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Differentiation of benign and
malignant parotid gland tumors
based on the fusion of radiomics
and deep learning features on
ultrasound images
Yi Wang, Jiening Gao, Zhaolin Yin, Yue Wen, Meng Sun
and Ruoling Han*

Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
Objective: The pathological classification and imaging manifestation of parotid

gland tumors are complex, while accurate preoperative identification plays a

crucial role in clinical management and prognosis assessment. This study aims to

construct and compare the performance of clinical models, traditional radiomics

models, deep learning (DL) models, and deep learning radiomics (DLR) models

based on ultrasound (US) images in differentiating between benign parotid gland

tumors (BPGTs) and malignant parotid gland tumors (MPGTs).

Methods: Retrospective analysis was conducted on 526 patients with confirmed

PGTs after surgery, whowere randomly divided into a training set and a testing set in

the ratio of 7:3. Traditional radiomics and three DL models (DenseNet121, VGG19,

ResNet50) were employed to extract handcrafted radiomics (HCR) features and DL

features followed by feature fusion. Seven machine learning classifiers including

logistic regression (LR), support vector machine (SVM), RandomForest, ExtraTrees,

XGBoost, LightGBM andmulti-layer perceptron (MLP) were combined to construct

predictive models. The most optimal model was integrated with clinical and US

features to develop a nomogram. Receiver operating characteristic (ROC) curve

was employed for assessing performance of various models while the clinical utility

was assessed by decision curve analysis (DCA).

Results: The DLR model based on ExtraTrees demonstrated superior

performance with AUC values of 0.943 (95% CI: 0.918-0.969) and 0.916 (95%

CI: 0.861-0.971) for the training and testing set, respectively. The combined

model DLR nomogram (DLRN) further enhanced the performance, resulting in

AUC values of 0.960 (95% CI: 0.940- 0.979) and 0.934 (95% CI: 0.876-0.991) for

the training and testing sets, respectively. DCA analysis indicated that DLRN

provided greater clinical benefits compared to other models.

Conclusion: DLRN based on US images shows exceptional performance in

distinguishing BPGTs and MPGTs, providing more reliable information for

personalized diagnosis and treatment plans in clinical practice.
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1 Introduction

The parotid gland is a vital exocrine organ and the primary site for

salivary gland tumors. Parotid gland tumors (PGTs) account for

approximately 3-12% of head and neck neoplasms, with 80% of all

salivary gland tumors occurring in this location (1, 2). The majority of

these tumors are benign, comprising around 75% to 80%,with

pleomorphic adenomas (PA) and Warthin tumors being the most

common types, followed by basal cell adenomas (BCA).

Mucoepidermoid carcinoma (MEC) is the most frequent malignant

parotid gland tumor (MPGTs), followed by adenoid cystic carcinoma

(ACC) and acinar cell carcinoma (3, 4). The pathological subtypes of

PGTs are complex. Accurate discrimination between benign and

malignant PGTs is crucial for clinical management and prognosis

assessment. For most benign parotid gland tumors (BPGTs), partial

gland or simple tumor resection suffices (5). However, MPGTs often

require more aggressive interventions such as total parotidectomy

along with potential lymph node dissection, complemented by

radiotherapy if deemed necessary (6).

Preoperative auxiliary diagnosis of PGTs primarily involves two

methods: fine-needle aspiration cytology (FNAC) and imaging

examination. FNAC is currently widely utilized as an adjunctive

diagnostic tool, exhibiting an accuracy rate ranging from 85% to

97% in distinguishing between BPGTs and MPGTs (7). However,

due to the limited sample size, it may not fully represent the overall

characteristics of the tumor, leading to inconclusive diagnoses (8).

Furthermore, FNAC is an invasive procedure that carries risks of

tumor cell implantation metastasis and inducing parotitis (9).

Currently employed imaging techniques for parotid examination

include ultrasound (US), computed tomography (CT),and magnetic

resonance imaging (MRI). CT can effectively illustrate the

relationship between the tumor and surrounding tissue structures.

MRI offers high soft tissue resolution enabling assessment of nerve

invasion by tumors. Nevertheless, their clinical application is

restricted by ionizing radiation exposure, high costs, and various

contraindications (10, 11). In comparison, US possesses non-

invasive features with real-time capability at a lower cost. It

provides comprehensive information regarding the location, size,

shape, margin, and blood supply of tumors; hence, it is considered

as the preferred preoperative imaging method for evaluating PGTs

(12). Nonetheless, the US features of PGTs partially overlap, and

interpretation of US findings may vary depending on operator

experience, resulting in discrepancies in diagnostic outcomes (13).

Radiomics is a field emerged from the convergence of artificial

intelligence (AI) and medical imaging. It enables the extraction of

potential features from medical images that are imperceptible to the

human eye in a high-throughput manner, which can be transformed

into visual data for quantitative analysis (14). By utilizing machine

learning models, radiomics facilitates non-invasive assessment of

various biological behaviors associated with tumors, making it

widely applicable in early diagnosis, prognosis prediction, and

treatment evaluation (15–17). While several scholars have

conducted radiomics research on PGTs using CT and MRI images

(18–20), there is limited literature based on US images (21).

In recent years, the rapid development of AI has led to the

widespread application of deep learning (DL) in various medical
Frontiers in Oncology 02
fields. Among different types of DL architectures, convolutional

neural networks (CNNs) have emerged as the most commonly

used approach (22). Compared to traditional radiomics, DL neural

networks with their multi-layer structure can automatically learn

semantic and spatial features from hidden layers, enabling end-to-

end mapping from input to output. This capability has shown

promise in improving tumor classification performance (23–25).

Yu et al. (26) developed multiple DL models based on multi-center

CT images to assist in diagnosing BPGTs and MPGTs, and it was

found that MobileNet V3 exhibited the best predictive performance.

When compared to the traditional radiomic SVM model, MobileNet

V3 demonstrated a significant increase in sensitivity by 0.111 and

0.207 for internal and external test sets respectively (P < 0.05). The

utilization of these models resulted in notable improvements in

clinical benefits and overall efficiency for less experienced radiologists.

The traditional radiomics methods have complex workflows

and primarily rely on manually defined features, which may not

fully capture the inherent heterogeneity within lesions. Although

DL has the potential to automatically learn more comprehensive

features, its algorithms are abstract and less interpretable. While

radiomics and DL features have their own distinct advantages and

limitations, their integration offers complementary information,

making it a prominent research direction in recent years. To our

knowledge, there is currently no existing research that utilizes

fusion models of radiomics and DL features for characterizing the

differentiation of BPGTs and MPGTs including US, CT, and MRI.

We hypothesize that fused features can offer additional valuable

information to enhance the efficacy of US radiomics in

distinguishing between BPGTs and MPGTs. In this study, we

compared the diagnostic performance of multiple radiomics

classifier models with various DL models. Additionally, we

developed a feature fusion model and integrated clinical and US

features to construct a nomogram, aiming to enhance the visual

classification of preoperative diagnosis for PGTs and facilitate

personalized precision diagnosis and treatment for patients.
2 Materials and methods

2.1 Patients

The present study has obtained approval from the hospital

ethics committee (protocol code 2024KS002). Given its

retrospective nature, patient informed consent was waived.

A retrospective analysis was conducted on US images obtained

from January 2017 to December 2023, involving a consecutive

cohort of 608 patients with PGTs who received treatment at our

hospital. The inclusion criteria consisted of: (1) either BPGTs or

MPGTs confirmed by postoperative pathology, (2) preoperative US

examination, and (3) complete clinical data. Exclusion criteria

included: (1) previous history of surgery or treatment in the

parotid gland region, (2) maximum tumor diameter less than

0.5cm,and (3) poor image quality, including blurred images or

incomplete visualization of lesions. In cases with multiple lesions,

the largest or most representative malignant lesion was selected for

analysis. Detailed recruitment methods can be found in Figure 1.
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Relevant clinical information including age, gender, smoking and

drinking history, along with postoperative pathological results were

retrieved from the Electronic Health Records (EHR) system.

The study enrolled a total of 526 patients, including 427 cases of

BPGTs and 99 cases of MPGTs. These patients were randomly

allocated to a training and testing set in a ratio of 7:3. The study

design and workflow are illustrated in Figure 2.
2.2 Image acquisition and analysis

Preoperative US examination of the parotid gland region was

performed using iU22 (PHILIPS), EPIQ7 (PHILIPS),S2000

(SIEMENS), and ACUSON Sequoia (SIEMENS) ultrasound
Frontiers in Oncology 03
diagnostic devices, equipped with corresponding high-frequency

linear array probes. Two-dimensional US images of PGTs were

acquired from the Picture Archiving and Communication System

(PACS), capturing essential characteristics including maximum

diameter, shape (regular/irregular), margin (well/poorly-defined),

echogenicity (homogeneous/hetero-geneous), cystic component

(absent/present), calcification (absent/present), and posterior

acoustic enhancement (absent/present). The analysis of US

images was independently conducted in a blinded manner by

two experienced ultrasound physicians A and B (with over 5 years

and 10 years of experience in superficial organ diagnosis

respectively) without access to clinical information or

pathological results. In case of discrepancies, consensus was

reached through discussion.
FIGURE 1

The patient recruitment process and distribution in the training and testing sets.
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2.3 Image segmentation

The ITK-SNAP software (version 3.8.0) was utilized for manual

delineation of the region of interest (ROI) along the tumor

periphery on images displaying the maximum lesion diameter.

Initially, ultrasound physician A performed the ROI delineation,

and subsequently, a subset of 100 patients were randomly selected

after a two-week interval for independent ROI delineation by both

ultrasound physicians A and B, aiming to assess the selected

features with high reproducibility and robustness in terms of

intra-observer and inter-observer agreement.
2.4 HCR feature extraction

Handcrafted radiomic (HCR) feature extraction was performed

with the Pyradiomics (version 3.0.1), adhering to the Imaging

Biomarker Standardization Initiative (IBSI) guidelines. The

documentation for this program can be accessed at https://

pyradiomics.readthedocs.io. HCR features are classified into three

primary groups: (1) Geometry, (2) Intensity, (3) Texture. Geometry

features are designed to characterize the spatial structure and

contour of lesion; Intensity features analyze voxel intensity-

related information using first-order statistical methods; and

Texture features capture subtle variations in lesions through more

intricate second- and higher-order analyses. Various techniques
Frontiers in Oncology 04
were utilized to extract texture features, including gray-level co-

occurrence matrix (GLCM), gray-level dependence matrix

(GLDM),gray-level run length matrix (GLRLM),gray-level size

zone matrix (GLSZM),and neighborhood gray-tone difference

matrix (NGTDM).
2.5 DL feature extraction

In order to ascertain the most suitable algorithm for our specific

research requirements, we explored the performance of prominent

networks including DenseNet121, VGG19, and ResNet50. To

improve the generalization capability across diverse datasets,

transfer learning was implemented by initializing the models with

pre-trained weights from the ImageNet database and fine-tuning

the learning rate using the cosine decay learning rate strategy.

Further details regarding the specific definition and methodology

can be found in Supplementary Material 1.

Prior to training, the input images underwent cropping and Z-

score normalization, retaining only the minimum bounding

rectangle that encompasses the ROI. This simplified complexity

and reduces background noise in algorithmic analysis. During

training, we employed real-time data augmentation techniques

such as random cropping, horizontal flipping, and vertical

flipping. For testing set images, only normalization was

performed during processing.
FIGURE 2

The overall workflow of this study.
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The classification performance of three DL models was

compared, and DL features were extracted from the penultimate

layer (average pooling layer) of the most effective model for

subsequent analysis.
2.6 Feature selection and fusion

For HCR features, the initial step involves calculating the

intraclass correlation coefficient (ICC) between HCR features and

retaining those with an ICC value ≥ 0.85, indicating a high level of

stability. Subsequently, feature standardization is performed using

Z-scores, complemented by intergroup comparisons based on t-test.

Features exhibiting p-values < 0.05 were selected for further

analysis. Furthermore, we examined repeatable features using

Pearson’s correlation coefficient and opted to retain only one

feature in cases where the correlation between feature pairs

exceeded 0.9. To reduce redundancy further, a greedy recursive

deletion strategy is employed for feature filtering. Finally, least

absolute shrinkage and selection operator (LASSO) regression

with cross-validation utilizing a minimum criterion of 10 folds

is applied to adjust the penalty parameter (l), aiming to identify

HCR features among non-zero coefficients that possess superior

predictive value.

For DL features, we applied principal component analysis

(PCA) to reduce the dimensionality of these transfer learning

features from 50,176 to 512, in order to enhance the model’s

generalization ability and mitigate the risks of overfitting.

In the stage of feature fusion, we employed a pre-fusion

algorithm that integrated HCR features with DL features to form

a comprehensive feature set. Subsequently, we followed the similar

process as that for HCR features for fusion feature selection.
2.7 Model construction and validation

HCR features and fused features obtained through feature

selection are combined with several machine learning classifiers

to construct traditional radiomics models and deep learning

radiomics (DLR) models for discriminating BPGTs and MPGTs.

Seven mainstream classifiers, including linear models (logistic

regression (LR), support vector machine (SVM)),tree-based

models (RandomForest, ExtraTrees, XGBoost, LightGBM), as well

as a deep learning-based multi-layer perceptron (MLP) model were

selected. For model hyperparameter tuning, we applied 5-fold

cross-validation on the training set and utilized the Gridsearch

algorithm. The model parameters that exhibited superior median

performance were chosen for final model training.

Through a comprehensive analysis of relevant clinical data and

US characteristics, we conducted univariate r followed by

multivariate logistic regression analysis to identify significant

features for constructing clinical models. Furthermore, these

selected features were integrated with the most optimal predictive

machine learning model to develop a nomogram.

The receiver operating characteristic (ROC) curve was

employed for assessing the diagnostic performance of various
Frontiers in Oncology 05
models, while the Delong test was utilized to compare the area

under the curves (AUC) of each model. Calibration curves and

Hosmer-Lemeshow (HL) analysis were plotted to evaluate the

concordance between predicted probabilities and actual outcomes.

Decision curve analysis (DCA) was applied to assess the clinical

utility of these models.
2.8 Statistical analysis

The analyses were performed using Python (version 3.7.12) and

statsmodels (version 0.13.2). The development of our machine

learning models utilized the scikit-learn (version 1.0.2) interface.

DL training was conducted on an NVIDIA 4090 GPU, with

MONAI 0.8.1 and PyTorch 1.8.1 frameworks.

For quantitative data, normality and homogeneity of variance

tests were conducted. If the data followed a normal distribution, it

was represented as mean ± standard deviation and an independent

samples t-test was used for comparison. If the data did not follow a

normal distribution, median and interquartile range (IQR) were

used for representation, and a non-parametric Mann-Whitney U

test was employed for comparison. For categorical data, a chi-

square test was utilized for comparison. A significance level of

P<0.05 indicated statistical significance.
3 Results

3.1 Clinical and US characteristics

Ultimately, a total of 526 patients were enrolled in the study,

including 283 males and 243 females, with ages ranging from 12 to

87 years (mean age: 51.73 ± 15.17 years). Among the cohort of

BPGTs (n=427), PA was the most prevalent subtype (207 cases;

accounting for 48.48%), followed by Warthin tumor (133 cases;

accounting for 31.15%). Of the MPGTs (n=99),MEC exhibited the

highest proportion (28 cases; accounting for 28.28%). The

distribution of tumors is presented in Table 1.

The baseline characteristics of the training and testing sets were

compared in Table 2, and no statistically significant differences

(P>0.05) were observed between the clinical and US characteristics

of the two groups, ensuring an unbiased data partition. Extensive

univariate and multivariate analyses were conducted on the baseline

characteristics BPGTs and MPGTs to determine odds ratios

(ORs) for each feature along with their corresponding p-values

(Supplementary Table 1). Univariate analysis revealed significant

differences (P < 0.05) between the two groups regarding smoking

history, maximum diameter, shape, margin, calcification, and

posterior acoustic enhancement. Multivariate analysis identified

only irregular shape (OR=1.257), poorly-defined margin

(OR=1.323),and absence of posterior acoustic enhancement

(OR=0.807) as independent risk factors for MPGTs.

We performed numerical mapping on these features and

subsequently modeled them by machine learning algorithms. The

diagnostic performance of various clinical models was compared in

Table 3 and Supplementary Figure 1. Among all the models,
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ExtraTrees exhibited superior performance in the test set with an

AUC of 0.886 (95% CI: 0.807 - 0.965).
3.2 Feature selection and
model performance

3.2.1 Radiomics models
In this study, a total of 1562 HCR features were extracted

and their distribution is presented in Supplementary Figure 2.

After feature selection, 16 HCR features were ultimately chosen

for further analysis and construction of traditional radiomics

models (Supplementary Figure 3). The predictive performance of

different classifiers combined is summarized in Table 4. Among

these models, the ExtraTrees model demonstrated superior

predictive performance in the test set, achieving an AUC of

0.853 (95% CI: 0.770 - 0.936). The ROC curve can be found in

Supplementary Figure 4.

3.2.2 DL models
The performance of three DL models is presented in Table 5

and Supplementary Figure 5. The Densenet121 model

demonstrated superior performance compared to the ExtraTrees

model based on clinical and traditional radiomics, achieving an

AUC of 0.883 (95% CI: 0.817 - 0.947) in the testing set.

To investigate the recognition ability of the Densenet121

model across different samples, we utilized the Gradient-

weighted Class Activation Mapping (Grad-CAM) technique for

visualization. Figure 3 demonstrates the application of Grad-

CAM, effectively highlighting the activation status of the final

convolutional layer relevant to cancer type prediction. This

approach facilitates identification of image regions that

significantly influence model decisions and provides valuable

insights into the interpretability.

3.2.3 Feature fusion models
After feature selection, a total of 31 HCR features and 24 DL

features were retained from the fused feature set comprising 2,074

dimensions (Figures 4, 5). Subsequently, DLR feature fusion models

were constructed by combining multiple classifiers, and the

performance comparison is presented in Table 6 and
Frontiers in Oncology 06
Supplementary Figure 6. The ExtraTrees model achieved an AUC

of 0.916 (95% CI: 0.861 - 0.971) in the testing set, demonstrating

further enhancement compared to the Densenet121 model

(AUC=0.916 vs 0.891).
3.3 Construction of nomogram and
comparison of all models

The DLR model demonstrated superior performance compared

to alternative models, thereby we integrated meaningful clinical

features with the DLR model’s predictions for constructing the final

combined model, which was effectively visualized by nomogram

(DLRN). Nomogram illustrated that DLR factor played a significant

role in predicting the risk level of PGTs (Figure 6).

The performance of the clinical model, radiomics model, DL

model, DLR model, and DLRN was summarized in Table 7.

Among all models evaluated (Figure 7), DLRN exhibited

superior performance with an AUC of 0.960 (95% CI: 0.940 -

0.979) for the training set and 0.934 (95% CI: 0.876 - 0.991) for the

testing set. Delong test (Supplementary Figure 7) revealed

statistically significant differences between DLR and DLRN

model compared to others in the training set (P < 0.05).

However, no statistically significant difference was observed

among all models in the testing set (P > 0.05). The calibration

curves ((Supplementary Figure 8) demonstrated excellent fit for

DLRN with a HL test statistic of 0.327 for the training set and

0.793 for the testing set. Furthermore, based on DCA curves

results (Figure 8), it could be concluded that DLRN provided

superior clinical benefits compared to other models.
4 Discussion

Our research findings demonstrated that DL models

outperformed traditional radiomics models in the classification of

PGTs based on US images (AUC=0.883 vs 0.853). Furthermore, the

performance of feature fusion DLR model further enhanced

(AUC=0.916). Clinical and US characteristics also provide

valuable information for model construction, and the DLRN

model that integrated all available data demonstrated superior

performance (AUC=0.934). The DCA curve illustrated that the

adoption of DLRN would yield enhanced benefits for patients.

Controversy surrounds the diagnostic value of clinical data and

US characteristics for PGTs. BPGTs typically exhibit well-defined

margin, homogeneous echogenicity, and posterior acoustic

enhancement in US images. In contrast, high-grade malignant

tumors often display heterogeneous echogenicity, poorly-defined

margin, and internal calcifications (27). However, PGTs encompass

a wide range of histological types with diverse cellular origins or

differentiations. Additionally, tumor cells can undergo various

forms of metaplasia, resulting in variations or overlaps in the

pathological and corresponding radiological manifestations. In

this study, through univariate and multivariate logistic regression

analysis, irregular shape, poorly-defined margin, and absence of

posterior acoustic enhancement were identified as independent
TABLE 1 Distribution of tumors confirmed by histologic results in the
whole cohort.

Benign
tumors

Number Malignant tumors Number

Pleomorphic
adenoma

207
Mucoepidermoid
carcinoma

28

Warthin tumor 133
Adenoid
cystic carcinoma

17

Basal cell adenoma 40 Salivary duct carcinoma 15

Myoepithelioma 36 Acinic cell carcinoma 13

Others 11 Others 26
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factors for MPGTs. These findings were consistent with previous

studies. The clinical models demonstrated excellent performance in

both the training set and testing set (AUC=0.897~0.952,

0.843~0.886).

Radiomics is the process that converts digital medical images

into high-dimensional, mineable data. Numerous domestic and

international studies have investigated its application in

distinguishing PGTs (18–21). Qi et al. (19) conducted a study

to differentiate between BPGTs and MPGTs, as well as different

subtypes of benign tumors. The results demonstrated that the

multi-sequence radiomics model based on conventional MRI

exhibited excellent performance in classifying BPGTs and
Frontiers in Oncology 07
MPGTs, with further improvement when combined with

clinical features (AUC=0.863). Li et al. (21) validated the

effectiveness of radiomics analysis using conventional

ultrasound (CUS) images for preoperative prediction of the

malignant potential of parotid lesions. By combining radiomic

features, CUS features, and clinical information in the

nomogram, the ability to differentiate between benign and

malignant parotid lesions was enhanced (AUC=0.91). The

traditional radiomics models, combined with diverse classifiers,

showed satisfactory diagnostic performance in our study. The

training set had an AUC ranging from 0.768 to 0.960, while the

testing set ranged from 0.738 to 0.853.
TABLE 2 Baseline clinical and US characteristics of patients in training and testing sets.

Clinical and US characteristics
All

(n=526)
Training set
(n=368)

Testing set
(n=158)

P

Age(year) 51.73 ± 15.17 51.74 ± 15.48 51.70 ± 14.47 0.866

Maximum diameter(cm) 2.69 ± 0.98 2.69 ± 0.98 2.67 ± 0.97 0.8

Gender 0.923

Male 283(53.80) 199(54.08) 84(53.16)

Female 243(46.20) 169(45.92) 74(46.84)

Smoking history 1.0

Absent 356(67.68) 249(67.66) 107(67.72)

Present 170(32.32) 119(32.34) 51(32.28)

Drinking history 0.844

Absent 371(70.53) 261(70.92) 110(69.62)

Present 155(29.47) 107(29.08) 48(30.38)

Shape 0.111

Regular 376(71.48) 255(69.29) 121(76.58)

Irregular 150(28.52) 113(30.71) 37(23.42)

Margin 0.176

Well-defined 373(70.91) 254(69.02) 119(75.32)

Poorly-defined 153(29.09) 114(30.98) 39(24.68)

Echogenicity 0.332

Homogeneous 111(21.10) 73(19.84) 38(24.05)

Heterogeneous 415(78.90) 295(80.16) 120(75.95)

Cystic component 1.0

Absent 413(78.52) 289(78.53) 124(78.48)

Present 113(21.48) 79(21.47) 34(21.52)

Calcification 0.264

Absent 439(83.46) 312(84.78) 127(80.38)

Present 87(16.54) 56(15.22) 31(19.62)

Posterior acoustic enhancement 0.385

Absent 121(23.00) 89(24.18) 32(20.25)

Present 405(77.00) 279(75.82) 126(79.75)
frontier
Numbers in parentheses are percentages.
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Feature extraction plays a crucial role in radiomics, but

conventional radiomics often generate numerous low-level and

predefined features that may not fully capture the heterogeneity of

images. This limitation restricts the potential of radiomics models.

In recent years, the integration of DL and radiomics has gained

momentum due to the unique advantages of DL in computer

vision and image recognition tasks. DL networks autonomously

learn high-level features specific to research problems, enabling a

more comprehensive reflection of information within lesions.

However, their performance heavily relies on data volume and
Frontiers in Oncology 08
entails significant computational costs. Transfer learning can be

leveraged by utilizing pre-trained DL networks from large-scale

datasets like ImageNet and fine-tuning them for extracting DL

features from smaller datasets for radiomics analysis. This

approach helps mitigate overfitting issues caused by limited data

availability and opens up new avenues for advancing radiomics

(28). Existing studies have demonstrated that models combining

DL features with radiomics features outperform those using either

features alone in various clinical problems such as breast tumors

(29), renal cystic lesions (30), meningiomas (31),and tuberculosis
TABLE 3 Performance comparison of different clinical models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-training 0.918 0.886 - 0.949 0.804 0.964 0.758 0.537 0.986

SVM-training 0.952 0.929 - 0.975 0.902 0.904 0.902 0.728 0.970

RandomForest-training 0.908 0.875 - 0.940 0.821 0.843 0.814 0.569 0.947

ExtraTrees-training 0.903 0.868 - 0.937 0.826 0.843 0.821 0.579 0.947

XGBoost-training 0.897 0.860 - 0.934 0.829 0.843 0.825 0.583 0.948

LightGBM-training 0.916 0.885 - 0.947 0.851 0.819 0.860 0.630 0.942

MLP-training 0.941 0.917 - 0.965 0.851 0.940 0.825 0.609 0.979

LR-testing 0.871 0.758 - 0.984 0.759 0.812 0.754 0.271 0.973

SVM-testing 0.843 0.739 - 0.948 0.684 0.875 0.662 0.226 0.979

RandomForest-testing 0.869 0.762 - 0.975 0.918 0.625 0.951 0.588 0.957

ExtraTrees-testing 0.886 0.807 - 0.965 0.892 0.625 0.923 0.476 0.956

XGBoost-testing 0.862 0.754 - 0.969 0.848 0.687 0.866 0.367 0.961

LightGBM-testing 0.879 0.776 - 0.981 0.791 0.812 0.789 0.302 0.974

MLP-testing 0.850 0.739 - 0.961 0.759 0.750 0.761 0.261 0.964
TABLE 4 Performance comparison of different radiomics models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-training 0.768 0.711 - 0.826 0.685 0.759 0.663 0.396 0.904

SVM-training 0.946 0.912 - 0.979 0.932 0.892 0.944 0.822 0.968

RandomForest-training 0.864 0.818 - 0.911 0.807 0.771 0.818 0.552 0.925

ExtraTrees-training 0.910 0.874 - 0.946 0.840 0.855 0.835 0.602 0.952

XGBoost-training 0.849 0.799 - 0.899 0.815 0.699 0.849 0.574 0.906

LightGBM-training 0.929 0.897 - 0.960 0.818 0.904 0.793 0.560 0.966

MLP-training 0.960 0.940 - 0.980 0.910 0.904 0.912 0.750 0.970

LR-testing 0.793 0.689 - 0.897 0.722 0.750 0.718 0.231 0.962

SVM-testing 0.754 0.643 - 0.864 0.576 0.812 0.549 0.169 0.963

RandomForest-testing 0.838 0.736 - 0.939 0.829 0.750 0.838 0.343 0.967

ExtraTrees-testing 0.853 0.770 - 0.936 0.848 0.625 0.873 0.357 0.954

XGBoost-testing 0.765 0.656 - 0.874 0.627 0.750 0.613 0.179 0.956

LightGBM-testing 0.778 0.669 - 0.886 0.703 0.687 0.704 0.208 0.952

MLP-testing 0.738 0.606 - 0.870 0.747 0.687 0.754 0.239 0.955
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(32). In our study, while each individual model demonstrated

satisfactory performance in isolation, the integration of DL with

clinical and radiomics data yielded a more robust predictive tool,

effectively capitalizing on the unique strengths of each

individual component.

In a recent study examining the application of deep learning in

parotid gland tumors, Liu et al. (33) evaluated five DL models

(ResNet50, MobileNetV2, InceptionV1, DenseNet121 and VGG16)

based on US images to differentiate PA and WT. DL models are

superior to ultrasound and FNAC, the AUC value of these DL

models in the test set was from 0.828 to 0.908 and ResNet50

demonstrated the optimal performance. In our study, we

attempted to utilize various CNNs including Densenet121,

VGG19, and Resnet50. The disparities in performance among

different DL models can be attributed to variations in their

internal network architectures. Specifically, Densenet121 (34)

utilizes a dense connection structure wherein the output of each

layer is directly connected to the input of all subsequent layers. This

architectural design enhances scalability and parameter efficiency

while mitigating gradient vanishing issues and expediting model

training processes. Visualization using Grad-CAM demonstrated

that model decision-making focused on edge areas of tumors
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predominantly, which aligned with clinical factors and

contributed to interpretability of the models.

Selecting an appropriate and efficient modeling classifier is crucial

for developing robust models. In the discrimination of BPGTs and

MPGTs, Yu et al. (35) utilized SVM and LR paired with three feature

selection methods, to construct distinct radiomics models based on

multi-phase CT images. The results demonstrated that the SVM

model utilizing a combination of three phases exhibited superior

predictive performance, achieving an AUC of 0.936 in the testing set.

Lu et al. (20) conducted radiomics analysis of PGTs employing five

common machine learning classifiers based on plain CT images and

observed variations in optimal classification efficacy among different

subtypes of PGTs across these classifiers. Notably, the RandomForest

model achieved the highest AUC (0.834) in distinguishing between

BPGTs and MPGTs, indicating that model performance may be

influenced by key tumor features as well as algorithmic characteristics

inherent to each classifier. The ExtraTrees classifier demonstrated

superior performance in the testing set of clinical, radiomics, and

DLR models in our study. By incorporating additional randomness

derived from RandomForest, the ExtraTrees effectively reduces model

variance and enhances generalization capabilities, making it highly

efficient for handling extensive datasets (36).
TABLE 5 Performance comparison of DL models.

Model. AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Densenet121-training 0.902 0.866 - 0.938 0.774 0.867 0.747 0.500 0.951

VGG19-training 0.861 0.816 - 0.905 0.802 0.783 0.807 0.542 0.927

Resnet50-training 0.906 0.868 - 0.944 0.883 0.747 0.923 0.738 0.926

Densenet121-testing 0.883 0.817 - 0.947 0.886 0.687 0.908 0.458 0.963

VGG19-testing 0.815 0.694 - 0.935 0.816 0.625 0.838 0.303 0.952

Resnet50-testing 0.793 0.646 - 0.939 0.892 0.562 0.930 0.474 0.950
FIGURE 3

The Grad-CAM visualizations for four typical samples. These visualizations are instrumental in demonstrating how the model focuses on different
regions of the images for making its predictions.
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The rapid advancement of deep learning in computer vision has

led to the emergence of highly competitive approaches in tumor-

related domains through the integration of multi-modal and multi-

omics features. Zhang et al. (37) proposed two multi-sequence

networks (ResFN-Net and FN-Net),based on ResNet and

ConvNeXt network respectively, incorporating attention

mechanism for the classification of CDKN2A/B homozygous

deletion status in IDH-mutant astrocytomas using CE-T1WI and

T2WI MRI images. The FN-Net deep learning network based on
Frontiers in Oncology 10
ConvNeXt demonstrated superior predictive performance with an

ACC of 0.9236 and an AUC of 0.9704. ConvNeXt network builds

upon ResNet, drawing inspiration from the Swin Transformer and

incorporating Spatial Pyramid Pooling (SPP) technology to

effectively capture intricate details and global features. It has

demonstrated comparable accuracy, scalability, and robustness as

Transformer (38). The study conducted by Vanguri et al. (39)

published in “Nature cancer” showcased the value of multimodal

integration as well. Researchers have developed a multimodal
A B

FIGURE 4

Fusion feature selection using LASSO (A) and the histogram of the feature importance score (B) based on the selected features. The optimal l value
of 0.0020 was selected.
FIGURE 5

The selected fusion features and corresponding coefficients.
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DyAM model that combines histology, radiology, and genomics to

accurately predict immunotherapy response in NSCLC patients.

The model (AUC = 0.80, 95% CI 0.74-0.86) outperformed

unimodal measures, including tumor mutation burden and

programmed deathligand-1 immunohistochemistry score. These

findings suggest that machine learning techniques combining

multiple modalities have complementary and synergistic effects,

facilitating oncology decision-making.

The present study is subject to certain limitations. Firstly, the

retrospective design employed in this study may introduce potential

selection bias. Secondly, patients were recruited from a single-center

medical institution and lacked external validation. Future research
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should involve multi-center participation to expand the sample size

and enhance model generalizability. Lastly, our feature extraction and

model construction solely relied on conventional two-dimensional

US images with manually delineated ROI, without incorporating

other modalities such as elastography or contrast-enhanced imaging.

Utilizing standardized single-modality images allows for easier

acquisition and wider applicability and dissemination of the model.

In future studies, we will concentrate on constructing models using

multi-modal imaging to extract comprehensive information and

integrating deep learning automatic segmentation algorithms to

improve delineation accuracy and repeatability, thereby enhancing

diagnostic performance.
TABLE 6 Performance comparison of different DLR models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-training 0.990 0.982 - 0.997 0.938 0.964 0.930 0.800 0.989

SVM-training 0.998 0.995 - 1.000 0.976 0.988 0.972 0.911 0.996

RandomForest-training 0.971 0.949 - 0.992 0.905 0.940 0.895 0.722 0.981

ExtraTrees-training 0.943 0.918 - 0.969 0.908 0.795 0.940 0.795 0.940

XGBoost-training 0.935 0.908 - 0.962 0.818 0.904 0.793 0.560 0.966

LightGBM-training 0.941 0.917 - 0.965 0.870 0.819 0.884 0.673 0.944

MLP-training 0.989 0.982 - 0.997 0.948 0.976 0.940 0.827 0.993

LR-testing 0.814 0.683 - 0.945 0.880 0.625 0.908 0.435 0.956

SVM-testing 0.831 0.727 - 0.934 0.747 0.750 0.746 0.250 0.964

RandomForest-testing 0.836 0.738 - 0.934 0.665 0.875 0.641 0.215 0.978

ExtraTrees-testing 0.916 0.861 - 0.971 0.892 0.750 0.908 0.480 0.970

XGBoost-testing 0.885 0.815 - 0.955 0.747 0.875 0.732 0.269 0.981

LightGBM-testing 0.870 0.798 - 0.942 0.797 0.812 0.796 0.310 0.974

MLP-testing 0.730 0.571 - 0.890 0.816 0.562 0.845 0.290 0.945
FIGURE 6

The DLR nomogram for predicting MPGTs. For clinical features in nomogram, 1 means ‘absent’, ’regular’, ’well-defined’, and 2 means ‘present’,
’irregular’, ’poorly-defined’ successively.
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5 Conclusions

This study demonstrated that the feature fusion DLR model

based on US images exhibit superior classification performance in

distinguishing between BPGTs and MPGTs, compared to clinical
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models, traditional radiomics models, and DL models. Moreover,

by incorporating clinical and US factors, the performance of DLRN

is further enhanced. This model holds immense potential for

facilitating individualized diagnosis and treatment plans in

clinical settings, thereby contributing to precision medicine.
A B

FIGURE 8

Different models’ DCA curves in training set (A) and testing set (B).
TABLE 7 Performance comparison of different models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Clinical-training 0.903 0.868 - 0.937 0.826 0.843 0.821 0.579 0.947

Radiomics-training 0.910 0.874 - 0.946 0.840 0.855 0.835 0.602 0.952

Deep Learning -training 0.902 0.866 - 0.938 0.774 0.867 0.747 0.500 0.951

DLR-training 0.943 0.918 - 0.969 0.908 0.795 0.940 0.795 0.940

Nomogram -training 0.960 0.940 - 0.979 0.880 0.916 0.870 0.673 0.973

Clinical-testing 0.886 0.807 - 0.965 0.892 0.625 0.923 0.476 0.956

Radiomics-testing 0.853 0.770 - 0.936 0.848 0.625 0.873 0.357 0.954

Deep Learning -testing 0.883 0.818 - 0.947 0.886 0.687 0.908 0.458 0.963

DLR-testing 0.916 0.861 - 0.971 0.892 0.750 0.908 0.480 0.970

Nomogram -testing 0.934 0.876 - 0.991 0.867 0.875 0.866 0.424 0.984
A B

FIGURE 7

The ROC curves for different models in training set (A) and testing set (B). AUC, area under the curves.
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