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Triple negative breast cancer (TNBC) accounts for 15–20% of all breast cancers

and mainly affects pre-menopausal and minority women. Because of the lack of

ER, PR or HER2 expression in TNBC, there are limited options for tailored

therapies. While TNBCs respond initially to standard of care chemotherapy,

tumor recurrence commonly occurs within 1 to 3 years post-chemotherapy

and is associated with early organ metastasis and a high incidence of mortality.

One of the major mechanisms responsible for drug resistance and emergence of

organ metastasis is activation of epithelial to mesenchymal transition (EMT)

reprogramming. EMT-mediated cancer cell plasticity also promotes the

enrichment of cancer cells with a CD44high/CD24low and/or ALDHhigh cancer

stem-like phenotype [cancer stem cells (CSCs)], characterized by an increased

capacity for tumor self-renewal, intrinsic drug resistance, immune evasion and

metastasis. In this study we demonstrate for the first time a positive feedback

loop between AURKA and intra-tumoral PD-L1 oncogenic pathways in TNBC.

Genetic targeting of intra-tumoral PD-L1 expression impairs the enrichment of

ALDHhigh CSCs and enhances the therapeutic efficacy of AURKA-targeted

therapy. Moreover, dual AURKA and PD-L1 pharmacological blockade resulted

in the strongest inhibition of tumor growth and organ metastatic burden. Taken

together, our findings provide a compelling preclinical rationale for the

development of novel combinatorial therapeutic strategies aimed to inhibit

cancer cell plasticity, immune evasion capacity and organ metastasis in

patients with advanced TNBC.
KEYWORDS

triple negative breast cancer, immunotherapy, cancer cell plasticity, small molecule
inhibitor, organ metastases
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Introduction

Triple negative breast cancer (TNBC) accounts for 15–20% of all

breast cancers andmainly affects pre-menopausal andminority women

(1). Because of the lack of ER, PR or HER2 expression in TNBC, there

are until now limited options for tailored therapies (2). TNBC is

therefore treated with standard of care chemotherapy, using genotoxic

stress-inducing drugs such as cisplatin and carboplatin, or

microtubule-stabilizing agents such as taxanes (paclitaxel or

docetaxel). While TNBCs respond initially to chemotherapy, tumor

recurrence commonly occurs within 1 to 3 years post-chemotherapy

and is associated with early emergence of organ metastasis and a high

incidence of mortality (3).

Cancer cell plasticity represents one of the major hindrances in

eradicating organ metastasis because it promotes high self-renewal

capacity, intrinsic resistance to chemotherapeutic agents and immune

evasion ability to cancer cells (4–6). One of the central mechanisms

responsible for the development of cancer cell plasticity is epithelial to

mesenchymal transition (EMT) reprogramming. Activation of EMT

reprogramming drives the transition from a polarized epithelial

phenotype to an elongated fibroblastoid-like phenotype that typifies

the morphology of aggressive breast tumors (7). Importantly, EMT-

induced cancer cell plasticity is also linked to high immune evasion

ability of cancer cells (8).

Activation of EMT reprogramming also induces the enrichment

of cancer cells with a CD44high/CD24low and/or ALDHhigh cancer

stem-like phenotype characterized by an increased capacity for

tumor self-renewal, intrinsic drug resistance and high metastatic

proclivity (9). Elevated levels and activity of ALDH (aldehyde

dehydrogenase) has been detected in normal stem cells and

cancer stem-like cells (CSCs) (10). The molecular mechanisms by

which high ALDH activity induces intrinsic drug resistance is

primarily through ALDH-mediated detoxification of toxic

aldehyde intermediates produced in cancer cells following

treatment with chemotherapy (11).

Several oncogenic signaling pathways induce EMT-mediated cancer

cell plasticity and tumor stemness. Aurora-A kinase (AURKA) is a

serine/threonine oncoprotein kinase that localizes to centrosomes and

mitotic spindles of dividing cells (12). AURKA controls centrosome

duplication and spindle formation for appropriate chromosome

segregation during mitosis safeguarding the maintenance of

chromosomal stability (13). Aberrant AURKA activity plays a major

role in tumor progression through development of centrosome

amplification and chromosomal instability (CIN) (14, 15). When

AURKA is overexpressed in human breast tumors, it is commonly

associated with a basal-like phenotype and poor prognosis (16).

Significantly, deregulated AURKA activity also induces EMT-mediated

cancer cell plasticity, tumor stemness and drug resistance in breast

cancer (17). Because of its role in tumor progression and poor clinical

outcomes, AURKA is a promising druggable target in cancer and small

molecule inhibitors of AURKA activity are under preclinical and clinical

investigation (18, 19). The AURKA inhibitor alisertib has shown

promising therapeutic efficacy in metastatic ER+ breast cancer patients

that were resistant to endocrine therapy and CDK4/6 inhibitors (20).

Nonetheless, AURKA inhibitors as monotherapy did not show high
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therapeutic efficacy in TNBC, and the combination with standard of care

chemotherapy may limit their clinical development due to overlapping

toxicities (21). The limited activity of AURKA inhibitors in TNBC could

be linked to high cancer cell plasticity and activation of alternative

oncogenic pathways that will sustain cancer stemness and promote early

tumor relapse and progression (22, 23).

Recent findings have shown that CSCs also display high intra-

tumoral PD-L1 expression that plays a critical role in inducing

tumor immune escape through CD8+ T-cells exhaustion (24).

Immune checkpoint inhibitors (ICIs) are emerging targeted

therapeutic drugs for many cancers and are based on blocking the

interaction between PD-L1 and PD-1 receptors. High expression of

the PD-L1 ligand is associated with poor prognosis in breast cancer

(25) and ICIs have been FDA-approved as a neoadjuvant or

adjuvant therapy for TNBC.

In this study we demonstrate for the first time a positive

feedback loop between AURKA and intra-tumoral PD-L1

oncogenic pathways in TNBC. Remarkably, genetic targeting of

intra-tumoral PD-L1 expression impairs the enrichment

of ALDHhigh CSCs and enhances the therapeutic efficacy of

AURKA-targeted therapy. Moreover, dual AURKA and PD-L1

pharmacological blockade resulted in the strongest inhibition of

tumor growth and organ metastatic burden. The efficacy of dual

AURKA and PD-L1 pharmacological blockade was corroborated in

a unique model of durvalumab-resistant TNBC cells. Taken

together, our findings provide the strong preclinical rationale for

the development of novel combinatorial therapeutic strategies

aimed at inhibiting cancer cell plasticity, immune evasion

capacity and organ metastasis in patients with advanced TNBC.
Materials and methods

Mayo Clinic cohort: Breast tumor biospecimens were obtained

from the Mayo Clinic Cancer Center. Median expression of low and

high AURKA was evaluated by Immunohistochemistry (IHC) and

intensity of AURKA staining was reported using the Aperio Whole

Cell Quant Application package and ImageScope viewing software.

AURKA rabbit monoclonal antibody (#91590) from Cell Signaling

was employed in these studies.

Established breast cancer cell lines: The human breast cancer cell

lines MDA-MB 231 and BT-474 were obtained from ATCC (Manassas,

VA, USA). SUM149-PT cancer cells were kindly provided by Dr.

Couch’s laboratory (Mayo Clinic, Rochester, MN, USA). All cell lines

were maintained in DMEM medium containing 5mM glutamine, 1%

penicillin/streptomycin and 10% FBS at 37 C in 5% CO2 atmosphere.

All cell lines were tested for mycoplasma contamination.

Patient-derived TNBC cells: TNBC-M40 cells were isolated

from patient-derived brain metastasis TNBC xenograft models

that were generated at the Mayo Clinic Cancer Center (19). To

establish cultured TNBC-M40 cells, patient-derived xenograft

metastatic models were excised from killed animals, minced

using sterile scissors, transferred to complete culture medium

and fibroblast-free TNBC-M40 cells were cultured in low-

adherent flasks supplemented with MammoCult™ medium
frontiersin.org
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(STEMCELL 05620) and propagated in culture as 3D-Organoids

and used for this study.

Immunoblot and immunofluorescence assays: Antibodies

employed to perform these studies were the followings: AURKA

(AbCam 13824, Cambridge, MA, USA); vimentin (AbCam 52903,

Cambridge, MA, USA); PD-L1, CD44, CD-8, Cleaved-PARP, a-
tubulin (Sigma T9026, St. Louis, Missouri, USA) and GAPDH

(AbCam 9485, Cambridge, MA, USA). FITC and Rodhamine

secondary antibodies were obtained from Molecular Probes

(Eugene, OR, USA).

ALDH activity assay: ALDH activity was detected by FACS

analysis using the AldeRed ALDH Detection Assay kit (Millipore

Sigma SCR150, USA) according to the manufacturer’s instructions.

Tumor xenografts: Procedures established by the Institutional

Animal Care and Use Committee based on US NIH guidelines for

the care and use of laboratory animals were followed for all

experiments (IACUC: A00002634–17-R20). Establishment of

MDA-MB 231 LM xenografts: 4 weeks old non-ovariectomized

female NSG mice and humanized-CD34+ female NSG mice (the

Jackson Laboratory) were anesthetized by exposure to 3% isoflurane

and injected into the mammary fat pad with 1× 106 cells (infected

with a luciferase lenti-vector to detect the presence of distant

metastasis) suspended in 50 ul of 50% Matrigel (BD Bioscience,

Bedford, MA, USA). After 2 weeks tumor growth, mice were

randomized and treated with alisertib (oral gavage) and/or

atezolizumab 3 times/week for 3 weeks. After drug treatment,

tumor relapse was monitored for additional 3 weeks or when the

tumor xenografts reached a volume comparable to control groups.

Tumor volume was measured 3 times/week using a digitized caliper.

Following drug treatment, mice were sacrificed, and organ

metastatic burden was determined ex-vivo using the Xenogen

imaging system.

Scientific rigor and statistical analysis: FACS, immunoblot and

Immunofluorescence assays were run in triplicate or for 3 independent

runs (+/- S.D.). The average read-out of the triplicates from each run

was determined and a 95% t-confidence interval for the difference

between was constructed using IBM SPSS Statistics. Different triple-

negative breast cancer cell lines and patient-derived xenografts (PDXs)

were employed in this study to increase the power to detect the effect

size. The nonparametric Mann-Whitney t test (Statview software) was

used to determine the significance of the relative tumor volumes for

treated versus untreated TNBC xenograft groups. Using an initial

sample size of 5 animals per group, a two-sided (alpha=0.05), two

sample t-test for assessing whether the difference in mean tumor

burden differs significantly between a particular pair of treatment

groups will have a power of 90% to detect a difference of 1.6 standard

deviation (SD). For each xenograft (treated and control groups), the

difference in the percentage of organ metastatic burden was assessed.

Animals were examined every day and body weight, and primary

tumor size was measured 3 times per week. The statistical difference in

tumor growth between control and treated groups with alisertib and/or

atezolizumab were compared among each other for their evolution

and possible responses to drug treatment using the cutting-edge R-

package TumGrowth software tool allowing to carry out a series of

statistical comparisons across or between groups of tumor growth

curves (https://kroemerlab.shinyapps.io/TumGrowth/) (26).
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Results and discussion

In order to define the association between increased AURKA

protein expression and shorter recurrence free survival (RFS) of

TNBC patients, we analyzed AURKA protein expression by

immunohistochemistry in a unique cohort of tumor tissues

established at the Mayo Clinic Cancer Center from 269 TNBC

patients. 136 patients showed low AURKA expression, while 133

patients showed high AURKA expression. High AURKA expression

was significantly associated with reduced RFS during a five-year

follow up period (Figure 1A). Because AURKA and intra-tumoral

PD-L1 oncogenic signaling pathways induce EMT and cancer cell

plasticity, we investigated the extent to which AURKA kinase

activity may regulate intra-tumoral PD-L1 expression in TNBC

cells. We have established unique MDA-MB 231/LM cells (isolated

from lung metastasis) (19) that show high endogenous levels of PD-

L1 (Figure 1B). MDA-MB 231/LM cells were treated with alisertib,

and PD-L1 expression was assessed using western blot analysis.

Alisertib reduced intra-tumoral PD-L1 expression (Figure 1C). To

define in vivo the effect of AURKA pharmacological blockade on

tumor growth and inhibition of immune evasion capacity, we

established MDA-MB 231/LM xenografts in humanized NSG-

CD34+ female mice. Animals were treated with placebo or

alisertib (50mg/Kg oral gavage three times per week). Alisertib-

treated tumor xenografts showed a significant reduction of tumor

growth that was linked to down-regulation of PD-L1 and CD44

expression, and an increase of CD8+ T-cells infiltration compared

to control group (Figures 1D–F). Taken together, these results

indicate that pharmacological blockade of AURKA activity

impairs tumor stemness and increases CD8+ T-cells infiltration

through reduction of intra-tumoral PD-L1 expression.

To define the extent to which intra-tumoral PD-L1 expression

was necessary to induce the enrichment of ALDHhigh CSCs,

restraining the therapeutic efficacy of AURKA-targeted therapy,

ex-vivoMDA-MB 231/LM cells were infected with either scrambled

shRNAs or PD-L1 shRNAs lenti-vectors (Figure 2A) and treated

with alisertib for 48 hours. Remarkably, PD-L1 genetic targeting

enhanced the efficacy of alisertib in reducing the enrichment of

ALDHHigh CSCs (Figure 2B and Supplementary Figure 1). Because

ALDH activity is necessary to induce self-renewal capacity of cancer

cells and resistance to anticancer drugs-induced apoptosis (19),

MDA-MB 231/LM cells infected with either scrambled shRNAs or

PD-L1 shRNAs lenti-vectors were treated with alisertib for 48 hours

and cleaved-PARP expression and cellular localization was assessed

as a biomarker of apoptosis. PD-L1 genetic targeting enhanced

alisertib-induced apoptosis of cancer cells (Figures 2C–E). These

findings strongly demonstrate that tumor intrinsic PD-L1 signaling

has immune independent oncogenic functions that sustain the

enrichment of ALDHhigh CSCs and induce resistance to AURKA-

targeted therapy in TNBC cells.

Because AURKA and PD-L1 are both druggable oncogenic

signaling pathways, we aimed to define in vivo the therapeutic

efficacy of dual AURKA and PD-L1 pharmacological blockade.

MDA-MB 231/LM tumor xenografts were established in

immunocompromised female NSG mice. Animals were treated

with placebo (control group), atezolizumab (anti-PD-L1, 20 mg/
frontiersin.org
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B C

D E

A

FIGURE 2

Genetic Targeting of Intra-Tumoral PD-L1 Impairs Tumor Stemness Capacity: (A) Immunoblot analysis showing intra-tumoral PD-L1 expression in
MDA-MB 231 LM cells infected with scrambled (control) or PD-L1 lenti-shRNAs. (B) MDA-MB 231 LM cells were infected with scrambled (control) or
PD-L1 lenti-shRNAs and treated with alisertib. After 48 hours incubation, ALDH activity was detected with Aldefluor kit and measured by FACS
analysis on 10,000 events. ALDH inhibitor DEAB was used as control for each sample. Graph showing experiments performed in duplicate (+/-
S.E.M. and P value < 0.05). (C) C-PARP expression was assessed by immunoblot assay after 48 and 96 hours of treatment with alisertib. (D)
Densitometric analysis showing the fold change of C-PARP expression levels normalized to alpha-Tubulin was performed using ImageJ-NIH
Software. (E) Immunofluorescence analysis showing representative images of C-PARP positive MDA-MB 231 LM cells from control and alisertib
(ALIS)-treated cells. C-PARP positive MDA-MB 231 LM cells were labeled in Red with rodhamine. Nuclei were labeled in blue with DAPI. Graph
showing the percentage of C-PARP positive MDA-MB 231 LM cells from three independent experiments (+/- S.D. and P value < 0.05). *, <0.05;
***, <0.001.
B C

D E F

A

FIGURE 1

AURKA Induces Intra-Tumoral PD-L1 Expression in Triple Negative Breast Cancer Cells: (A) Immunohistochemistry analysis (IHC) was performed on a
selected cohort of 269 tumor tissues from TNBC patients. AURKA protein was stained with a mouse monoclonal antibody (Cell Signaling). High and low
AURKA median expression was associate with reduced RFS during a 5 year follow-up period. (B) Immunoblot analysis showing intra-tumoral PD-L1
expression in BT-474 (negative control), MDA-MB 231 and variant MDA-MB 231 LM cells. (C) Immunoblot analysis showing intra-tumoral PD-L1
expression in MDA-MB 231 LM cells before and after treatment with 50 nM Alisertib. Densitometric analysis showing the fold change of PD-L1 protein
levels normalized to alpha-Tubulin was performed using ImageJ-NIH Software. (D) 1x106 MDA-MB 231 LM cells were transplanted into the right 4th

mammary fat pad of 20 female humanized-CD34+ NSG mice. After 2 weeks of tumor growth, animals were randomized into two groups (5 animal/
group) and treated with saline solution placebo (control group) or alisertib (50 mg/Kg) oral gavage, 3 times per week for 30 days. Tumor growth was
measured using digital calipers. (E) Immunofluorescence analysis showing representative images of PD-L1 and CD44 expression in MDA-MB 231/LM
tumor xenografts (5 animal/group) from control and alisertib-treated groups. PD-L1 was labeled in green with FITC and CD44 was labeled in red with
rodhamine. Nuclei were labeled in blue with DAPI. The percentage of PD-L1+ cells represents the average of three independent experiments. (F)
Immunofluorescence analysis showing representative images of CD8+ T-cells in MDA-MB 231 LM tumor xenografts (5 animal/group) from control and
alisertib-treated groups. CD8+ T-cells were labeled in Red with rodhamine. Nuclei were labeled in blue with DAPI. The number of CD8+ T-cells per 20X
field represents the average of three independent experiments. ***, <0.001.
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Kg I.P. injections) and/or alisertib (25mg/Kg oral gavage) three

times per week (Figure 3A). The combination of atezolizumab and

alisertib was well-tolerated because animals did not experience

weight loss >15% (data not shown). Combination of atezolizumab
Frontiers in Oncology 05
and alisertib showed the strongest tumor growth inhibition

(Figures 3A, B). Noteworthy, combination of atezolizumab and

alisertib triggered the reduced expression of the mesenchymal

marker vimentin in tumor xenografts that was linked to lack of
B

C D

E F

A

FIGURE 3

Dual AURKA and PD-L1 Pharmacological Blockade Inhibits Tumor Growth and Metastasis: (A) 1x106 MDA-MB 231 LM cells infected with luciferase
lenti-vectors were transplanted into the right 4th mammary fat pad of 20 female NSG mice. After 2 weeks of tumor growth, animals were
randomized into four groups (5 animal/group) and treated with saline solution placebo (control group), alisertib (ALIS) (25 mg/Kg) oral gavage,
atezolizumab (ATZ) (20mg/Kg) I.P. injections and combination 3 times per week for 33 days. The statistical difference in tumor growth between
control and treated groups were compared among each other for their evolution and possible responses to drug treatment using the R-package
TumGrowth software. (B) After 33 days, animals were sacrificed and luciferase intensity was assessed ex-vivo in primary tumor xenografts using the
Xenogen instrument. Tumor xenografts were weighted to corroborate in vivo tumor growth inhibition after AURKA and PD-L1 pharmacological co-
targeting. There was also a significant reduction between control groups and animals treated with alisertib + atezolizumab. (C) H&E of tumor
xenograft tissues after in vivo treatment with alisertib and/or atezolizumab. Immunofluorescence analysis showing representative images of vimentin
expression in tumor xenograft tissues after in vivo treatment with alisertib and/or atezolizumab. Vimentin was labeled in Red with Rodhamine. Nuclei
were labeled in blue with DAPI. (D) Ex-Vivo organs isolated from animals after in vivo treatment with alisertib and/or atezolizumab. Organ metastatic
burden was measured in liver, lung and spleen tissues using the Xenogen instrument. (E) 1x106 MDA-MB 231 LM cells were transplanted into the
right 4th mammary fat pad of Humanized NSG-CD34+ female mice (five) and treated with durvalumab (20mg/Kg) three times/week for 50 days.
(F) Ex-vivo MDA-MB 231 LM durvalumab-resistant cells were treated with 100 ng atezolizumab, 100 ng durvalumab and/or 50 nM Alisertib for four
days. Real-Time assay (IncuCyte) was employed to quantify apoptotic cells (Annexin-V) before and after drug treatment. Three independent
experiments were performed (+/- S.E.M. and P value < 0.05). *, <0.05.
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organ metastasis compared to atezolizumab or alisertib as

monotherapy (Figures 3C, D). Because MDA-MB 231/LM tumor

xenografts were established in immunocompromised NSG mice,

the therapeutic efficacy of PD-L1 pharmacological blockade in

enhancing alisertib efficiency was not immune-driven but it was

exclusively linked to inhibition of tumor-intrinsic PD-L1 oncogenic

signaling pathway. To substantiate the therapeutic efficacy of dual

AURKA and PD-L1 pharmacological targeting, we employed a

unique MDA-MB 231/LM xenograft model that developed in vivo

resistance to durvalumab (Figure 3E), an anti-PD-L1 humanized

antibody that improves long-term outcome in TNBC patients (27).
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Remarkable, combination of alisertib with FDA-approved ICIs

(atezolizumab or durvalumab) resulted in the highest induction of

apoptosis in ex-vivo MDA-MB 231/LM durvalumab-resistant

cells (Figure 3F).

To corroborate the immune independent effects of dual AURKA

and PD-L1 pharmacological blockade, we also assessed the

combination of alisertib and atezolizumab in SUM-PT 149 TNBC

cells (19). Treatment of SUM-PT 149 cells with alisertib induced PD-

L1 down-regulation (Figure 4A), reinforcing the pivotal role of

AURKA kinase activity in inducing intra-tumoral PD-L1 expression

in TNBC cells. Combination of alisertib and atezolizumab resulted in
B

C D

E

A

FIGURE 4

Dual AURKA and PD-L1 Pharmacological Blockade Induces Apoptosis and Inhibits ALDH Activity: (A) Immunoblot analysis showing intra-tumoral PD-
L1 expression in SUM149-PT cells before and after treatment with 50 nM Alisertib. Densitometric analysis showing the fold change of PD-L1 protein
levels normalized to GAPDH was performed using ImageJ-NIH Software. (B) Immunofluorescence analysis showing representative images of C-
PARP positive SUM149-PT cells from control, alisertib and/or atezolizumab-treated cells for 48 hours. C-PARP positive SUM149-PT cells were
labeled in Red with Rodhamine. Nuclei were labeled in blue with DAPI. (C) Graph showing the percentage of C-PARP positive SUM149-PT cells from
three independent experiments (+/- S.D. and P value < 0.05). (D) ALDH activity was assessed in SUM149-PT cells with Aldefluor kit and measured by
FACS analysis on 10,000 events. ALDH inhibitor DEAB was used as control for each sample. Graph showing experiments performed in duplicate (+/-
S.E.M. and P value < 0.05). (E) 3D-Organoids were treated with 100 ng Atezolizumab and/or 50 nM Alisertib. After 48 hours incubation, ALDH activity
was detected with Aldefluor kit and measured by FACS analysis on 10,000 events. ALDH inhibitor DEAB was used as control for each sample. Graph
showing three independent experiments performed in triplicate (+/- S.D. and P value < 0.05). *, <0.05; **, <0.01; ***, <0.001.
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the strongest induction of apoptosis compared to alisertib or

atezolizumab as monotherapy (Figures 4B, C). Importantly, dual

AURKA and PD-L1 pharmacological blockade also induced the

strongest inhibition of ALDH activity compared to alisertib or

atezolizumab as monotherapy (Figure 4D and Supplementary

Figure 2). To investigate the therapeutic efficacy of AURKA and

PD-L1 pharmacological co-targeting in clinically relevant models, we

established 3D-Organoids from an exclusive metastatic Patient

Derived Xenograft (PDX), TNBC-M40 (19). 3D-Organoids were

treated with atezolizumab and/or Alisertib for 48 hours and ALDH

activity was measured by Aldefluor assay. Combination of

atezolizumab and alisertib induced the strongest reduction of

ALDHhigh CSCs compared to atezolizumab or alisertib as single

agents (Figure 4E).
Conclusion

Because FDA-approved targeted therapies are currently limited

for metastatic TNBC, there is an urgent need for the discovery of

effective novel therapeutic strategies aimed to significantly improve

the overall survival of patients with advanced TNBC. This study

provides a strong preclinical rationale that dual AURKA and PD-L1

pharmacological blockade is an effective combinatorial therapeutic

approach to inhibit TNBC progression through selective eradication

of ALDHhigh CSCs that are responsible for the high cancer cell

plasticity and immunosuppressive activity. Pharmacological blockade

of AURKA/PD-L1 oncogenic axis represents a major breakthrough

in the treatment of metastatic TNBC, because it will lead to the

development of novel combinatorial targeted therapies expected to

meaningfully increase the progression-free and overall survival of

patients with metastatic TNBC that are refractory to standard of care

chemotherapy and show limited response to FDA-approved ICIs.
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SUPPLEMENTARY FIGURE 1

MDA-MB 231 LM cells were infected with scrambled (control) or PD-L1 lenti-
shRNAs and treated with alisertib. After 48 hours incubation, ALDH activity

was detected with Aldefluor kit and measured by FACS analysis on 10,000

events. ALDH inhibitor DEAB was used as control for each sample.
Experiments were performed in duplicate.

SUPPLEMENTARY FIGURE 2

ALDH activity was assessed in SUM149-PT cells with Aldefluor kit and

measured by FACS analysis on 10,000 events. ALDH inhibitor DEAB was
used as control for each sample. Experiments were performed in duplicate.
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