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Multifaceted roles of IKZF1
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Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University,
Chengdu, Sichuan, China
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-

finger DNA-binding proteins associated with chromatin remodeling. The protein

product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent

mouse model studies have further confirmed its regulating role in

lymphopoiesis as well as in hematopoiesis; besides, it associates with immune

function, certain immune disorders like common variable immunodeficiency and

dysgammaglobulinemia have been proved to be associated with germline IKZF1

mutations. Dysfunction of IKAROS also bears paramount significance in leukemic

transformation and alterations of IKZF1 gene predicts a poor prognosis in

hematological malignancies. As an independent prognostic marker, IKZF1 has

been incorporated in the risk stratification of BCP-ALL and stratification-guided

therapy has also been generated. In this review, we provide a concise and

comprehensive overview on the multifaceted roles of IKZF1 gene.
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Introduction

IKZF1, namely LyF-1, had been proved to play an important role for the first time in

lymphopoiesis (1). IKAROS as a founding member of a family of zinc finger transcription

factors, encoded by the IKZF1 gene, associates with other zinc finger bearing transcription

factors (HELIOS, AIOLOS, EOS, and PEGASUS encoded by IKZF2, IKZF3, IKZF4 and

IKZF5, respectively) in the regulation of both myeloid and erythroid lineage, in addition to

lymphoid lineage (2–9). Germline or somatic mutations of IKZF1 demonstrate quite

variable clinical phenotypes, ranging from primary immunodeficiency (PID)/inborn errors

of immunity (IEI) (10–12) to autoimmune diseases (13–16) and to even hematological

malignancies such as acute lymphoblastic leukemia (17, 18). As in acute lymphoblastic

leukemia, especially of high-risk B-cell-precursor ALL (BCP-ALL), in which IKZF1 gene

mutation is of high frequency (19, 20), such as BCR-ABL positive ALL and BCR-ABL-like

ALL, genetic alteration of IKZF1 gene is associated of poor outcome (21–23) and confers

resistance in conventional chemotherapy (24, 25). In terms of the types of mutations in the

IKZF1 gene, the most common are characterized by large fragment deletions mapping to
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IKZF1 exons, as well as by other point mutations (missense,

nonsense) or frameshift mutation, which cause diversity in

clinical phenotypes (Figure 1).
Structure and function of IKZF1 gene

From early 1990s, the studies in vitro and in vivo revealed

the molecular structure of IKZF1 gene, followed by precise

elaboration of the functional domains of its corresponding

protein IKAROS (1, 26). The IKZF1 gene is mapped on

chromosome 7 at 7p12.2 and consists of 8 exons, coding for 519

amino acids (27). It is worth noting that expression of IKZF1 gene is

restricted to the fetal and adult hemo-lymphopoietic system, and

IKAROS is one of the most important and founding member of a

family of zinc finger transcription factors, which associates

with other transcription factors, HELIOS, AIOLOS, EOS, and

PEGASUS, in regulation of hemopoiesis.

IKAROS functions as a master transcription factor and is

characterized by the DNA-binding ability through its zinc-finger

domains to regulate target genes involved in hematopoiesis,

particularly in lymphocyte differentiation, through association

with transcriptional complexes or transcription factors including

the nucleosome remodeling and deacetylase (NuRD) complex and

epigenetic modification interferon regulatory factor 4 (IRF4) (28–30).

Among these zinc-finger domains, four zinc-fingers (ZF1–4), coding

by IKZF1 exons 4–6, are located at the N-terminus of the protein and

bind to the targeted DNA sequences when the protein is

phosphorylated and being subsequently transferred from the cell

cytoplasm to nucleus to exerts its function (31, 32). Homo- or
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heterodimerization of wild type IKAROS with other IKAROS

family members facilitate the localization of the dimers to the

pericentromeric heterochromatin (PC-HC) and regulates the

expression of its target genes (33, 34). IKZF1 mutations which

locate in the DNA-binding domains would cause compromised

DNA-binding ability of mutant IKAROS and demonstrate a bizarre

staining pattern of PC-HC (35). While, the rest of the zinc-fingers

(ZF5–6), being coded by exon 8 of IKZF1, are in the location of the C-

terminus of the protein, required for homo- and heterodimerization

between the different IKAROS proteins (26, 36). Dimerization

between IKAROS zinc-finger proteins with a functional DNA

binding domain facilitate their DNA-binding ability and

transcriptional activity. The mutations affecting zinc-finger 5 and/

or zinc-finger 6 would limit homo-and heterodimerization, in

addition to a compromised DNA-binding ability and abnormal

PC-HC localization (17). According to NCBI database (27), there

are at least 18 isoforms of IKZF1, which are generated by alternative

splicing transcript variants. The isoforms share the C-terminal

dimerization zinc-fingers in common, and have variant numbers

and locations of DNA binding zinc-fingers in the N-terminal

(26) (Figure 2).

Among all IKAROS isoforms, IK6 (D4–7) is the most common,

with a proportion of up to 42%, followed by IK10 (D2–7) ranging
from 7% to 20%, which is consistent in adult and pediatric patients

(21–23). The remaining approximately one third are comprised of

the so-called rare isoforms because frequency of each of these

variants is no more than 10% in BCP-ALL patients, such as D2–3,
D2–7, D2–8, etc. (Table 1). Interestingly, in terms of prognosis, there

seems to be no significant difference between IK6 and IK10

isoforms (21), possibly because IK6 and IK10 share the similar
FIGURE 1

The multifaceted roles of IKZF1. * HSC, hematopoietic stem cell; CLP, common lymphoid precursor; BCP, B cell progenitor; DN, Dominant negative
effect on IKAROS function; HI, Haploinsufficiency due to quantitative or qualitative decrease of IKAROS; DD, Dimerization defects caused by deletion
of dimerization zinc fingers.
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structure that both isoforms lack all four N-terminal zinc-finger

containing domains, thus generating a similar clinical phenotype.

Nevertheless, almost all isoforms due to various IKZF1 deletions

confer a poor prognosis including those rare IKAROS isoforms.
Roles of IKZF1 gene in hematopoiesis

B-cell and T-cell lineages develop from an uncommitted

hematopoietic stem cell. The somatic gene rearrangements that

generate the highly diverse repertoire of antigen receptors,

immunoglobulin for B cells, and the T-cell receptor for T cells,

occur in the early stages of the development of T cells and B cells from

a common bone marrow–derived lymphoid progenitor. During the

development of these lymphoid cells, a large amount of transcription

factors cooperates and play vital roles in the process. The IKAROS

functions as a master transcription regulator in the differentiation of

lymphoid cells. Unlike its transcription factor counterparts such as

EA2, FOXO1, EBF and PAX5/BASP, whose expression persists only

in certain stages of B cell development in the bone marrow, IKZF1 is

expressed throughout the whole process from lymphoid-myeloid

primed multipotent progenitor (LMPP) to immature B cell within

the bone marrow (37–39) (Figure 3). Transcription factors
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abnormalities could be harmful to the cell homeostasis and mediate

leukemic transformation (40). There is a high frequency of

transcription factors abnormalities in B-cell precursor

lymphoblastic leukemia (BCP-ALL) and are recognized as the main

genetic-hit events in the leukemogenesis (41). Mouse model studies

by Kirstetter P et al. showed that IKAROS activity fluctuations due to

various types of IKZF1mutation had huge impact onmultiple aspects

of B cell lineage development (42).

Other mouse model studies by Winandy S et al. have evidenced

that IKAROS is required for both early and late stage of lymphocyte

differentiation in the thymus. IKAROS dysfunction will enhance the

proliferation of maturing thymocytes and eventually lead to

malignant transformation of such thymocytes (6, 43). Furthermore,

Georgopoulos K et al. demonstrated that mice harboring

homozygous germline mutation of IKZF1 were lack of not only

adaptive immune lymphocytes of T and B cells, but innate immune

lymphocytes of natural killer cells, in addition to deficiency of their

corresponding progenitor cells, yet with preservation of normal

erythroid and myeloid cells (6, 44).

However, Lopez R et al. showed in their mouse model studies a

different phenotype that the IKAROS null mice had anemia and

megakaryocytic abnormalities, besides lymphoid and stem cell

defects (45). One possible explanation for this divergent

manifestation could be the variant location of the lost zinc-fingers

between the two studies. In the studies of Georgopoulos K et al., the

lost zinc fingers located in the N-terminal domains for DNA-

binding, which leads to the truncate IKAROS protein. Lopez R

et al. deleted the entire C-terminal zinc fingers required for IKAROS

protein dimerization and function, the loss of C-terminal zinc

fingers probably interferes with the normal PYR complex

formation on DNA (44, 46), followed by the subsequent

development block of whole blood lineages. In consistent with

studies by Lopez R et al., Francis O et al. and Malinge S et al. also

found that IKAROS functioned as a regulator of myeloid and

erythroid differentiation (7–9).
FIGURE 2

The genome of IKZF1 and most common 10 IKAROS isoforms with their functional domains. A total of 18 isoforms have been described on
NCBI database.
TABLE 1 Percentages of common IKZF1 isoforms in Pediatric and Adult
BCP-ALL.

IKAROS isoforms Pediatric (%) Adult (%)

D4–7 (IK6) 36.4 42

D2–7 (IK10) 13.6 7–20

D2–8 4.5 ~10

D4–8 9.1 ~10
*D: large fragment deletions mapping to IKZF1 gene exons.
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Roles of IKZF1 mutations in
immune function

During the whole 1990s and early 2000s, researches on IKAROS

mainly focus on the its role in regulation of hematopoiesis,

especially lymphopoiesis. In the new era, more studies are carried

out, striving to elaborate the correlation between IKZF1 mutation

and the resultant impact on immune function. As described above

in mouse models that IKZF1 null mice are prone to T-cell

malignancies like T-ALL or lymphoma, nevertheless in the real

world, humans harboring germline mutation of IKZF1 are more

frequently linked to various types of immunodeficiency instead of

malignancies (10, 11, 14–16, 47–53).

Studies from mouse models and humans suggest that there is

strong correlation between genotype of the numerous variants of

IKZF1 gene and phenotype of the clinical patients. The key factor

defining the phenotype is the protein expression of IKAROS which

is dependent on the germline alterations of IKZF1 gene, and

according to these genetic and proteic variations, three clinical

groups are established among those primary immunodeficiencies/

inborn errors of immunity patients (12): Haploinsufficiency (HI),

Dimerization defective (DD) and Dominant negative (DN). 1). HI

due to quantitative or qualitive decrease of IKAROS: Large deletions

of IKZF1 exons or nonsense mutation leading to impaired protein

expression results in reduction of wild type IKAROS expression, or

IKAROS function loss resulting from disruption of DNA-binding

and PC-HC targeting, yet without influencing the wild type

IKAROS protein; 2) DD due to genetic alterations (ZF5–6

involved) affecting IKAROS dimerization ability: In contrast to

loss of ability to interact with IKAROS family members and

generate homo- or heterodimers, DD mutants conserve the DNA-

binding ability as monomers and have no impact on wild type

IKAROS; 3) DN: One special IKAROS mutants that conserve the

dimerization ability but are unable to bind IKAROS target

sequences and disrupt interaction between PC-HC and wild type
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IKAROS proteins (Figure 4). In terms of IKAROS dosage effect,

theoretically speaking, DN type has the most adverse impact on the

normal immune function, for one thing mutants of DN type exhibit

HI effect, for another DN mutants hijack the wild type IKAROS

protein to worsen the normal IKAROS functional defects. Boutboul

D et al. evidenced that patients with DN mutations would probably

have an earlier onset of combined immunodeficiency compared to

patients harboring HI or DD mutations, in addition, patients with

DN mutations had a more severe loss of Pan-B cells ranging from

progenitor B cells to antibody-secreting plasma cells (47). Winandy

S et al. and Georgopoulos K et al. also showed in their studies that

normal hemo-lymphopoiesis was more strongly influenced among

DN genotype mouse who were devoid of both innate immune NK

cells and adaptive immune T, B cells and the corresponding

progenitor cells (6, 44). Other studies found that nearly all

patients with DN mutations had low numbers of B cells in the

peripheral blood in contrast to a significant lower prevalence of

decreased PB B cells in patients with HI and DD mutations (17, 37,

38, 48, 51). Additionally, patients with DN mutations had more

naïve T cells (CD45RA+CD62L+ or CD45RA+CD45RO–) and an

abnormal ratio of Th subsets of which both CD4+ memory T cells

and Treg cells were decreased, owing to impaired sensitivity to IL-2

stimulation, reduced STAT5 pathway activation (47). As one of

professional antigen-presenting cells, dendritic cells (DC) play

important roles not just in the initiation and activation of

adaptive immune response but also in the process of T cell

maturation in the thymus when early T-cell precursor cells

(ETPs) differentiate from double-negative stage to single-positive

naïve T cell (37). Mouse model and human studies also showed that

DN genotype had lower numbers of DC (5, 44, 54). Monocytes and

neutrophils are classical phagocytes responsible for defensing

against invading bacteria and other microbes. Patients with DN

mutations had reduced granulopoiesis of neutrophils and were

incapable of full responses to stimulations to Toll-like receptors

and the subsequent scant production of proinflammatory cytokines
FIGURE 3

Multiple transcription factors are involved in different stages of B cell development in bone marrow.
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by monocytes. It is rational that DN genotype would confer a more

severe clinical phenotype, in consistent with the idea, Thaventhiran

J et al. and other researchers found that patients with DNmutations

were susceptible to an earlier onset and broader as well as more

severe invasive infections, including pneumocystis pneumonia

which was infrequent in patients harboring HI or DD mutations

(53, 55). Although DN genotype often implies an inferior

phenotype, patients with DN mutations would barely have

chances of developing autoimmune diseases like systemic lupus

erythematosus (SLE), immune thrombocytopenia (ITP),

rheumatoid arthritis (RA), antiphospholipid syndrome (APS) and

others, of which are more frequently seen in DD patients followed

by HI patients (13, 15, 16, 49–51, 56). Unlike DN genotype which is

characterized by devoid of B cells, allelic variants of DD and HI are

more likely to generate self-reactive B cells due to incapable of

controlling B cell anergy and TLR signaling (57). As clearly

described in Janeway’s immunobiology textbook, IKAROS is a

rare transcription factor that expressed throughout the B cell

development in the bone marrow and regulates many vital events

like maintaining a suitable intensity of TLR signaling and induction

of B cell anergy, which contribute to B cell central tolerance (37).

Furthermore, Kuehn H et al. showed that DD mutants had an

abnormal sumoylation and affected the normal interaction between

IKAROS and NuRD complex, leading to aberrant epigenetic

modification and the consequent B cell central intolerance which

counts for much in the pathogenesis of autoimmune diseases (17).
Frontiers in Oncology 05
Roles of IKZF1 mutations in leukemia

Frequency of IKZF1 alterations in leukemia

Most of our knowledge of T-cell development in the thymus comes

from the mouse, experiments on mice demonstrates that T-cell

precursors migrate from the bone marrow to the thymus, where they

commit to the T-cell lineage after Notch receptor signaling.

Unlike those transcription factors (TCF1, GATA3, Bcl 11b)

expressed at a later stage of T-cell development in the thymus (37),

Georgopoulos K et al. found that IKZF1 gene was expressed

throughout the ontogeny of the T cell lineage from as early in the

hemopoietic progenitors in the fetal stage to the adult stage of T cell

maturation (1). Soon afterwards, further findings from IKAROS

heterozygous mice studies by Winandy S et al. showed that

compromised IKAROS function leads to aberrant proliferation

of clonal T cells and the consequent development of T cell

leukemia and lymphoma (6). There is a strong link between

IKAROS inactivation and Notch activation in murine T-ALL, so it is

rationale to deduce that IKAROS defect could promote Notch

activation in human T-ALL. However, IKZF1 is rarely found in

human T-ALL (<5%) (23, 58–60). The patients with high Notch

signaling expression appear to express normal IKAROS, except for

the most aggressive T-ALL subtype, ETP-ALL, in which the frequency

of IKZF1 somatic mutations is 13% (61). It is also similar in terms of

acute myeloid leukemia (AML), the frequency of IKZF1 somatic
FIGURE 4

Mechanisms of functional defects of IKAROS caused by germline alterations of IKZF1. HI, Haploinsufficiency due to quantitative or qualitative
decrease of IKAROS, without influencing the wild-type IKAROS. DD, Dimerization defects caused by deletion of dimerization zinc fingers lead to
more monomers that cannot bind to DNA sequence, without influencing the wild-type IKAROS. DN, Dominant negative effect on IKAROS function.
The mutant monomer can combine with wild-type monomer, but the dimer lacks DNA-binding or PC-HC targeting function, thus affecting the
function of the wild-type IKAROS.
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mutations is only 3.83% (62). Interestingly, Grossmann V et al. found

that chronic myeloid leukemia (CML) patients had a slightly higher

mutation rate of IKZF1(17.9%) when progressing to blast crisis (63).

Jäger R et al. also showed that transformed MPN patients had a higher

incidence of heterozygous loss of IKZF1 compared to that in non-

leukemic MPN patients (21% vs 0.2%) (64). In sharp contrast to the

low frequency among the aforementioned hematological malignancies,

IKZF1 alterations is of much higher frequency in BCP-ALL (19, 22),

particularly in kinase and cytokine- receptor signaling activating

leukemias including Ph+ALL and Ph-like ALL (59, 60, 65–68).

Despite a high incidence of IKZF1 mutations in BCP-ALL, these

alterations are mainly linked to somatic abnormalities, which are not

characterized by point mutation (missense, nonsense) or frameshift

mutation, but by large fragment deletions mapping to IKZF1 exons

(21–23). Churchman M et al. showed that germline IKZF1 alterations

is extremely low in pediatric BCP-ALL (69).

IKZF1 alterations promote leukemogenesis and
induction of chemo-resistance

IKZF1 alterations promote leukemogenesis had been studied in

mouse and human by Churchman M et al. and other researchers

(22, 70, 71). IKZF1 alterations conferred stem cell-like properties

characterized by overexpression of genes indicative of a stem cell

phenotype and lead to upregulation of adhesion molecules

(FAK, RHO, CTNND1, etc.) as well as integrins, altogether

facilitating self-renewal or leukemic transformation. Furthermore,

as a master regulator of B cell differentiation, functional impairment

of IKAROS due to IKZF1 somatic alterations would affect its

binding to IgH locus and disturb arrangement of the heavy chain

of pre-BCR and BCR, thus signaling through the pre-BCR that

mediates the transition from pre-B cell to immature B cell would be

blocked (42). Besides, downstream of pre-BCR signaling is

impacted where expression of c-Myc is upregulated and k-light

chain is downregulated which enhance the cell cycle in pro-B and

pre-B cells, and block their differentiation into immature B cells

(72–74). Li JF et al. reported that IKZF1 N159Y is a rare subtype

of B-ALL characterized by significant upregulation of the

transcriptional coactivator YAP1, SALL1 and ARHGEF28B, and

downregulation of the B-cell receptor signaling and JAK-STAT

signaling pathways (75).

In addition, IKZF1 alterations also make BCP-ALL, in

particular high-risk subtype such as Ph+ALL and Ph-like ALL,

refractory to treatment by induction of chemo-resistance through

various mechanisms. Marke R et al. demonstrated in their mouse

models studies and in vitro experiments that compromised

functional IKAROS due to IKZF1 alterations affected the

transcription function of TSC22D3, DUSP1, IRS2, and so on,

combined with the abnormal regulation of GC-activated genes in

response to prednisolone, contributing to resistance to GC-induced

apoptosis (23). Scheijen B et al. showed that IKZF1 haplodeficient

B-cells enhanced cell survival as compared to wild-type (WT)

IKAROS, when co-existing with BTG1 deficiency, these B-cells

showed an even stronger GC-induced apoptosis (76). Of note,

under physiological conditions, WT IKAROS controls the

transition of pre-B cells from a stroma-adherent proliferative
Frontiers in Oncology 06
phase to a relative non-dividing but differentiating phase. As

evidenced by Joshi I et al. and Churchman M et al. (77, 78),

IKZF1 alterations resulted in overexpression of adhesion

molecules and upregulation of focal adhesion kinase (FAK). The

dysregulated FAK pathway synergizing with other upregulated

intracellular signaling pathways promoted the survival of

leukemic cells. Furthermore, IKZF1 deletions that co-occurred

with deletions in CDKN2A, CDKN2B, PAX5, or PAR1 in the

absence of ERG deletion conferred the worst outcome and,

consequently, were grouped as IKZF1plus (79).

IKZF1 alterations and hereditary leukemia
Germline mutations have been known for many years that they

could increase risks of various cancers, as TP53 germline mutation

could increase risks of acute lymphoblastic leukemia. Until 2018,

Churchman et al. demonstrated in their study that germline

variants in IKZF1 predispose to ALL (69). Winer P et al. also

reported that IKZF1 germline mutation contribute to acute

lymphoblastic leukemia in children with Down syndrome (DS)

(80). By germline whole-exome sequencing (WES) study, they

discovered pathogenic variant p.Arg162Trp in IKZF1 gene to ALL

predisposition, which was also reported in sporadic B-ALL patients

(69). Buitenkamp T et al. showed that DS-ALL patients had a

similar frequency of IKZF1 deletions to that of high-risk (HR) non-

DS-ALL patients (~30%) (81). Palmi C et al. discovered that the

IKZF1plus feature in DS-ALL was 3 times more frequent than in

non-DS-ALL (18% versus 6%), and IKZF1plus patients had even

worse outcome as well as higher relapse (82). Furthermore, they also

found that the blasts of IKZF1plus DS-ALL patients were particularly

sensitive to drugs which had been described to be effective in Ph-like

cases, such as HDAC inhibitors. These findings could help refine

stratification-directed therapy for DS-ALL patients, who are

intrinskly more fragile and are of inferior outcome compared

with non-DS children with ALL.

IKZF1 deletion is of high prevalence and a pivotal
prognostic factor in BCP-ALL

As early as 2007, a large cohort study enrolling 1522 adult

patients of ALL including Ph- and Ph+ ALL from multicenter

demonstrated that karyotype could be an independent prognostic

factor in adult ALL (83), however, karyotype itself has limited

potency to stratify patients to the ideal risk groups and ensure that

patients received the most appropriate treatment. Acute

lymphoblastic leukemia patients can only benefit the most from

the pretreatment evaluation of combing high quality cytogenetic

data with precise molecular genetic analysis. So, we can see that

during the recent two decades, extensive researches have been done

trying to find out the optimal combination of the methods, and

IKZF1 alterations are just one of the most important constituents to

this combination. As described above, IKZF1 is a master regulator

of hematopoiesis, especially lymphopoiesis. Loss of function of

IKAROS due to IKZF1 alterations causes a predisposition to

lymphoid malignancies. Mullighan C et al. and others reported

that IKZF1 alterations is frequent in BCP-ALL, about 15% in

pediatric patients and increasing to 30%-50% in adult patients,
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and remarkably higher in high-risk subtypes, notably, the frequency

is as high as 84% and 70% in adult Ph+ALL and Ph-like ALL,

respectively (19, 22, 59, 60, 65–68, 84, 85).

Either the initial study fromMullighan C (22) in which 258 ALL

pediatric patients were enrolled or the following numerous large

scale clinical researches (67, 86–90) which included more than 1000

pediatric patients and the relatively small-scale adult clinical

researches (91, 92), all showed that IKZF1 deletion was a strong

prognostic factor and confer an increased risk of relapse and poor

outcome with inferior EFS as well as OS in BCP-ALL. This is in

consistence with our studies (93). Furthermore, IKZF1 deletion

demonstrates heterogeneous impact on the prognosis of BCP-ALL

patients when coexisting with other molecular abnormalities.

Ribera J et al. and others (94, 95) reported that patients with

coexistence of IKZF1 and CDKN2A/B alterations had worse

prognosis. Stanulla M et al. and Zaliova M et al. also pointed out

that patients harboring IKZF1plus alterations had the worst

prognosis compared to those with sole IKZF1 deletion (79, 96).

The patients with IKZF1plus, that have co-occurring deletions in

CDKN2A, CDKN2B, PAX5, or PAR1, worsen the B-ALL phenotype,

as the co-aberrations enhance B cell development arrest and

abnormal proliferation. It is of great interest that BCP-ALL

pediatric patients with ERG deletions had a high co-occurring

rate of IKZF1 deletions, and such patients confer a good outcome

compared to patients with the sole-IKZF1 deletions or the sole-EGR

deletions (97, 98). Ultimately, the prognostic significance of IKZF1

deletions translate into optimal therapeutic strategies to benefit

patients from unnecessary treatment related toxicity and ensure

sufficient treatment intensity to avoid chemo-resistance or relapse.

It is noteworthy that combing MRD and IKZF1 status could refine

the risk stratification and better predict the disease relapse (99, 100).

IKZF1 mutations in acute myeloid leukemia
The role and implications of IKZF1 mutations and deletions are

well studied in B-ALL. However, the prevalence and impact in AML

remain sparse. Eckardt J et al. reported the 2.8% of patients

harboring IKZF1 alterations in 1606 adult AML patients, and the

heterozygous SNVs are the most common mode of alteration. They

also identified a mutational hotspot in the second N-terminal zinc

finger domain at p.N159S, which was present in 19 of 45 (42.2%)

IKZF1 alterations cases. AML patients with mutated IKZF1 was

usually associated with aberration in RUNX1, GATA2, KRAS, KIT,

SF3B1, and ETV6. IKZF1mutation could be an independent marker

of adverse risk regarding complete remission rate, event-free,

relapse-free, and overall survival (101). Zhang X et al. investigated

522 newly diagnosed AML patients, 20 of whom harboring IKZF1

mutations with a significant co-occurrence of mutations in SF3B1,

CSF3R, and CEBPA. The authors describe a significantly reduced

CR rate for patients with IKZF1mutations (62). Wang Y et al. found

that 23 out of 475 (4.8%) AML patients bear mutated IKZF1, and

delineated three clusters of IKZF-mutated as: N159S (40%), co-

occurring CEBPA mutations (43%), and others (17%) (102). Jäger
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et al. found deletions of IKZF1 to occur in ~20% of AML cases that

arose secondary to myeloproliferative neoplasms suggesting a

differential role of deletions and mutations in myeloid

leukemogenesis (64). Intriguingly, IKZF2, which encodes another

member of IKZF family of transcription factors (HELIOS) also has

a role in AML, as shown in the study by Park S et al. (103), IKZF2

has an oncogenic role in AML, and IKZF2 is required for leukemic

stem cells survival and function by controlling chromatin

accessibility of self-renewal and differentiation programs.
Treatment of BCP-ALL patients target
to transcriptional regulation of genes
by IKAROS

As reviewed above, IKZF1 alterations promote leukemogenesis, it

seems quite rational to restore wild type IKZF1 expression in the

treatment of BCP-ALL with IKZF1 alterations. Mullighan C et al.

pioneered this work and showed that retinoid receptor agonists could

induce expression of wild-type IKZF1, reversed the stem cell features of

IKZF1-altered leukemic cells and increased responsiveness to dasatinib

in Ph+ ALL (104). Song C et al. demonstrated that TBB and CX-4945,

different kinds of casein kinase II inhibitors, restored IKAROS activity

and showed an antileukemia effect by inhibiting the transcription of the

genes involved in the PI3K pathway (105). Palmi C et al. studied some

compounds in vitro cell culture that show one of histone deacetylase

inhibitors, Givinostat, has the highest efficacy on IKZF1plus blasts in

comparison to controls (82). In the clinical setting, the direct targeting

of IKZF1 to restore its function have not been yet. These studies

suggested that targeting IKAROS pathways could be used as a

therapeutic approach for the high-risk BCP-ALL in the future.
Conclusions and perspectives

In conclusion, it has been clearly demonstrated that IKZF1

alterations have great impacts on many aspects. Germline or

somatic alterations as well as heterozygous or homozygous

deletions, each exhibits a heterogeneous clinical phenotype. As is

evidenced by mouse model and human studies that germline IKZF1

alterations are highly associated with immune dysfunction

including various types of immunodeficiency, in addition to

autoimmune diseases; while for somatic deletions of IKZF1,

patients are susceptible to acute B cell lymphoblastic leukemia.

The roles of IKZF1 alterations in leukemogenesis and potency in

prognosis prediction have been elucidating. In the future, targeting

IKAROS-regulated signaling pathways could be a highly effectively

therapeutic approach. Identification of IKAROS target genes would

be much important, both to gain insight into IKAROS to function

as a tumor suppressor, as well as to identify novel therapeutic

targets for the high-risk acute lymphoblastic leukemia.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1383419
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Feng et al. 10.3389/fonc.2024.1383419
Author contributions

LF: Conceptualization, Writing – review & editing, Data

curation, Formal analysis, Methodology. HZ: Data curation,

Formal analysis, Writing – original draft. TL: Conceptualization,

Funding acquisition, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Grant of Tianfu Qingcheng Science and

Technology Project, Sichuan, China (No. 1232 to TL).
Frontiers in Oncology 08
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific
transcription factor and a putative mediator for T cell commitment. Science. (1992)
258:808–12. doi: 10.1126/science.1439790

2. Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, et al. Aiolos,
a lymphoid restricted transcription factor that interacts with Ikaros to regulate
lymphocyte differentiation. EMBO J. (1997) 16:2004–13. doi: 10.1093/emboj/16.8.2004

3. Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, et al. Helios, a
novel dimerization partner of Ikaros expressed in the earliest hematopoietic
progenitors. Curr Biol. (1998) 8:508–15. doi: 10.1016/S0960-9822(98)70202-7

4. Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of
the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem. (2000)
275:38347–54. doi: 10.1074/jbc.M005457200

5. Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K. Cell-autonomous
defects in dendritic cell populations of Ikaros mutant mice point to a developmental
relationship with the lymphoid lineage. Immunity. (1997) 7:483–92. doi: 10.1016/
S1074-7613(00)80370-2

6. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene
leads to rapid development of leukemia and lymphoma. Cell. (1995) 83:289–99.
doi: 10.1016/0092-8674(95)90170-1

7. Malinge S, Thiollier C, Chlon TM, Doré LC, Diebold L, Bluteau O, et al. Ikaros
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