
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nejat Dalay,
Istanbul University, Türkiye

REVIEWED BY

Arun Renganathan,
Washington University in St. Louis,
United States
Princess Rodriguez,
University of Vermont, United States

*CORRESPONDENCE

Saghar Yousefnia

Saghar_yousefnia@semnan.ac.ir

RECEIVED 09 February 2024
ACCEPTED 15 July 2024

PUBLISHED 29 July 2024

CITATION

Yousefnia S (2024) A comprehensive review
on lncRNA LOXL1-AS1: molecular
mechanistic pathways of lncRNA LOXL1-AS1
in tumorigenicity of cancer cells.
Front. Oncol. 14:1384342.
doi: 10.3389/fonc.2024.1384342

COPYRIGHT

© 2024 Yousefnia. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 29 July 2024

DOI 10.3389/fonc.2024.1384342
A comprehensive review on
lncRNA LOXL1-AS1: molecular
mechanistic pathways of lncRNA
LOXL1-AS1 in tumorigenicity of
cancer cells
Saghar Yousefnia*

Department of Cell and Molecular Biology, Semnan University, Semnan, Iran
Long non-coding RNAs (lncRNAs) are versatile RNAs that regulate various cellular

processes, such as gene regulation, by acting as signals, decoys, guides, and

scaffolds. A novel recognized lncRNA, LOXL1-antisense RNA 1 (LOXL1-AS1), is

dysregulated in some diseases, including cancer, and acts as an oncogenic

lncRNA in many types of cancer cells. Upregulation of LOXL1-AS1 has been

involved in proliferation, migration, metastasis, and EMT, as well as inhibiting

apoptosis in cancer cells. Most importantly, the malignant promoting activity of

LOXL1-AS1 can be mostly mediated by sequestering specific miRNAs and

inhibiting their binding to the 3´UTR of their target mRNAs, thereby indirectly

regulating gene expression. Additionally, LOXL1-AS1 can decoy transcription

factors and proteins and prevent their binding to their regulatory regions,

inhibiting their mechanistic activity on the regulation of gene expression and

signaling pathways. This review presents the mechanistic pathways of the

oncogenic role of LOXL1-AS1 by modulating its target miRNAs and proteins in

various cancer cells. Having information about the molecular mechanisms

regulated by LOXL1-AS1 in cancer cells can open ways to find out particular

prognostic biomarkers, as well as discover novel therapeutic approaches for

different types of cancer.
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long noncoding RNAs (lncRNAs), LOXL1-antisense RNA 1 (LOXL1-AS1), MicroRNA
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Introduction

Cancer is a challenging disease with increased rates of prevalence and mortality

characterized by uncontrolled growth and loss of cell differentiation (1, 2). Cancer is

recognized as the second leading cause of death all over the world (3). According to global

cancer statistics for 2022, it is estimated that 9.7 million people died from cancer
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worldwide, and approximately 20 million new cases were

diagnosed. Predictably, the number of cancer cases will reach 35

million by 2050 (4). It is characterized by high rates of proliferation,

migration, invasion, metastasis, angiogenesis, and chemo/

radiotherapy resistance, which are initiated and developed by

genetic and epigenetic alterations. Numerous oncogenes and

tumor suppressive genes regulate the malignant properties of

cancer through various recognized molecular pathways (5). The

most widespread types of cancer include breast, lung, colorectal,

prostate, and skin cancer (6). Early cancer detection is critical for

choosing the best treatment and optimizing therapeutic strategies

(7). Advances in early detection, personalized medicine, and

options for treatment have improved the prognosis of the disease.

Knowledge about signaling pathways and genetic and epigenetic

alterations associated with cancer can detect specific biomarkers

suitable for targeted therapy (8). Recently, many studies have been

conducted to develop new treatment approaches based on

personalized medicine. Immunotherapy, phytochemicals, and

other biomarker-specific targeted therapies are applied based on

the specific molecular features in patients (8–10). Also, various

nanostructure materials such as nanopolymers (polyethylenimine,

polylactic-co-glycolic acid/PLGA, chitosans, collagen and gelatin),

phytochemicals-based nanoparticles and inorganic materials (gold,

diamond, silica, and ferric oxide) have been manipulated to design

nanostructured carriers to deliver drugs into cancer cells and cancer

stem cells more specifically and effectively (5, 11). However, cancer

remains a significant global health challenge and a focus of ongoing

research and medical advancements (7). There are many regulatory

molecules, including long non-coding RNAs (LncRNAs), which are

dysregulated in cancer and promote the malignant phenotypes of

cancer (12).

LncRNAs are a group of untranslated RNA with a length size of

more than 200 nucleotides (13). LncRNAs show complicated

arrangements, allowing them to interact with DNA, RNA, and

proteins. Despite not being involved in protein production, long

non-coding RNAs (lncRNAs) exhibit acute roles in various cellular

processes, including gene regulation at both the transcriptional and

post-transcriptional levels, regulating protein activity, controlling

protein localization, facilitating genomic imprinting, modifying

chromatin, and influencing mRNA stability (13–15). They can act

as signals, decoys, guides, and scaffolds (16, 17), thus affecting a

variety of biological processes, such as cell proliferation,

differentiation, and apoptosis (13, 14, 18). Most importantly,

lncRNAs are referred to as competing endogenous RNAs

(ceRNAs) by sequestering miRNAs. LncRNAs can sponge specific

miRNAs and prevent them from binding to 3´UTR of their target

mRNAs, thereby indirectly modulating gene expression (19).

Dysregulation of lncRNAs has been associated with various

diseases, including neurodegenerative disorders (16, 20),

cardiovascular disease (21) and cancer (22).

Recently, RNA sequencing and genetic analysis have identified a

novel lncRNA, lncRNA LOXL1-antisense RNA 1 (LOXL1-AS1)

encoded on the opposite strand of LOXL1 (23). The expression of

LOXL1-AS1 is altered in cellular stress responses, oxidative stress

and cyclic mechanical stress (23). LOXL1-AS1 is also dysregulated

in certain diseases such as atherosclerosis (24, 25), osteoarthritis
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(26), periodontitis (27) and postmenopausal osteoporosis (28).

Furthermore, overexpression of LOXL1-AS1 has been confirmed

in a range of cancers, which predicts a poorer prognosis, increased

risk of cancer recurrence, and higher likelihood of metastasis.

LOXL1-AS1 has also been proposed as a potential prognostic

biomarker in patients with cancer (29). LOXL1-AS1, as an

oncogene lncRNA, plays crucial roles in tumorigenesis and

development of various types of cancer, including ovarian cancer

(30), gastrointestinal cancer (31, 32), lung cancer (33),

hepatocellular carcinoma (34), breast cancer (35), prostate cancer

(36) and others. Mechanistically, this lncRNA has been involved in

cell proliferation, apoptosis, migration, metastasis and epithelial-

mesenchymal transition (EMT) of these types of cancer cells

through its target miRNAs and indirectly regulates the expression

of specific target genes of miRNAs.

LOXL1-AS1 has been found to function as a ceRNA or a sponge

for miRNAs (24, 31, 37). This means that LOXL1-AS1 has binding

sites for specific miRNAs, enabling it to effectively sequester and

prevent them from binding to their target mRNAs (38). In other

words, LOXL1-AS1 and mRNA share the same miRNA binding

sites, which are recognized as miRNA response elements (MREs),

making them competitive to bind miRNAs (24, 39). By acting as a

sponge for miRNAs, LOXL1-AS1 can influence gene expression by

regulating the availability of miRNAs to control the expression of

other genes. This regulatory function can have implications for

various cellular processes, including development, disease

progression, and cellular homeostasis (38, 40).

This review aims to elucidate the mechanistic pathways

underlying the oncogenic role of LOXL1-AS1 by regulating its

target microRNAs and proteins in various types of cancer cells.

Understanding the molecular mechanisms governed by lncRNA

LOXL1-AS1 in cancer cells may provide opportunities for

identifying specific prognostic biomarkers and developing novel

therapeutic strategies for diverse types of cancer.
LOXL1-AS1 in various cancers

Ovarian, cervical and endometrial cancer

The gynecologic cancers, ovarian, cervical and endometrial

cancer are three types of cancer that affect the adjacent organs of

the female reproductive system. Endometrial cancer has the highest

relative survival rate (RSR), while ovarian cancer has the lowest

(41). Serum LOXL1-AS1 has been introduced as a diagnostic and

prognostic marker to predict ovarian cancer patients with high

sensitivity (65.3%) and specificity (68.2%) (42). Also, LOXL1-AS1

overexpression is associated with advanced stages of tumor and

metastasis with poor clinical outcome (42). LOXL1-AS1 can

regulate malignant phenotypes of ovarian cancer and decrease the

apoptotic rate of ovarian cancer cells by targeting several miRNAs

(30, 43). miR-761 can be considered a direct target of LOXL1-AS1

and miR-761 inhibitor can reduce the oncogenic role of LOXL1-

AS1 in ovarian cancer cells (30). It has been previously verified that

Musashi1 (MSI1) is a target of miR-761 in ovarian cancer. MSI1 is

an RNA-binding protein that plays crucial roles in various
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biological processes, including nervous system development, stem

cell fate determination, and tumorigenesis, due to its key regulatory

function in translation (44).. Additionally, it plays a crucial role in

cancer development and progression by regulating the expression of

key oncogenes and tumor suppressor genes. MSI1 has been shown

to promote cancer cell proliferation, invasion, and metastasis

through its ability to stabilize mRNA transcripts that encode

factors involved in cell cycle and EMT (45). It also binds to the

cell cycle checkpoint and apoptosis regulators, such as p21, p27, and

p53, and inhibits their translation (45) (Figure 1).

Also, LOXL1-AS1 can bind to miR-18b-5p and miR-18b-5p

targets Vacuolar ATPase Assembly Factor (VMA21) in ovarian

cancer. Silencing LOXL1-AS1 and upregulating miR-18b-5p can

inhibit the proliferation and metastasis of ovarian cancer cells by

targeting VMA21 (43). The VMA21 protein plays a crucial role in

forming V-ATPase complexes within cells. V-ATPases act as

proton pumps responsible for modulating the acidity levels within

intracellular compartments, including lysosomes and the external

environment. The proper functioning of these complexes is

indispensable for various cellular processes, including protein

degradation, membrane transport, and signal transduction

pathways. Furthermore, research has demonstrated that aberrant

expression of V-ATPases and their assembly factors contribute to

elevated tumor acidity, a phenomenon closely tied to cancer

progression and treatment resistance. Notably, VMA21’s

involvement in altering pH dynamics facilitates the survival and

proliferation of cancerous cells within the acidic tumor

microenvironment (46) (Figure 1).
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Also, it has been reported that there is a positive correlation

between the expressions of LOXL1-AS1 and RHOB. LOXL1-AS1

overexpression results in upregulation of RHOB (47). RHOB is a

member of the Rho family of small GTPases, which plays a role in

regulating the organization of the actin cytoskeleton, cell adhesion,

migration, and proliferation of cancer cells by activating Rac/Cdc42

(48). It has been shown that RHOB is a direct target of miR-21,

which is downregulated in cervical squamous cell carcinoma

(CSCC). Predicting that LOXL1-AS1 can interact with miR-21.

However, there is no significant evidence on the reciprocal effect of

LOXL1-AS1 expression on miR-21 expression (47) (Figure 1).

One of the other miRNA targets of LOXL1-AS1 is miR-526b-

5p, which is down-regulated in cervical cancer cells. LOXL1-AS1

depletion suppresses proliferation, migration, invasion, and

angiogenesis of this type of cancer cells through downregulating

Lysophospholipase 1 (LYPLA1), a direct target of miR-526b-5p

(49). LYPLA1 is crucial in lipid metabolism and signal transduction

in living organisms. This enzyme is responsible for the hydrolysis of

lysophospholipids, which are involved in various signaling

pathways as second messengers and regulate cell proliferation,

migration, and survival (50). By cleaving lysophospholipids into

smaller components, lysophospholipase can impact the overall

balance of these signaling molecules and influence cellular

responses, lipid digestion, cell membrane remodeling and lipid-

mediated signaling pathways (49, 50). Lysophospholipids exert their

effects by binding to specific G-protein coupled receptors and

receptor tyrosine kinases on the cell surface, which leads to the

activation of downstream signaling cascades (51). One key pathway
FIGURE 1

Molecular mechanistic activity of LncRNA LOXL1-AS1 in ovarian, cervical and endometrial cancer.
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mediated by Lysophospholipids is the Rho-GTPase pathway, which

regulates actin cytoskeleton dynamics and cell motility.

Additionally, Lysophospholipids can activate various intracellular

signaling molecules, such as protein kinases and transcription

factors, to modulate gene expression and promote cell growth

(51) (Figure 1). The other target of LOXL1-AS1 is miR-423–5p in

cervical cancer. miR-423–5p, the downstream of LOXL1-AS1,

directly targets ectodermal-neural cortex 1 (ENC1). Importantly,

LOXL1-AS1 increases ENC1 expression through sequestering miR-

423–5p in cervical cancer. Besides, miR-423–5p acts as a tumor-

inhibitor while ENC1 works as a tumor-facilitator in cervical

cancer, promoting proliferation and metastasis of this type of

cancer cells through activation of the mitogen-activated protein

kinase/extracellular signal-regulated kinase (MEK/ERK) and

MAPK pathway (52). ENC1 activates the MAPK signaling

pathway, which involves various cellular processes, including

proliferation, differentiation, and survival. All of these processes

are dysregulated in cancer cells. By activating this signaling cascade,

ENC1 promotes tumor growth and invasion by facilitating cell

proliferation and inhibiting apoptosis (53) (Figure 1).

LOXL1-AS1 is also upregulated in endometrial cancer (EC)

cells, and its knockdown decreases cell proliferation, migration, and

invasion of EC, while promoting apoptosis. The oncogenic roles of

LOXL1-AS1 are mediated by the upregulation of Ras-related

protein 1B (RAP1B), which is one of the direct targets of

microRNA-28–5p (54). RAP1B is a small GTPase protein that is

involved in various cellular processes, including cell growth, cell

division, cell adhesion, cell movement, and intracellular protein

trafficking (55).. RAP1B promotes the activation of pathways such
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as phosphatidylinositol 3-kinase/Akt and extracellular signal-

regulated kinase/mitogen-activated protein kinase (ERK/MAPK),

leading to enhanced cell proliferation and survival (56). Since

RAP1B can be downregulated by microRNA-28–5p, it can be

recognized as a potential tumor-suppressive microRNA and

direct target of LOXL1-AS1 (54) (Figure 1).

Therefore, it may propose new considerations about the

molecular mechanism of LOXL1-AS1 in gynecologic cancers to

develop novel therapeutic approaches for this type of cancer.
Gastrointestinal cancer

Gastrointestinal cancer is a group of cancers that involve the

digestive system. These are gastric, colorectal and esophagus. It has

the highest rate of incidence andmortality in developing and developed

countries (57). Mainly, LOXL1-AS1 is highly expressed in gastric

cancer, leading to proliferation, migration, EMT and stemness

phenotypes of gastric cancer. It positively regulates upstream

transcription factor 1 (USF1), a critical factor in promoting the

expression of stemness genes, including SOX2. Furthermore, USF1 is

negatively regulated by miR-708–5p, suggesting LOXL1-AS1

implicates the oncogenic activity by targeting miR-708–5p in gastric

cancer (31). In addition, overexpression of LOXL1-AS1 is associated

with short general survival time and malignant phenotypes of this type

of cancer. LOXL1-AS1 is also linked with downregulation of miR-142–

5p and upregulation of PIK3CA, suggesting a LOXL1-AS1/miR-142–

5p/PIK3CA axis in the progression and development of gastric cancer

(58) (Figure 2).
FIGURE 2

Molecular mechanistic activity of LncRNA LOXL1-AS1 in gastrointestinal cancer.
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The oncogenic role of LOXL1-AS1 has also been confirmed in

colorectal cancer. The high expression level of LOXL1-AS1 is

correlated with the development of colorectal cancer through

promoting proliferation, migration and invasion (32). The

mechanistic activity of LOXL1-AS1 is mediated by a reduction in

the expression of miR-708–5p and an enhancement in the CD44/

EGFR expression. LOXL1-AS1 implicates targeting miR-708–5p

and thereby promotes the malignant phenotypes of colorectal

through activating CD44-EGFR signal pathway (32). CD44 is

well-known as a hyaluronic acid receptor highly expressed on the

cell surface of malignant cancer cells. It can be involved in cell-cell

interaction, cell adhesion, and migration. It can also bind to other

l igands, including osteopontin, col lagens and matrix

metalloproteases (MMPs). CD44, along with epithelial growth

factor receptor (EGFR), may regulate metastasis and cell signaling

pathways, including the Ras-MAPK and PI3K/Akt pathways, which

are implicated in the regulation of malignant phenotypes of cancer

cells, characterized by cellular processes such as cell adhesion,

migration, invasion, and epithelial-to-mesenchymal transition

(EMT) (59) (Figure 2).

The other targets of LOXL1-AS1 are miR-1224–5p and miR-

761, targeting HK2 in colorectal cancer (60). LOXL1-AS1

downregulation suppresses the expression of HK2 and inhibits

cell proliferation, invasion, migration, and glycolysis, while

promoting apoptosis. However, these effects are inverted by

suppression of miR-1224–5p and miR-761 (60). The HK2

protein, also known as hexokinase 2, is an enzyme that plays a

critical role in the first step of glucose metabolism. It catalyzes the

conversion of glucose to glucose-6-phosphate, which is a primary

step in glycolysis and glycogen synthesis (61). HK2 is particularly

important in cancer cells, where it is often overexpressed and

contributes to the characteristic increased glucose metabolism of

many cancer types. This upregulation allows cancer cells to

maintain high levels of ATP production even under low oxygen

conditions through aerobic glycolysis, also known as the Warburg

effect (61). This overexpression of HK2 is thought to provide a

growth advantage to cancer cells by allowing them to more

efficiently utilize glucose for energy and mass production (61).

Additionally, HK2 protects cancer cells from apoptosis by

docking to mitochondria and inhibits cell death by regulating the

mitochondria-mediated intrinsic pathway (61). Therefore, LOXL1-

AS1 has been contributed to colorectal development via regulating

LOXL1-AS1/miR-1224–5p/miR-761/HK2 axis (60) (Figure 2).

The high expression of LOXL1-AS1 has also been verified in

esophageal squamous cell carcinoma (ESCC). Overexpression of

LOXL1-AS1 promotes cell proliferation, migration, and invasion,

while also inhibiting apoptosis (62). The oncogenic activity of

LOXL1-AS1 is mediated by its primary downstream target, the

DESC1 protein, which is differentially expressed and downregulated

in esophageal squamous cell carcinoma (ESCC) (62). DESC1 is a

Type II transmembrane serine protease recognized as a novel tumor

suppressor protein. It induces apoptosis in response to apoptotic

stimuli by modulating the EGFR/AKT signaling pathway.

Mechanistically, DESC1 cleaves EGFR through proteolytic activity
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and inhibits AKT1 activation, thereby sensitizing cells to apoptosis.

Consequently, downregulation of DESC1 can be attributed to the

malignant characteristics of cancer cells (63) (Figure 2).

Furthermore, taken together, LOXL1-AS1 emerges as a

promising target for recommending novel advanced therapeutic

strategies for both diagnosis and treatment of gastrointestinal cancer.
Lung cancer and laryngeal carcinoma

Lung cancer is the second most prevalent type of cancer, with 2

million new cases and 1.8 million deaths (64). The evidence

demonstrates that LOXL1-AS1 is highly expressed in non-small-

cell lung cancer (NSCL) cell lines and tissues. Overexpression of

LOXL1-AS1 promotes cell proliferation by inducing Ki-67 and

Cyclin D1 expression, drives invasion by inducing N-cadherin

and Vimentin expression, and suppresses E-cadherin expression

in NSCL (33). Low expression of miR-324–3p in these cancer cells

has indicated that the oncogenic activity of LOXL1-AS1 may be

mediated by miR-324–3p in this type of cancer cells. miR-324–3p

restoration decreases the proliferative and oncogenic function of

LoxL1-AS1, proposing that LOXL1-AS1 increases proliferation and

invasion of NSCL cells through targeting miR-324–3p (33). High

expression of LOXL1-AS1 is also linked with developed stages and

metastasis of NSCL cells. LOXL1-AS1 and Rhox homeobox family

member 2 (RHOXF2) are highly expressed and miR-3128 is

expressed at low levels in NSCL cells. LOXL1-AS1 acts as a

sponge that targets miR-3128 to promote RHOXF2 expression,

thereby promoting metastasis of this type of cancer cells (65). The

RHOXF2 protein is a member of the RHOX family of homeobox

genes, which encode transcription factors involved in regulating the

expression of genes related to the development of cancer (66).

Mechanistically, RHOXF2 promotes cancer cell proliferation and

invasion by regulating key signaling pathways, including the Wnt2/

b-catenin pathway, which is involved in tumor progression (67).

Additionally, RHOXF2 has been found to interact with other

oncogenes and tumor suppressor genes to drive malignant

transformation (66). It is supposed that the expression of genes

repressed or increased by RHOXF2 may be involved in the Ras

pathway (68) (Figure 3).

In addition, the proliferative and anti-apoptotic activities of

LOXL1-AS1 in lung cancer are mediated by the upregulation of

MYBL2, a Myb-related protein, which occurs as a result of sponging

miR-423–5p (38). The MYBL2 protein, also known as B-Myb, is a

transcription factor involved in regulating the cell cycle. It is also

involved in the control of cell proliferation, differentiation and

apoptosis. The MYBL2 protein is involved in several cellular

processes, including DNA replication and repair, and it is

primarily active during the G2 and M phases of the cell cycle

(69). It has been reported that Non-SMC Condensin I Complex

Subunit H (NCAPH) is a responsive downstream target gene of

MYBL2 protein (70). NCAPH) plays a crucial role in cancer

development and progression. As part of the condensin complex,

NCAPH is involved in regulating chromosome structure and
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segregation during cell division. Therefore, overexpression of

NCAPH has been linked to increased tumor growth, invasion,

and metastasis, while its downregulation can impair cell

proliferation and induce apoptosis in cancer cells (71). More

importantly, it has been discovered that MYBL2 protein interacts

with LOXL1-AS1 promoter and promotes the LOXL1-AS1

expression, demonstrating a positive feedback loop of LOXL1-

AS1/miR-423–5p/MYBL2 in lung adenocarcinoma (38) (Figure 3).

Laryngeal carcinoma is also the second type of cancer after lung

cancer that involves the upper aerodigestive tract (72). The

oncogenic role of LOXL1-AS1 has also been verified in laryngeal

carcinoma. LOXL1-AS1 has been implicated in cell proliferation,

migration, and EMT of this type of cancer. LOXL1-AS1 stimulates

the expression of tumor necrosis factor receptor-associated factor 6

(TRAF6) as a sponge targeting miR-589–5p. Additionally, it has

been shown that knockdown of miR-589–5p drives the

development of tumors by promoting the expression of TRAF6

(73). TRAF6 is an unconventional E3 ubiquitin ligase and a key

mediator of ubiquitin-dependent NF-kB, MAPK, and AKT

activation, which are essential pathways involved in regulating

cell survival, proliferation, and inflammation (74). Therefore, it

has been validated that LOXL1-AS1 promotes the malignancy in

laryngeal carcinoma by modulating the miR-589–5p/TRAF6

pathway (73) (Figure 3).

In summary, understanding the molecular mechanisms of

LOXL1-AS1 activity can provide novel, applicable tools for

detecting and combating lung and laryngeal carcinomas.
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Hepatocellular carcinoma
and cholangiocarcinoma

Hepatocellular carcinoma (HCC) or liver cancer commonly arises

in cases with chronic liver diseases and cirrhosis as a result of hepatitis

B or C infection (75). LOXL1-AS1 is overexpressed in hepatocellular

carcinoma and stimulates the proliferation, migration, and metastasis

of these types of cancer cells (76, 77). Functionally, the metastatic

activity of LOXL1-AS1 can be attributed to the increased expression of

matrix metalloproteinase (MMP)-2 and MMP-9 proteins (76). It has

also been verified that silencing LOXL1-AS1 induces G0/G1 phase cell

cycle arrest, which is mediated by a reduction in the expression of

Cdc2, Cdc25A, and cyclin B1 proteins. Consequently, overexpression

of LOXL1-AS1 can promote the proliferation, migration, and invasion

of HCC cells (76). Furthermore, LOXL1-AS1 acts as a ceRNA to elevate

inositol 1, 4, 5-trisphosphate receptor-interacting protein-like 2

(ITPRIPL2) level through targeting miR-1224–5p and exhibit the

malignant phenotypes of HCC via activating AKT pathway, thereby

playing an oncogenic role in HCC (34). ITPRIPL2 is a protein involved

in calcium signaling, regulating intracellular calcium levels. Calcium

signaling is crucial for regulating various cellular processes such as

proliferation, migration, and invasion in cancer cells. However, its

specific role in cancer may not be well-established or widely

documented (78). It has been reported that ITPRIPL2 modulates

calcium release from intracellular stores by interacting with inositol

1,4,5-trisphosphate receptors (IP3Rs), leading to dysregulated calcium

levels that promote tumor growth and metastasis (79) (Figure 4).
FIGURE 3

Molecular mechanistic activity of LncRNA LOXL1-AS1 in lung cancer and laryngeal carcinoma.
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https://doi.org/10.3389/fonc.2024.1384342
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yousefnia 10.3389/fonc.2024.1384342
One of the other miRNA targets of LOXL1-AS1 is miR-3614–

5p, which is down-regulated in HCC. Downregulation of miR-

3614–5p due to upregulation of LOXL1-AS1 promotes

proliferation, migration, and invasion and inhibits apoptosis (80).

Furthermore, Yin Yang 1 (YY1) is recognized as a direct target of

miR-3614–5p, which is upregulated in HCC. YY1 depletion can

suppress malignant phenotypes of HCC. There is a positive

feedback loop between YY1 and LOXL1-AS1 expressions (80)

(Figure 4). YY1 acts as a transcription factor to activate the

expression of LOXL1-AS1 and plays a role in regulating the

proliferation, apoptosis, and differentiation of hepatocellular

carcinoma (HCC) cells (81). Additionally, YY1 has been

associated with regulating telomerase, a crucial enzyme essential

for maintaining telomere length and ensuring replicative

immortality in cancer cells (81).

Moreover, it has been verified that LOXL1-AS1 sponges miR-

377–3p, the other direct target of LoxL1-AS1, and miR-377–3p acts

as an upstream direct regulator of nuclear factor I B (NFIB) gene in

liver cancer (82). NFIB gene encodes a transcription factor

implicated in regulating genes related to cell proliferation,

differentiation and malignant phenotypes of hepatocellular

carcinoma (83). NFIB can bind with the promoter of a complex I

inhibitor NDUFA4L2 and promote its expression (84).

Upregulation of NDUFA4L2, as a redox modulator, inhibits

reactive oxygen species accumulation induced by drugs like

sorafenib. NFIB may be able to protect liver cancer cells from

oxidative stress and promote their survival in the presence of

chemotherapy (84). Therefore, It is proposed that LoxL1-AS1/
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miR-377–3p/NFIB axis promotes proliferation, migration and

EMT of liver cancer (82) (Figure 4).

Cholangiocarcinoma (CCA) is the other type of hepatic

malignancy. It is a type of cancer that forms in the bile ducts. It

is a relatively rare and aggressive form of cancer; however, the

occurrence and mortality rates of CCA are growing worldwide (85).

Upregulation of LOXL1-AS1 has also been observed in

cholangiocarcinoma (CCA) and has been associated with lymph

node invasion, advanced disease stages, increased cell proliferation,

enhanced cell migration, and attenuation of apoptosis (37).

Mechanistically, LOXL1-AS1 interacts with miR-324–3p and

abolishes the tumor suppressor function of miR-324–3p. On the

other hand, miR-324–3p can target ATP-binding cassette

transporter A1 (ABCA1), which is implicated in the efflux of

drugs from cancer cells, making them resistant to chemotherapy

(37). Reduction in the expression of LOXL1-AS1 suppresses the

expression of ABCA1 and suppresses malignant features and drug

resistance of CCA (37) (Figure 4).

Taken together, it suggests a promising prognostic and

diagnostic biomarker to identify as well as providing a novel

therapeutic approach for liver cancer and cholangiocarcinoma.
Breast cancer

Breast cancer is one of the most prevalent types of cancer

worldwide, with a high mortality rate among women. It accounts

for 25% of all cancers diagnosed in females and 15% of all cancer-
FIGURE 4

Molecular mechanistic activity of LncRNA LOXL1-AS1 in hepatocellular and cholangiocarcinoma.
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related deaths (86). Deregulation of LOXL1-AS1 has also been

observed in breast cancer. LOXL1-AS1 promotes cell proliferation,

migration, and invasion while also inhibiting apoptosis in breast

cancer cells (35). The malignant-promoting activity of LOXL1-AS1

may be mediated by the downregulation of miR-143–3p. It has been

exhibited that LOXL1-AS1 directly targets miR-143–3p in this type

of cancer cells (35). It has been previously shown that miR-143–3p

plays a tumor-suppressive role in breast cancer by targeting

MAPK7, a member of the MAP kinase family, which promotes

signaling pathways involved in cell proliferation and anti-apoptosis

in breast cancer (87) (Figure 5). Furthermore, overexpression of

LOXL1-AS1 is associated with the stage of tumor and metastasis of

this type of cancer (88).

One of the other direct targets of LOXL1-AS1 is miR-708–5p,

which is downregulated in breast cancer (88). Mechanistically, miR-

708–5p inhibits NF-kB activity, which is implicated in invasion and

metastasis of breast cancer (88). NF-kB is a pro-inflammatory

transcription factor that expresses IL-6 and cytokines involved in

regulating proliferation, invasion, metastasis, and anti-apoptosis in

breast cancer (89) (Figure 5). Additionally, LOXL1-AS1 interacts

with the Enhancer of Zeste Homolog 2 (EZH2) transcription factor

to suppress the transcription of miR-708–5p, which is regulated by

the EZH2 protein (88). Therefore, the invasive and metastatic roles

of LOXL1-AS1 may be mediated by blocking the expression of miR-

708–5p and targeting it (88) (Figure 5). It provides a novel

therapeutic strategy against breast cancer and improves

understanding of the molecular mechanism of breast

cancer development.
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Prostate cancer

Prostate cancer is the most common type of cancer among men

worldwide. It ranks fifth among cancers involving men, and its

incidence rate is increasing in both developing and developed

countries (90). It has been reported that LOXL1-AS1 is also

overexpressed in prostate cancer. LOXL1-AS1 has been involved

in cell cycle progression and proliferation of this type of cancer (36).

The molecular function of LOXL1-AS1 is mediated by the

upregulation of cyclin D1 (CCND1), a cell cycle-promoting actor,

which results from targeting miR-541–3p (36). miR-541–3p is a

tumor suppressor miRNA recognized as a negative regulator of

CCND1 through binding to 3´UTR of CCND1 and is

downregulated in prostate cancer (36) (Figure 5).

Recently, research has shown that long non-coding RNA

(lncRNA) LOXL1-AS1 has also been implicated in doxorubicin-

resistant activity of prostate cancer. Drug resistant activity of

prostate cancer may be modulated by upregulation of LOXL1-

AS1 and EGFR and downregulation of miR-let-7a-5p, predicting

miR-let-7a-5p and EGFR are negatively regulated by LOXL1-AS1

and miR-let-7a-5p, respectively (91). It is supposed that drug

resistance activity of prostate cancer is due to overactivity of the

PI3K/Akt pathway mediated by overexpressed EGFR (92). In

addition, the upregulation of LOXL1-AS1 and EGFR has been

implicated in promoting cell proliferation, enhancing cell

migration, and inhibiting apoptosis in this type of cancer cells. It

may provide a novel potential strategy of treatment for patients with

drug-resistant prostate cancer (91) (Figure 5).
FIGURE 5

Molecular mechanistic activity of LncRNA LOXL1-AS1 in breast cancer, prostate cancer and glioblastoma.
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Glioblastoma

Glioblastoma is a common type of brain tumor with a highly

aggressive phenotype brain tumor. It estimates to affect less than 2%

of all primary tumors; however, it is responsible for approximately

7% of deaths caused by cancer (93). Unfortunately, despite

extensive research on these tumors, the survival rate for patients

with brain tumors is meager, reflecting the lack of new treatment

options for patients (93). It has also been reported that LOXL1-AS1

modulates tumor progression in glioblastoma (94). The

experimental evidence has shown that increased expression of

LOXL1-AS1 is linked to malignant biological processes, including

the development of a mesenchymal phenotype in glioblastoma, by

regulating the NF-kB signaling pathway (94). Down-regulating

LOXL1-AS1 leads to inhibition of the NF-kB pathway by

decreasing RelB expression with an unknown mechanism (94).

RelB protein is a subunit of the NF-kB family and plays a key role in

the regulation of NF-kB family members, which are transcription

factors (95). It promotes the expression of pro-inflammatory factors

and cytokines in glioblastoma. Mechanistically, the interaction

between RelB and transcription Factor YY1 initiates specific gene

expression programs in glioblastoma cells (96) (Figure 5).

Additionally, LOXL1-AS1 is a sponger of miR-374b-5p.

Downregulat ion of miR-374b-5p due to LOXL1-AS1

overexpression promotes proliferation, migration, invasion and

vasculogenic mimicry (VM) in glioma (97). The tumor

suppressor role of miR-374b-5p can be mediated by targeting

MMP14 (97) (Figure 5). Also, it has been confirmed that the

expression of LOXL1-AS1 may be modulated by TIA-1-related

protein (TIAR) (97). The TIAR protein is an RNA-binding protein

that contributes to the regulation of gene expression at the post-

transcriptional level. In cancer, TIAR is introduced as a regulator of

various processes, including apoptosis, cell cycle, and response to

cellular stress (97). TIAR downregulates the expression of LoxL1-

AS1 by destabilizing LOXL1-AS1, suggesting TIAR with LOXL1-

AS1 regulates VM in glioma through the TIAR/LOXL1-AS1/miR-

374b-5p/MMP14 axis (97) (Figure 5). Therefore, these data may

introduce potential targets for diagnosing and treating glioma.
Other types of cancer

Deregulation of LOXL1-AS1 has also been reported in some

types of other cancer such as pancreatic cancer, osteosarcoma,

medulloblastoma, choriocarcinoma, retinoblastoma, thymoma

and thymic carcinoma and renal cell carcinoma (RCC) (23, 32,

98–102). It has been confirmed that LOXL1-AS1 exhibits a crucial

role in pancreatic cancer development through miR-28–5p (98).

One of the direct targets of miR-28–5p is Semaphorin 7A

(SEMA7A), which promotes the proliferation and migration of

cancer cells by regulating integrin-mediated signaling pathways and

ERK activation (103, 104). Functionally, SEMA7A is a member of

the semaphorin family of signaling proteins, which is anchored to

cell membranes via glycosylphosphatidylinositol. The interaction of

SEMA7A to b1-integrin triggers downstream signaling cascades,

including MAPK/ERK and PI3K/AKT pathways (105). The
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overexpression of SEMA7A can neutralize the silenced expression

of LOXL1-AS1 by increasing the proliferation rate of pancreatic

cancer cells. Therefore, LOXL1-AS1 and miR-28–5p negatively

regulate miR-28–5p and SEMA7A, respectively (98) (Figure 6).

LOXL1-AS1 is also expressed at a high level in osteosarcoma

(99, 106). There is a positive association between the expression

level of LOXL1-AS1 and tumor size, stage, and grade, distant

metastasis, and survival time in osteosarcoma patients. It has

been demonstrated that LOXL1-AS1 overexpression promotes cell

proliferation, migration, and invasion by regulating phospho-PI3K

and phospho-AKT (pAKT) expression, thereby activating the

PI3K-AKT pathway in osteosarcoma (99).

Furthermore, LOXL1-AS1 is overexpressed in advanced stages

of medulloblastoma, which is the most common type of brain

tumor with a malignant phenotype in childhood (23). The

knockdown of LOXL1-AS1 has been linked to cell cycle arrest at

the G2/M phase, inducing apoptosis, inhibiting migration, and

suppressing epithelial-mesenchymal transition (EMT) (23). Also,

it has been associated with decreasing phosphorylated PI3K and

AKT. Phosphorylation of PI3K and AKT activates and

phosphorylates the downstream molecules in PI3K/AKT signaling

pathways. Therefore, it is proposed that LOXL1-AS1 may be

involved in the regulation of proliferation and apoptosis through

initiation of the PI3K-AKT pathway in medulloblastoma (23). Also,

it has been reported that applying LOXL1-AS1 siRNA-loaded

exosomes can be considered as novel strategy for LOXL1-AS1

gene therapy in this type of cancer that leads to inhibit cancer

progression and metastasis of medulloblastoma (107).

Additionally, the overexpression of LOXL1-AS1 stimulates the

proliferation and migration of human choriocarcinoma cells

through modulation of the nuclear factor kappa B (NFkB)
signalling pathway (100). The role of LOXL1-AS1 on the NFkB
signaling pathway may be mediated by targeting miR-515–5p. This

miRNA, as a tumor-suppressive miRNA, regulates the NF-kB
signaling pathway by decreasing the expression of phosphorylated

p65 (p-p65) and phosphorylated IkBa (p-IkBa), which ultimately

leads to the suppression of proliferation and migration of human

choriocarcinoma cells. Therefore, it is recommended that the

LOXL1-AS1/miR-515–5p/NF-kB signaling pathway is involved in

the progression of human choriocarcinoma (100) (Figure 6).

High expression of LOXL1-AS1 has also been observed in

retinoblastoma tumors (101). Retinoblastoma (RB) is an

uncommon type of eye cancer that affects the retina. It primarily

affects young children and can be hereditary or non-hereditary

(108). LOXL1-AS1 may modulate the development of regulatory B

(RB) cells, proliferation, migration, and metastasis by regulating the

mitogen-act ivated prote in kinase (MAPK) signal l ing

pathway (101).

Thymomas and thymic carcinomas are both types of cancer

that arise from the thymus gland (109). Thymoma is a relatively

rare cancer that arises from the cells of the thymus. It typically

grows slowly and is often found in adults, though it can also occur

in children. Thymic carcinoma tends to grow and spread more

quickly than thymoma. Most patients are typically diagnosed at a

late stage of the disease because there are no specific symptoms in

the early stages of these tumors (109). There is a positive correlation
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between the expression levels of LOXL1AS1 and HSPA9, and there

is a negative association between miR-525–5p and HSPA9 in

thymoma and thymic carcinoma. High expression levels of

LOXL1-AS1 and HSPA9 and downregulation of miR-525-5p have

been observed in these types of tumors (102). It suggests that

LOXL1-AS1 sponges miR-525–5p, and miR-525–5p targets the 3’

untranslated region (3’ UTR) of HSPA9 mRNA directly. Therefore,

LOXL1-AS1 promotes proliferation and invasion and suppresses

apoptosis in both thymoma and thymic carcinoma (102). HSPA9,

also known as mortalin or heat shock protein 70 (mtHsp70), is a

chaperone protein located in the mitochondria, where it plays a

crucial role in protein folding, importation, assembly, and

transportation. The protein is involved in various cellular

processes, including protection against stress and regulation of

apoptosis (110). Mortalin binds to p53 and inhibits the

translocation of p53 from the cytosol to the nucleus to act as a

transcription factor and tumor suppressor protein (110). Therefore,

the overexpression of HSPA9, resulting from the overexpression of

LOXL1AS1, inhibits apoptosis and promotes proliferation and

invasion in both thymoma and thymic carcinoma (Figure 6).

Overexpression of Lox1-AS1 has also been observed in RCC.

Lox1-AS1 is implicated in cell proliferation and migration of these

types of cancer cells, which occurs through miR-589–5p, whose

expression levels are low in RCC (111). Tumor-suppressive activity

of miR-589–5p is mediated by targeting Chromobox protein 5

(CBX5), which is recognized as an oncogene, accelerating

proliferation and migration in RCC (111). CXB5 is a member of

the chromatin assembly factor and chromatin remodeling complex
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that plays a role in epigenetic regulation and chromatin

organization (112). CXB5 is involved in various procedures such

as gene silencing, DNA repair and regulation of cell proliferation

and metastasis of cancer cells (112). It has been shown that the

oncogenic activity of CBXs may be mediated by recruiting histone

deacetylases (HDAC). However, the role of CBX5 in the

development and progression of RCC remains unknown (113). It

has been shown that CBX5 rescue or miR-589–5p silencing can

reverse the suppressive effects of silenced LOXL1-AS1 on the

malignant phenotype of RCC (111) (Figure 6).

Table 1 presents direct targets and molecular mechanistic

activity of LOXL1-AS1 in different cancer cells.

Figure 7 presents the regulatory mechanisms of LOXL1-AS1,

which include miRNA sponging, protein targeting, gene silencing,

and gene expression.
Comparing LOXL1-AS1 with other
oncogenic lncRNAs

LncRNAs are categorized into two groups: oncogenic and tumor-

suppressive lncRNAs. LOXL1-AS1 has been studied mainly as an

oncogenic lncRNA, implicated in tumor growth and development

through sponging tumor suppressor miRNAs and, or interacting with

proteins and transcription factors such as DESC1 and EZH2. Many

long non-coding RNAs (lncRNAs) having clinical relevance for

therapy and diagnosis have been introduced as oncogenic

lncRNAs, including MALAT1, HOTAIR, PCA3, CCAT1, CCAT2,
FIGURE 6

Molecular mechanistic activity of LncRNA LOXL1-AS1 in pancreatic cancer, choriocarcinoma, thymoma and thymic carcinoma and renal
cell carcinoma.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1384342
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yousefnia 10.3389/fonc.2024.1384342
H19, HOTTIP, and UCA1 (114). Similar to these oncogenic

lncRNAs, LOXL1-AS1 induces malignant and metastatic

properties, and it has been introduced as a potential therapeutic

and diagnostic option. Like LOXL1-AS1, other lncRNAs, such as

HOTAIR, PCA3, HOTTIP, and UCA1, have mainly exhibited

oncogenic activities (115–118), while the others including
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MALAT1, CCAT1, CCAT2 and H19 have evidence exhibiting both

oncogenic and tumor-suppressive activities (119–121). So far, the

tumor-suppressive role of LOXL1-AS1 has not been confirmed in

cancer cell lines or cancer tissues, whereas all studies conducted to

date have indicated its oncogenic role; thus, LOXL1-AS1 may prove

valuable as a diagnostic biomarker or therapeutic target.
TABLE 1 Direct targets and molecular mechanistic activity of LOXL1-AS1 in different cancer cells.

Type of cancer Experimental
samples/models

Direct target Tumorigenicity activity References

Ovarian cancer Cell lines, Xenograft mouse
Cell lines, tissues

miR-761
miR-18b-5p/VMA21 axis

Proliferation and anti-apoptosis
Proliferation and metastasis

(30)
(43)

Cervical cancer Cell lines
Cell lines, tissues
Cell lines, tissues,
Xenograft mouse

miR-21/RHOB axis
miR-526b-5p/LYPLA1 axis
miR-423–5p/ENC1 axis

Proliferation and migration
Proliferation, migration, invasion, and
angiogenesis
Proliferation and metastasis

(47)
(49)
(52)

Endometrial cancer Cell lines, tissues,
Xenograft mouse

miR-28–5p/RAP1B axis Proliferation, migration, invasion and
anti-apoptosis

(54)

Gastric cancer Cell lines, tissues, Xenograft
mouse
Cell lines, tissues,
Xenograft mouse

miR-708–5p/USF1 axis
miR-142–5p/PIK3CA axis

Proliferation, migration, EMT and stemness
phenotypes
Proliferation, migration and metastasis

(31)
(58)

Colorectal cancer Cell lines, tissues
Cell lines, tissues, Xenograft
mouse
Cell lines, tissues,
Xenograft mouse

miR-708–5p/CD44/EGFR axis
miR-1224–5p/HK2 axis
miR-761/HK2 axis

Proliferation, migration and invasion
Proliferation, invasion, migration, glycolysis
and anti-apoptosis
Proliferation, invasion, migration, glycolysis
and anti-apoptosis

(32)
(60)
(60)

Esophageal squamous
cell carcinoma

Cell lines, tissues DESC1 Proliferation, migration, invasion and
anti-apoptosis

(62)

Lung cancer Cell lines, tissues
Cell lines, tissues
Cell lines, tissues

miR-324–3p
miR-423–5p/MYBL2 axis
miR-3128/RHOXF2 axis

Proliferation and invasion
Proliferation and anti-apoptosis
Metastasis

(33)
(38)
(65)

Laryngeal carcinoma Cell lines, Xenograft mouse miR-589–5p/TRAF6 axis Proliferation, migration, and EMT (73)

Hepatocellular carcinoma Cell lines
Cell lines
Cell lines, tissues

miR-1224–5p/ITPRIPL2 axis
miR-3614–5p/YY1 axis
miR-377–3p/NFIB axis

Proliferation, migration and invasion
Proliferation, migration, invasion and anti-
apoptosis
Proliferation, migration and EMT

(34)
(80)
(82)

Cholangiocarcinoma Cell lines, tissues miR-324–3p/ABCA1 axis Proliferation, migration, invasion and
anti-apoptosis

(37)

Breast cancer Cell lines, tissues
Cell lines, tissues
Cell lines, tissues

miR-143–3p
miR-708–5p
EZH2

Proliferation, migration, invasion and anti-
apoptosis
Invasion and metastasis
Invasion and metastasis

(35)
(88)
(88)

Prostate cancer Cell lines
Doxorubicin-resistant cell line,
Xenograft mouse

miR-541–3p/CCND1 axis
miR-let-7a-5p/EGFR

Proliferation
Proliferation, migration and anti-apoptosis

(36)
(91)

Glioblastoma Cell lines
Cell lines, tissues,
Xenograft mouse

RelB
miR-374b-5p/MMP14 axis

Mesenchymal phenotype Proliferation,
migration, invasion and
vasculogenic mimicry

(94)
(97)

Pancreatic cancer Cell lines miR-28–5p/SEMA7A axis Proliferation and migration (98)

Choriocarcinoma Cell lines miR-515–5p Proliferation and migration (100)

Thymoma and
thymic carcinoma

Cell lines, tissues miR-525-5p/HSPA9 axis Proliferation and invasion and anti-apoptosis (102)

Renal cell carcinoma Cell lines, tissues miR-589–5p/CBX5 axis Proliferation and migration (111)
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Technologies for identifying lncRNAs
activity in various disease

LncRNAs exhibit tissue-specificity and generally possess low

expression levels, necessitating the selection of suitable

experimental approaches for their detection and analysis. To

study lncRNA activity in different diseases, various technologies

have been developed to characterize their functions and

mechanisms of action (122–126).

One of the key technologies used to study long non-coding

RNA (lncRNA) activity is RNA sequencing, which enables

researchers to identify and quantify lncRNAs in various tissues

and cell types. By comparing the expression levels of lncRNAs in

healthy and diseased samples, researchers can gain insights into the

role of lncRNAs in disease development and progression. In

addition, RNA sequencing can also identify lncRNAs and their

interactions with other biomolecules (122).

Another important technology used to study lncRNA activity is

chromatin immunoprecipitation sequencing (ChIP-seq), which

allows researchers to identify the binding sites of lncRNAs on

chromatin. By mapping the genomic locations of lncRNAs,

researchers can determine their regulatory targets, providing

insights into the mechanisms by which lncRNAs regulate gene

expression. ChIP-seq data can also identify protein partners of
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lncRNAs, further elucidating their functional roles (122). Also,

chromatin isolation by RNA purification followed by high-

throughput sequencing (ChiRP-seq) is a technique used to study

the interactions between lncRNAs and genomic DNA, or other

DNA-binding proteins. The lncRNA of interest is selectively

purified along with its associated DNA and proteins using

complementary antisense DNA oligonucleotides to pull down the

RNA complexes. The isolated RNA, DNA, or protein is then

sequenced to identify the specific genome loci and associated

proteins that interact with the lncRNA. This technique has been

instrumental in uncovering the functional roles of lncRNAs in gene

regulation and chromatin organization (123).

In addition to RNA sequencing and ChIP-seq, researchers use

CRISPR/Cas9-based genome editing to study lncRNA activity. By

targeting specific lncRNAs with CRISPR/Cas9, researchers can

investigate the effects of lncRNA knockdown or overexpression

on gene expression and cellular functions. This technology allows

for the precisely manipulating lncRNA activity, providing valuable

insights into their regulatory roles in disease (127).

Moreover, CRISPR interference (CRISPRi) and CRISPR activation

(CRISPRa) technologies have been developed to study the functional

roles of lncRNAs in gene regulation. CRISPRi allows researchers to

selectively silence lncRNA expression, while CRISPRa enables the

activation of specific lncRNAs in a targeted manner (123, 127).
FIGURE 7

The regulatory mechanisms of LOXL1-AS1, which include miRNA sponging, protein targeting, gene silencing, and gene expression.
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Additionally, ribonucleoprotein immunoprecipitation

sequencing (RIP-seq) has been widely used to study the

interactions between lncRNAs and RNA-binding proteins. By

immunoprecipitating lncRNA-protein complexes and sequencing

the associated RNA molecules, researchers can identify the protein

partners of lncRNAs and their functional interactions. RIP-seq data

can provide insights into the molecular mechanisms by which

lncRNAs regulate gene expression and cellular processes in

diseases (126).

Apart from these technologies, high-throughput screening

methods, such as CRISPR knockout screens and RNA

interference (RNAi) screens, have been used to identify lncRNAs

involved in specific disease pathways. By systematically knocking

down or silencing lncRNAs in cell populations, researchers can

identify those that play crucial roles in disease pathogenesis. These

screens can also elucidate the functional relationships between

lncRNAs and protein-coding genes, providing insights into

disease mechanisms (124).

In addition, the RNA fluorescence in situ hybridization (FISH)

technique has been employed for several years to locate specific

RNA molecules within cells. This method relies on the hybridizing

specifically designed fluorescently labeled probes to their target

sequences. However, traditional RNA Fish lacks sufficient

sensitivity to detect low-abundance long non-coding RNA

(lncRNA) molecules. To address this limitation, a short molecular

beacon-based RNA fluorescence in situ hybridization (smRNA-

FISH) approach has been developed. smRNA-Fish utilizes a pool of

short probes that cover the entirety of lncRNAs, enabling highly

sensitive detection of these low-abundance transcripts while also

providing quantifiable measurements (124).

Furthermore, bioinformatics tools (LncFinder, lncRNA-LSTM,

LncPred-IEL, PredLnc-GFStack, RNAplonc, NCResNet, …) and

databases (CSG, GermlncRNA, LNCat, LncSNP, Lnc2Cancer,

lnCeDB, LNCMap, Lnc2Meth, lncATLAS, lncPedia, lncRNAdisease,

lncRNome,…) have been developed to analyze and interpret lncRNA

data generated from various technologies (128, 129). These tools allow

researchers to integrate multi-omics data, predict lncRNA functions,

and identify potential therapeutic targets (129). By combining

experimental approaches with computational analyses, researchers

can gain a comprehensive understanding of long non-coding RNA

(lncRNA) activity in various diseases and develop novel strategies for

diagnosis and treatment.
Conclusion

It has been proven that lncRNAs have both oncogenic and

tumor-suppressive roles in regulating molecular mechanisms

involved in cancer progression, including proliferation, migration,

metastasis, and EMT. LOXL1-AS1 is a novel recognized lncRNA,

which is well known as an oncogenic lncRNA. LOXL1-AS1 is

overexpressed in a variety of cancer cells, including ovarian

cancer, gastrointestinal cancers, lung cancer, hepatocellular
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carcinoma, breast cancer, and prostate cancer, and others. It can

also regulate malignant phenotypes of these types of cancer cells by

targeting specific miRNAs such as miR-761, miR-423–5p, miR-21,

miR-28–5p, miR-708–5p, miR-423–5p, etc. and prevent miRNAs to

binding to their target mRNAs and thereby regulate gene

expression, indirectly. In addition, some common miRNAs (miR-

761, miR-423–5p, miR-28–5p, miR-708–5p, miR-1224–5p, miR-

324–3p) are sponged by LOXL1-AS1 in various types of cancer cells

(Table 2). LOXL1-AS1 targets miR-761, miR-708–5p and miR-

1224–5p in colorectal cancer cells. miR-761 and miR-1224–5p,

which are both sponge targets of LOXL1-AS1, share a common

target gene, HK2, in colorectal cancer. miR-761, miR-708–5p, and

miR-1224–5p are also downregulated in ovarian cancer, gastric

cancer, and hepatocellular carcinoma, respectively. Both miR-423–

5p and miR-324–3p are sponged by LOXL1-AS1 in lung cancer.

miR-423–5p and miR-324–3p are also suppressed in cervical cancer

and cholangiocarcinoma, respectively. miR-28 is suppressed by

LOXL1-AS1 in both pancreatic and endometrial cancers.

On the other hand, LOXL1-AS1 can interact with several proteins,

including DESC1, EZH2, and EGFR, and modulate their activities.

Therefore, there is a diversity and different molecular mechanisms in

the oncogenic activity of LOXL1-AS1 based on the cancer cell type.

Knowledge about the molecular mechanisms regulated by

LOXL1-AS1 in cancer cells can open up ways to identify specific

prognostic biomarkers and discover novel therapeutic approaches

for various types of cancer. Upregulation of LOXL1-AS1 has been

confirmed in many types of cancerous tissues, which can exhibit a

clinical value of LOXL1-AS1 and introduce it as a diagnostic

biomarker. However, comprehensive clinical studies have not yet

been conducted. There is still limited clinical evidence to investigate

the association between the expression of LOXL1-AS1 and clinical

features such as tumor size, stage and grade, distant metastasis, and

survival time of patients. Further studies are needed to fully evaluate

the clinical significance of LOXL1-AS1 and confirm its potential for
TABLE 2 Common miRNAs sponged by LOXL1-AS1 in several types
of cancer.

miRNA Target gene Type of cancer Reference

miR-761 HK2 Colorectal cancer
Ovarian cancer

(60)
(30)

miR-423–5p MYBL2
ENC1

Lung cancer
Cervical cancer

(38)
(52)

miR-28–5p SEMA7A
RAP1B

Pancreatic cancer
Endometrial cancer

(98)
(54)

miR-708–5p USF1
CD44/EGFR

Gastric cancer
Colorectal cancer
Breast cancer

(31)
(32)
(88)

miR-
1224–5p

ITPRIPL2
HK2

Hepatocellular
carcinoma
Colorectal cancer

(34)
(60)

miR-324–3p ABCA1 Cholangiocarcinoma
Lung cancer

(37)
(33)
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use as a diagnostic tool, as well as exploring LOXL1-AS1 as a novel

therapeutic approach for treating various types of cancer.
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ABCA1 ATP-binding cassette transporter A1

CSCC Cervical squamous cell carcinoma

CCA Cholangiocarcinoma

ChIP-seq Chromatin immunoprecipitation sequencing

ChiRP-seq
Chromatin isolation by RNA purification followed by high-
throughput sequencing

CBX5 Chromobox

CeRNAs Competing endogenous RNAs

CRISPRa CRISPR activation

CRISPRi CRISPR interference

CCND1 Cyclin D1

DESC1 Differentially expressed in squamous cell carcinoma 1

ENC1 Ectodermal-neural cortex 1

EC Endometrial cancer

EZH2 Enhancer of zeste homolog 2

EGFR Epithelial growth factor receptor

EMT Epithelial-mesenchymal transition

ESCC Esophageal squamous cell carcinoma

FISH Fluorescence in situ hybridization

HSP70 Heat shock protein 70

HCC Hepatocellular carcinoma

HK2 Hexokinase 2

HDAC Histon deacetylases

IP3R Inositol 1,4,5-trisphosphate receptor

ITPRIPL2 Inositol 1, 4, 5-trisphosphate receptor-interacting protein-like 2

LOXL1-
AS1 LncRNA LOXL1-antisense RNA 1

LncRNAs Long non coding RNAs

LYPLA1 Lysophospholipase 1

MMPs Matrix metalloproteases

MEK/ERK
Mitogen-activated protein kinase/extracellular signal-
regulated kinase

MREs miRNA response elements

MSI1 Musashi1

MYBL2 Myb-related protein B

NRDR Non-coding RNA Database Resource

NCAPH Non-SMC Condensin I Complex Subunit H

NSCL Non-small-cell lung cancer

NFIB Nuclear factor I B

RAP1B Ras-related protein1B

(Continued)
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RSR Relative survival rate

RCC Renal cell carcinoma

RB Retinoblastoma

RHOXF2 Rhox homeobox family member 2

RIP-seq Ribonucleoprotein immunoprecipitation sequencing

RNAi RNA interference

SEMA7A Semaphorin 7A

smRNA-
Fish

Short molecular beacons-based RNA fluorescence in
situ hybridization

TIAR TIA-1 related protein

TRAF6 Tumor necrosis factor receptor-associated factor 6

USF1 Upstream transcription factor 1

VMA21 Vacuolar ATPase Assembly Factor

VM Vasculogenic mimicry

YY1 Yin Yang 1
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