41.7% vs 54.1%).

Another promis ing immunotherapy approach i s

Gemogenovatucel-T (Vigil, formerly known as FANG®), the first

immunotherapy to demonstrate specific efficacy in the frontline

maintenance setting for the HRP population. Vigil is a vaccine

composed of autologous tumor cells derived from malignant tissue

removed during cytoreductive surgery (147) (Figure 1). Tumor cells
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are transfected with a plasmid containing GM-CSF and bi-shRNA

to reduce furin activity, which subsequently downregulates the

expression of the immunosuppressive proteins TGF-b1 and TGF-

b2 (transforming growth factor b). This is important because the

expression of furin and the resulting immunosuppressive TGF-b
isoforms are increased in ovarian tumors compared to normal

ovarian tissue (148). Long-term safety of Vigil and evidence of

patient benefit have been demonstrated in multiple solid tumors,

including advanced ovarian cancer (149, 150). The ongoing Phase

IIb VITAL trial (NCT02346747) evaluated the efficacy of Vigil in

patients with stage III/IV ovarian cancer. RFS was 11.5 months for

patients treated with Vigil versus 8.4 months for patients treated

with placebo (HR 0.69, 90% CI 0.44–1.07, P=0.078) with an

acceptable toxicity profile (151). Although the primary endpoint

of RFS was not met, a small subgroup analysis (n=45) showed that

RFS and OS was significantly improved with Vigil compared to

placebo in HRP patients (HR 0.38 and 0.34, 90% CI 0.2–0.75 and

0.14–0.83, P=0.007 and P=0.019), while no difference was seen in

patients with BRCA-mutated disease (151, 152). Vigil increases the

expression of cancer-associated neoantigens by upregulating MHC-

II and processing by dendritic cells, which enhances the afferent

immune response, the initial phase of immune activation

characterized by antigen presentation and recognition, resulting

in a systemic anti-tumor immune response including CD3+/CD8+

T cell circulation (152). T cells showed to preferentially recognize

clonal neoantigens over subclonal neoantigens to target the tumor

in lung adenocarcinoma and melanoma (153). HRP tumors are

associated with higher clonal neoantigen expression compared to

HRD tumors, which therefore contain higher proportions of

subclonal neoantigen subpopulations, which may explain why
FIGURE 1

Immune profile of HRP vs. HRD tumors and effect of Vigil. HRP tumors show reduced immunophenotypic markers compared to HRD tumors.
Gemogenovatucel-T (Vigil) is a vaccine composed of autologous tumor cells transfected with a plasmid containing GM-CSF and bi-shRNA resulting
in a systemic anti-tumor immune response including CD8+ T cell circulation. HRP tumors have a higher proportion of clonal neoantigen expression,
which explains the better effect of Vigil on HRP tumors compared to HRD. HRP, Homologous recombination proficient; HRD, Homologous
recombination deficient; TILs, Tumor-infiltrating lymphocytes; Bi-shRNA, Bifunctional short hairpin RNA; GM-CSF, Granulocyte/Macrophage Colony
Stimulating Factor; TGF, Transforming growth factor; APC, Antigen presenting cell.
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Vigil is more effective on HRP tumors (152). A Phase III trial is

planned to validate the efficacy of Vigil compared to bevacizumab

and niraparib in the HRP ovarian cancer population (152). It has

been suggested that the increased expression of clonal tumor

neoantigens and reduced tumor suppressive effect of TGF-b may

synergistically enhance the activity of checkpoint inhibitor

treatment (84, 154, 155). A prospective, randomized Phase I trial

of Vigil plus the immune checkpoint inhibitor atezolizumab in

patients with recurrent ovarian cancer explored this approach and

showed that the combination was safe, supporting further

investigation of this combination, particularly in BRCA-wildtype

patients (155).

Adoptive cell therapy is another emerging personalized form of

immunotherapy in which patients are treated with their ex vivo

expanded natural TILs, genetically engineered T lymphocytes (CAR

T cells) or T-cell receptor (TCR)-engineered T cells, which could

offer a potential therapeutic option for patients with cold tumors.

To date, CAR T cells that have been tested in clinical trials for

HGSC have not yet demonstrated clear benefit (84, 156). While this

technology is promising, further development is required to

investigate the full potential of T cell engineering and other novel

immunotherapy approaches to address the problem of

immunologically cold tumors (84).
Combined targeted therapies

Rational drug combinations are a potential strategy to prevent

or delay the development of resistance and offer the opportunity to

improve the therapeutic window by potentially reducing the

required drug doses, resulting in fewer side effects (70). Several

strategies to selectively disrupt HRR in cancer cells with drugs have

been investigated both preclinically and in clinical trials in HGSC or

EOC in general, including HRP tumors, and have provided the

rationale for new potential therapeutic approaches (Figure 2,

Table 2). Here we review the most promising approaches for

HRP tumors that have been or are being investigated in ovarian

cancer, including targeting the CDK, P13K/AKT or CHK pathways.
Frontiers in Oncology 08
CDK pathway

Approximately 40% of HGSC with HR-proficiency have an

amplification of CCNE1 (64). Cyclins are typically regulatory

proteins that modulate the activity of CDKs (65). The CDK

pathway offers attractive targets for the treatment of CCNE1-

amplified tumors due to its role as the kinase partner of cyclin E1

in the activated cyclin E1/CDK complex (65, 163) (Figure 3). Cyclin

E1 is primarily regulated by CDK2 in CCNE1-amplified tumors,

which are selectively dependent on CDK2 activity (73).

Combination therapy with the multi-CDK inhibitor dinaciclib

(targets CDK1/2/5/9) has shown positive preclinical responses in

CCNE1-amplified HGSC (164–166), and there is currently an active

but not recruiting Phase I trial [NCT01434316] evaluating

dinaciclib in combination with the PARPi veliparib in advanced

solid tumors. However, a disadvantage of broad-spectrum CDK

inhibitors is their high toxicity (167). Recently, more selective

CDK2 inhibitors have been investigated (74–76), including

promising preclinical results using INX-315, a novel, potent and

highly selective CDK2 inhibitor. INX-315 treatment resulted in

tumor growth inhibition of CCNE1-amplified tumors by promoting

retinoblastoma protein hypophosphorylation, inducing cell cycle

arrest and delaying the onset of CDK4/6 inhibitor resistance in

breast cancer (74). In addition, a recent first-in-human Phase I/IIa

study (NCT04553133) of a novel and potent selective CDK2i (PF-

07104091) found that it was well tolerated and showed antitumor

activity in heavily pretreated metastatic breast cancer patients who

had progressed on prior CDK4/6 inhibitors (75). Further

development of selective CDK2 inhibitors in Phase I/II clinical

trials are ongoing and may be of major importance for HRP HGSC.

Another strategy is to target Weel-like kinase (WEE1), which is

highly upregulated in HGSC (108). Its inhibition causes activation

of CDK1 and CDK2, resulting in cell cycle acceleration with an early

mitotic entry and mitotic catastrophe leading to irreparable DNA

damage (121). The multicenter Phase II IGNITE trial

[ACTRN12619001185156P] is a non-comparative trial evaluating

the WEE1-inhibitor adavosertib in two cohorts of platinum

resistant recurrent HGSC (cyclin E1 overexpressed/CCNE1
FIGURE 2

Potential combination therapies to induce homologous recombination deficiency (HRD). VEGFR3i, Vascular endothelial growth factor receptor 3
inhibitor; EGFRi, Epidermal growth factor receptor inhibitor; CDKi, Cyclin-Dependent Kinases inhibitor; WEE1i, Weel-like kinase 1 inhibitor; PI3K,
Phosphatidylinositol-3-Kinase and AKT, Serine/threonine protein kinases; ATRi, Ataxia teleangiectasia Rad3-related inhibitor; HDACi, Histone
deacetylase inhibitor; HSP90i, Heat shock protein 90 inhibitor; BETi, Brodomain and extraterminal protein family inhibitor.
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TABLE 2 Clinical trials of potential therapy options for HRP HGSC.
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Efficacy of BLU-222 as a Single
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Clinical-
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d Olaparib versus
py of
choice

EPIK-O: A Phase III, Multi-
center, Randomized (1:1), Open-
label, Active-controlled, Study to
Assess the Efficacy and Safety of
Alpelisib (BYL719) in
Combination With Olaparib as
Compared to Single Agent
Cytotoxic Chemotherapy, in
Participants With no Germline
BRCA Mutation Detected,
Platinum-resistant or Refractory,
High-grade Serous Ovarian
Cancer (161)

NCT04729387

A Phase Ib Study of the Oral
PARP Inhibitor Olaparib With
the Oral mTORC1/2 Inhibitor
AZD2014 or the Oral AKT
Inhibitor AZD5363 for Recurrent
Endometrial, Triple Negative
Breast, and Ovarian, Primary
Peritoneal, or Fallopian
Tube Cancer

NCT02208375

Combination ATR and PARP
Inhibitor (CAPRI) trial With
AZD 6738 and Olaparib in
Recurrent Ovarian Cancer

NCT03462342

A Phase I Dose-Escalation Trial
of Talazoparib in Combination
With Belinostat for Metastatic
Breast Cancer, Castration
Resistant Prostate Cancer and
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ted toxicities,
isease stabilization,
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A Phase I Study of PARP
Inhibitor Olaparib and HSP90
Inhibitor AT13387 for Treatment
of Advanced Solid Tumors With
Expansion in Patients With
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Fallopian Tube, Peritoneal Cancer

NCT02898207
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I Completed Solid tumors that are
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removed by surgery or
recurrent ovarian,
fallopian tube, primary
peritoneal, or triple-
negative breast cancer
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amplified and cyclin E1 overexpressed/CCNE1 non-amplified) and

demonstrated an ORR of 53% and a clinical benefit of 61% in an

interim analysis of 32 patients in the cyclin E1 overexpressed/

CCNE1 non-amplified cohort (168). CDK1 is a key cell-cycle

regulator and phosphorylates BRCA1, which is required for DNA

damage-induced checkpoint control through the formation of

BRCA1-containing foci (169); consequently, inhibition of CDK1

impairs the ability of cells to functionally repair DNA by HRR

(165). Therefore, depletion or inhibition of CDK1 creates a state of

“BRCAness” in transformed cells (170). Results from preclinical

studies in other cancer modalities support the effect of WEE1

inhibition on HR, and thus the assumption that WEE1 inhibitors,

in combination with a DNA damaging agent, specifically render

HRP cell lines more susceptible to treatment (171, 172).

An ongoing Phase II trial (NCT03579316) in recurrent PARPi-

resistant EOC (including 98% HGSC) is evaluating the efficacy of

the WEE1 inhibitor adavosertib with or without olaparib. The

combination showed to have a greater clinical benefit rate than

adavosertib alone (89% vs 63%), but the ORR was similar between

the two arms (160). Interestingly, exploratory analyses showed a

larger benefit of the combination in the BRCA-wildtype subgroup

compared to the BRCA-mutated subgroup (39% vs 19% ORR).

Translational analyses are underway to further explore potential

predictive biomarkers (160). However, adavosertib use requires

consideration of single agent toxicity as well as interactions when

used as a drug combination. For example, the use of adavosertib in

combination with carboplatin showed an increased incidence of

bone marrow suppression, diarrhea, vomiting and fatigue (168,

173). Additionally, adavosertib is metabolized via the enzyme

cytochrome P450 3A4 (CYP3A4), which means that patients

receiving any co-medications that are strong CYP3A4 inhibitors

(for example, antibacterials such as clarithromycin and

erythromycin, anticancer agents such as tamoxifen and

irinotecan, anti-HIV agents such as ritonavir and delavirdine, or

antihypertensives such as dihydro-dralazine and verapamil) (174)

would be excluded from clinical trials.

Another promising therapeutic target of the CDK pathway

specifically for CCNE1-amplified HGSC is PKMYT1 (68).

PKMYT1 is a kinase encoding the pro-protein kinase Myt1, a

negative regulator of CDK1, and was identified in a genetic screen

of cellular dependencies in CCNE1 amplified HGSC (68). Inhibition

of PKMYT1 results in activation of CDK1, causing unscheduled

mitotic entry and genome instability. In contrast, the

WEE1inhibitor showed no selectivity towards CCNE1-amplified

cell lines (175, 176). Ongoing first-in-human clinical trials are

evaluating the PKMYT1 inhibitor lunresertib (RP-6306) as

monotherapy or in combination with the ataxia-telangiectasia

Rad3-related (ATR) inhibitor RP-3500 (NCT04855656) and in

combination with gemcitabine (NCT05147272) in advanced

solid tumors.
PI3K/AKT pathway

Phosphatidylinositol 3-kinase (PI3K) activity is stimulated by a

wide range of oncogenes and growth factor receptors (177) and the
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activity of the PI3K pathway is important to the development of

drug resistance in a variety of cancer types and treatment settings

(178). Inhibition of the PI3K pathway also results in PI3K-mediated

downregulation of BRCA, accompanied by extracellular signal-

regulated kinase (ERK) phosphorylation and subsequent

abrogation of HRR (179). Preclinical work in ovarian cancer

patient-derived xenograft models has shown that the PI3K

inhibitor alpelisib (BYL719) inhibits HRR and consequently

sensitizes ovarian cancer models with de novo or acquired HR-

proficiency to olaparib (180). A Phase I study in 28 patients with

EOC (75% HGSC) provided preliminary clinical evidence of the

efficacy of the combination of olaparib and alpelisib. An ORR of

33% was seen in patients with BRCA-wildtype platinum-resistant

EOC compared to an ORR of 3–10% with olaparib or other PARPi

monotherapy in the same setting, and with acceptable toxicity (121,

181). Importantly, objective responses to this combination of agents

occurred regardless of HR status, as measured by targeted DNA

sequencing (181). Further evidence will be provided by the ongoing

Phase III EPIK-O/ENGOT-OV61 trial (NCT04729387), which is

evaluating the efficacy and safety of alpelisib/olaparib compared to

single-agent cytotoxic chemotherapy in patients with platinum-

resistant or refractory BRCA-wildtype HGSC (161).

The AKT serine/threonine protein kinases (AKT1, AKT2,

AKT3) are key downstream mediators of PI3K signaling (182,

183) and in particular, AKT2 has emerged as a poor prognostic

marker and potential target in EOC (34, 70, 71). Drugs targeting

AKT have shown activity in breast, endometrial, and ovarian cancer

and are currently being investigated in Phase I/II/III trials (183,

184). An active Phase Ib/II trial (NCT02208375) is evaluating the

combination of olaparib and the AKT inhibitor capivasertib

(AZD5363) in a heavily pretreated cohort of 159 patients, with

encouraging clinical activity regardless of the presence of a BRCA

mutation and despite platinum resistance (183). Further studies are

needed to explore the potential of AKT and PI3K inhibitors in
Frontiers in Oncology 14
combination with PARPi or as monotherapy in HRP HGSC and

ovarian cancer in general.
ATR inhibitors

ATR has a major role in the CHK1 (checkpoint kinase 1)

pathway of DNA repair and is a regulator of several proteins in the

HRR pathway, including activation of BRCA1, PALB2 and RAD51

(108). The potential for mechanistic synergism between ATR

inhibitors (ATRi) and PARPis has been demonstrated in HRD

and HRP ovarian cancer cells in preclinical models (108, 185, 186).

Acquisition of PARPi resistance was shown to be associated with

increased ATR-CHK1 activity, further supporting the potential

benefit of combining of PARPis with ATR inhibitors (185).

Patient-derived xenograft models of BRCA-wildtype and CCNE1-

amplified platinum-resistant ovarian cancer, which are associated

with increased baseline activation of ATR/CHK1, demonstrated

tumor reduction and a significant increase in OS when treated with

the combination of PARPi and ATRi (185). Based on these

preclinical data, an ongoing Phase II clinical trial of ceralasertib

(AZD6738) in combination with olaparib was developed and initial

results demonstrated the potential of ATRi to overcome PARPi

resistance in an HRD HGSC patient population (187).

ATRis are also being investigated as potential monotherapy,

and preliminary anti-tumor activity has been demonstrated in

heavily pretreated tumors across a range of histologic types and

gene alterations (188). Initial results from TRESR, a phase I trial of

ATRi monotherapy with camonsertib, support preclinical findings

that ATRi may be clinically active in other patient populations

beyond those with loss of function of ataxia telangiectasia mutated

(ATM) kinase, including those with other gene alterations (e.g.,

ARID1A, CCNE1, and MYC) or phenotypic (replication) markers

(188, 189). The functional assessment of replication stress

biomarkers is thought to be a better predictive biomarker for

ATRi response than single aberrant genes in ovarian cancer (190).

This statement can also be applied to the selective CHK1/2 inhibitor

prexasertib, which showed an increased sensitivity to platinum and

olaparib in mouse tumor transplantation models and monotherapy

efficacy in BRCA-wildtype platinum-resistant ovarian cancer (191,

192). To date, however, there is limited data on the safety and anti-

tumor activity of CHK inhibitors, and a phase II trial of prexasertib

was recently terminated prematurely due to COVID-19 and a

shortage of investigational drug supplies (193).
HDAC inhibitors

The altered expression of HDACs (histone deacetylases) has been

associated with resistance to platinum-based chemotherapy and poor

prognosis (194) and HDAC inhibition leads to impaired HRR in

cancer cells through reduced expression of critical genes such as

BRCA1 and RAD51 (195, 196). Konstantinopoulos et al. provided a

preclinical rationale for the use of HDAC inhibitors (HDACi) to

reduce HRR in HRP ovarian cancer, including CCNE1-amplified

tumors, as a means to enhance PARPi activity (197). This approach
FIGURE 3

CDK/cyclin E1 complex including targets for therapy. Activation of
CDK2 by cyclin E1, allowing the cell to enter the S phase.
Overexpression of cyclin E1 increases the rate at which cancer cells
transition from G1 to S phase, leading to replicative stress and
genomic instability. The WEE1 kinase is involved in regulating cell
cycle progression by inhibiting CDK1 and CDK2 and WEE1 inhibition
leads to cell cycle acceleration, with early mitotic entry and
consequent mitotic catastrophe leading to irreparable DNA damage.
CDK1 phosphorylates BRCA1 and CDK1 inhibition impairs the ability
of cells to carry out functional DNA repair through homologous
recombination. PKMYT1 encodes the protein kinase Myt1, a negative
regulator of CDK1.
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has been confirmed by further preclinical studies showing that

HDACi such as suberoylanilide hydroamic acid (SAHA),

romidepsin, panobinostat and entinostat are synergistic with PARPi

in HRP ovarian cancer cells (197, 198). HDACi downregulate genes in

the cyclin E/CDK and HR signaling pathways and thus show a

synergistic cytotoxic effect in combination with a PARPi (198–200).

Based on these preclinical results, there is an ongoing Phase I dose-

escalation trial (NCT04703920) of the combination of the PARPi

talazoparib and the HDACi belinostat in metastatic ovarian, breast

and prostate cancer.
HSP90

Another attempt to extend the benefit of PARPis to HRP

patients is their combination with the heat shock protein 90

(HSP90) inhibitors. HSP90 mediates the maturation, stability and

activation of several key proteins involved in DNA repair and HRR,

such as CDK1, BRCA1 and BRCA2 (201). Due to its abundant

expression, its dependence on adenosine ATP (adenosine

triphosphate), and its massive protein interactome, it is an ideal

target for pharmacological inhibition (201). Inhibition of HSP90 by

ganetespib (STA-9090), a second-generation HSP90 inhibitor,

sensitized HRP HGSC cells to talazoparib (201). HSP90 inhibition

resulted in downregulation of BRCA1 and RAD51, HRR

impairment and increased DNA damage (202). A recent Phase I

dose-escalation study showed that the combination of the HSP90i

onalespib and olaparib resulted in prolonged disease stabilization,

without dose limiting toxicities, in a heavily pretreated patient

population with advanced solid tumors (162). Due to limited

efficacy as a monotherapy and in other combination studies,

further development of onalespib was discontinued (162).

However, preclinical and clinical data may support future

evaluation of novel combinations of PARPis with other HSP90

inhibitors, such as pimitespib (203). While HSP90 inhibition has

the potential to sensitize HRP HGSC to PARPi and other DNA-

damaging agents, further clinical research is needed.
BET inhibitors

The BET (bromodomain and extraterminal) protein family

includes BRD4, an epigenetic transcription modulator involved in

the expression of proteins that regulate the cell cycle and DNA

repair (204). BRD4 has been shown to be a necessary factor for the

proliferation and survival of HGSC cells (205). In addition, BRD4

amplification is mutually exclusive with BRCA1 and BRCA2

mutations and tends to co-occur with CCNE1 amplification in

HGSC, so BET inhibition may be particularly promising in the HRP

group (38, 206–208). Preclinical studies have shown that BET

inhibitors (BETis) suppress the expression of WEE1 and TOPBP1

(DNA Topoisomerase II Binding Protein 1) (209, 210). WEE1 and

TOPBP1 play critical roles in cellular processes related to DNA

damage response and cell cycle regulation. WEE1 is a protein kinase

that regulates the G2/M checkpoint in the cell cycle, controlling

entry into mitosis and allowing time for DNA repair (173, 176, 211,
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212). TOPBP1 acts as a scaffold protein that coordinates the

activation of ATR kinase in response to DNA damage, thereby

initiating signaling cascades essential for DNA repair and cell cycle

arrest (213). Dysfunction or dysregulation of these proteins can lead

to genomic instability and contribute to the development of diseases

such as cancer. Additionally, increased BRD4 expression has been

identified as a factor contributing to PARPi resistance in HGSC

(210). The specific BRD4 inhibitor INCB054329 was able to directly

decrease the activity of both BRCA1 and RAD51 and induce an

HRD phenotype (108, 209). Consequently, in combination with

PARPis, a synergistic effect is observed with decreased HR activity,

increased DNA damage, and consequently increased tumor

cytotoxicity (108, 214). Unfortunately, initial clinical studies

involving single agent use of BET inhibitors in various tumor

types were disappointing, as preclinical results could not be

replicated and resistance to therapy occurred rapidly in some

cases (215). Specific evidence in ovarian cancer will be provided

by an ongoing Phase II clinical trial (NCT05071937) of the BETi

ZEN003694 in combination with the PARPi talazoparib in patients

with recurrent ovarian cancer who have progressed on prior

PARPi therapy.
Summary

The HRP HGSC subgroup exhibits complex molecular

heterogeneity combined with an immune depleted microenvironment,

and these are associated with therapy resistance and a poor prognosis. A

subset of these cancers are driven by CCNE1 amplification and PI3K/

AKT alterations that contribute to cell cycle dysregulation and thus

these pathways represent promising targets for novel therapeutic

approaches. However, a significant subset of HRP HGSC lack CCNE1

amplification, and the molecular drivers of these cancers are still being

defined. Additional studies, including the use of cell lines and potentially

the use of existing data from systematic knockdown and knockout

genetic screens (216, 217) in the HRP non-CCNE1 amplified subgroup

may define critical dependencies.

A large proportion of HRP HGSC are relatively immune

depleted, likely in part due to a reduced mutational burden

associated with intact DNA repair. The development of novel

immunotherapies to boost the anti-tumor immune response

remains a key area of focus for HRP tumors, including

personalized approaches to enhance T-cell infiltration with

therapeutic vaccines or adoptive cell therapy. Several new

combination treatments are under investigation, which aim to

sensitize HRP cancers to existing therapies, such as platinum and

PARPis, by targeting the HRR pathway and impairing the ability of

cells to functionally repair DNA. Antibody drug conjugates also

represent a promising class of therapies to increase the potency and

specificity of highly potent cytotoxic agents, while reducing toxicity.

These new approaches offer the opportunity to expand the

otherwise very limited treatment options for patients with HRP

HGSC. Importantly, explicit identification and enrollment of

patients with HGSC tumors known to have intact HRR in clinical

trials is crucial for the development of effective therapies for this

medically underserved group.
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Increased replication initiation and conflicts with transcription underlie Cyclin E-
induced replication stress. Oncogene. (2013) 32(32):3744–53. doi: 10.1038/
onc.2012.387

67. Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM,
et al. Homologous recombination proficiency in ovarian and breast cancer patients.
BMC Cancer. (2021) 21(1):1154. doi: 10.1186/s12885-021-08863-9

68. Gallo D, Young JTF, Fourtounis J, Martino G, Álvarez-Quilón A, Bernier C, et al.
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