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Purpose: A systematic review and meta-analysis were conducted to evaluate the

diagnostic precision of radiomics in the differential diagnosis of parotid tumors,

considering the increasing utilization of radiomics in tumor diagnosis. Although

some researchers have attempted to apply radiomics in this context, there is

ongoing debate regarding its accuracy.

Methods: Databases of PubMed, Cochrane, EMBASE, and Web of Science up to

May 29, 2024 were systematically searched. The quality of included primary

studies was assessed using the Radiomics Quality Score (RQS) checklist. The

meta-analysis was performed utilizing a bivariate mixed-effects model.

Results: A total of 39 primary studies were incorporated. The machine learning

model relying on MRI radiomics for diagnosis malignant tumors of the parotid

gland, demonstrated a sensitivity of 0.80 [95% CI: 0.74, 0.86], SROC of 0.89 [95%

CI: 0.27-0.99] in the validation set. The machine learning model based on MRI

radiomics for diagnosis malignant tumors of the parotid gland, exhibited a

sensitivity of 0.83[95% CI: 0.76, 0.88], SROC of 0.89 [95% CI: 0.17-1.00] in the

validation set. The models also demonstrated high predictive accuracy for

benign lesions.

Conclusion: There is great potential for radiomics-based models to improve the

accuracy of diagnosing benign and malignant tumors of the parotid gland. To

further enhance this potential, future studies should consider implementing

standardized radiomics-based features, adopting more robust feature selection

methods, and utilizing advanced model development tools. These measures can

significantly improve the diagnostic accuracy of artificial intelligence algorithms

in distinguishing between benign and malignant tumors of the parotid gland.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42023434931.
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1 Introduction

Salivary gland tumors represent 2.0-6.5% of head and neck

tumors and account for 0.5% of all malignant tumors.

Approximately 70% of salivary gland tumors are found in the

parotid gland (1, 2). In accordance with the most recent WHO

histological classification, salivary gland tumors encompass 22

malignant epithelial tumors and 14 benign epithelial tumors (3).

The majority of parotid tumors, about 80%-85%, are benign, with

pleomorphic adenomas (PA) being the most prevalent (accounting

for approximately 65% of all parotid tumors), followed by Warthin

tumors (constituting approximately 15%-20% of all parotid tumors)

(2, 4). Malignant salivary gland tumors represent around 15%-30%

of parotid tumors (2, 5).

Currently, the detection of parotid tumors primarily relies on

fine needle aspiration cytology (FNA) using a small-caliber needle.

This method is straightforward and minimally invasive. FNA is

commonly used to differentiate between neoplastic and non-

neoplastic lesions and to diagnose histological types of neoplastic

lesions, such as pleomorphic adenoma and Warthin’s tumors in

benign tumors (6, 7). It is also used to determine the malignancy

level of malignant tumors. For benign cases, long-term follow-up or

limited partial parotidectomy is usually sufficient. However,

malignant parotid gland tumors require a more aggressive

surgical approach (8). For example, patients with lower superficial

malignancy may undergo conservative surgery to remove tumors

while preserving the facial nerve, while those with higher

malignancy may need total parotidectomy and neck dissection.

Thus, a preoperative diagnosis of parotid tumors is crucial in

determining the appropriate surgical approach (9).

However, due to sampling difficulties and tumor heterogeneity,

fine needle aspiration cytology is sometimes inconclusive and may

not accurately represent the true nature of the tumors. However,

during the aspiration process, it will cause certain pain to the

patient. Therefore, some researchers are currently conducting

non-invasive screening studies, such as radiomics-based machine

learning. However, there is still a lack of systematic evidence for its

feasibility, which brings certain challenges for the advancement of

radiomics-based machine learning in non-invasive screening for

parotid tumors. Therefore, this systematic review was conducted.

Furthermore, the risk of disseminating tumor cells, elevating the

possibility of local recurrence, and occasionally, increasing the

susceptibility to infections should also be taken into consideration

(10). Therefore, a radiological assessment plays a crucial role in

accurately determining the characteristics of the parotid gland (11).

Currently, magnetic resonance imaging (MRI) and computed

tomography (CT) are widely utilized for evaluating parotid

tumors (12, 13). MRI provides precise evaluation of the invasion

and boundaries of parotid tumors, making it a reliable method for

assessing these tumors. Numerous studies have reported that MRI

assists clinicians in making a differential diagnosis of parotid

tumors (14). CT scans clearly demonstrate the contour and

internal structure of the parotid gland, particularly after

enhancement. They can accurately localize parotid gland masses,
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providing details such as the number, size, shape, boundaries, and

infiltration into surrounding tissues (15). Nevertheless, these

diagnostic techniques still have limitations, and there may be

significant similarities in radiological features among different

types of parotid tumors (16). Certain studies have indicated that

alterations in the margins of parotid tumors may not necessarily

imply malignancy, and heterogeneous enhancement characteristics

cannot be reliably used to distinguish between benign parotid

tumors and malignant tumors of the parotid gland (17, 18).

Additionally, some benign parotid gland tumors may resemble

malignant tumors due to the presence of cystic degeneration and

necrotic areas (19). Furthermore, it carries the risk of spreading

tumor cells, increasing the likelihood of local recurrence, and at

times, raising the risk of infections.

The diagnostic accuracy of medical imaging can be limited by

the subtle changes in features that may not be noticeable to the

naked eye (20, 21). To overcome this limitation, Dutch researcher

Lambin introduced the concept of radiomics in 2012, which aims to

extract a large number of image features from radiation images

using high throughput methods (22). Around the same time,

Kumar proposed the idea of imaging omics, which involves

extracting and analyzing quantitative image features from CT,

PET, or MRI scans at high throughput (23). Radiomics, as a non-

invasive and high-throughput post-processing technique, can

provide a more comprehensive set of information than what can

be discerned by the human eye alone. By converting numerous

imaging features into high-dimensional mineable data, radiomics

has made significant advancements in tumor diagnosis, treatment

response assessment, and prognosis (24, 25). For patients with head

and neck cancer, CT scans can not only predict HPV (P16) status in

oropharyngeal squamous cell carcinoma (26), but also indicate

hypoxic status (27), aiding in the differentiation of oropharyngeal

carcinoma from hypopharyngeal carcinoma (28). Additionally,

MRI radiologic features have been recognized as noninvasive,

preoperative, and independent prognostic factors for head and

neck squamous cell carcinoma (HNSCC) and nasopharyngeal

carcinoma (NPC) in clinical practice (29, 30). Researchers have

also attempted to incorporate radiomics into the early noninvasive

differential diagnosis of benign and malignant tumors of the parotid

gland. However, there is still a lack of systematic evidence regarding

its differential value, which hinders the advancement of radiomics

in this field. Therefore, this systematic review and meta-analysis

were conducted to investigate the diagnostic accuracy of radiomics

for benign and malignant tumors of the parotid gland.
2 Materials and methods

2.1 Study registration

This study was conducted according to the guidelines for

systematic reviews and meta-analyses (PRISMA 2020) and was

prospectively registered with PROSPERO (ID: CRD42023434931).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1383323
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rao et al. 10.3389/fonc.2024.1383323
2.2 Eligibility criteria

2.2.1 Inclusion criteria
Fron
(1) Patients with suspected malignant parotid tumors;

(2) A comprehensive machine learning model covering

radiomics was constructed to detect the types of parotid

gland lesions;

(3) A large number of studies may not have independent

validation cohorts, but their contributions cannot be

ignored, so such studies were also included in our

systematic review;

(4) Studies reported in the English language.
2.2.2 Exclusion criteria
(1) Study types: meta-analysis, reviews, guidelines, expert

opinions, etc.;

(2) Studies solely conducted differential factor analysis and did

not develop a complete machine learning model;

(3) Studies did not provide the following outcome indicators

(ROC, c-statistic, c-index, sensitivity, specificity, accuracy,

recovery rate, accuracy rate, confusion matrix, diagnostic

fourfold table, F1 score, calibration curve);

(4) Studies with the number of cases less than 20; and

(5) Studies on segmentation of images without constructing

complete machine learning models.
2.3 Data sources and search strategy

Databases of PubMed, Cochrane, Embase, and Web of Science

up to May 5, 2023 were systematically searched. The search terms

were designed by combining subject words and free words. The

search was not limited by publication years or regions. In order to

avoid the risk of missing newly published literature, a

supplementary search of each database was conducted on May

29, 2024. The complete search strategy is detailed in Supplementary

Material, Annex 1.
2.4 Study selection and data extraction

The literature that was obtained was imported into Endnote for

the purpose of automatically and manually removing any duplicate

publications. Following this, the titles and abstracts were carefully

assessed to exclude studies that did not meet the specified inclusion

criteria. Lastly, the full texts of the initially eligible studies were

downloaded and thoroughly examined to identify primary studies

that met the requirements of this systematic review.

Before performing data extraction, a standardized data

extraction spreadsheet was created. This spreadsheet included the

following information: title, first author, year of publication,
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country, study type, patient source, radiomics source, complete

image protocol, acquisition order, number of investigators involved,

whether repeated measurement experiments were conducted at

different times with different image parameters, image region of

interest (ROI) region, segmentation software, texture extraction

software, diagnostic events, all diagnostic events, number of cases,

all cases, number of training sets, diagnostic events, number of

training sets, number of case validation sets generated, method

validation set, number of diagnostic events, number of case

validation sets, variable screening method, modeling variables

using model type, whether to establish radiomics scores, overfit

assessment, whether to expose codes and data models, and

assessment metrics.

The literature screening, data extraction, and data cross-

verification were conducted by two investigators independently.

In cases of disagreement, a third investigator was involved in

discussions and decision-making.
2.5 Assessment of study quality

Two investigators assessed the methodological quality of the

included studies and the risk of bias using Radiomics Quality Scores

(RQS) (31) (Supplementary Material, Annex 2) and cross-checked

upon completion. In case of disputes, a third investigator was

consulted to aid in the adjudication.
2.6 Outcomes

Our systematic review focused on two primary outcomes: the c-

index, which measures the overall precision of the model, and the

sensitivity and specificity, which assess the accuracy of parotid tumor

prediction. Additionally, it is noted that certain studies incorporated

clinical indications when developing radiomics models. Therefore,

our secondary outcomes involved analyzing the frequency of clinical

indication variables utilized in machine learning models.
2.7 Synthesis methods

A meta-analysis was performed to evaluate the overall accuracy

of the machine learning models by assessing the c-index. In certain

primary studies, the 95% confidence interval and standard error for

the c-index were not available. To address this, the approach

outlined by Debray TP et al. (32) was followed to estimate the

standard error of the c-index. Considering variations in the

inclusion variables and inconsistent parameters across different

machine learning models, preference was given to the utilization

of random-effects models in our meta-analysis of the c-index.

Furthermore, conducted meta-analyses were conducted to

evaluate the sensitivity and specificity. These analyses were

performed using binary mixed-effects models. In most of the

primary studies, the diagnostic fourfold table was not provided.

In these cases, two methods were employed to calculate the

diagnostic fourfold table:
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1. Sensitivity, specificity, and accuracy (precision) were combined

with the number of case; 2. Sensitivity and specificity were extracted

utilizing the best Youden index and combined with the number of

cases. The meta-analyses in this study were conducted using R 4.2.0

(R Development Core Team, Vienna, www.R-project.org).
3 Results

3.1 Study selection

A total of 1076 articles were retrieved from the database, among

which 301 duplicate publications were automatically identified

through software marking, and 244 publications were manually

identified. After reviewing the titles and abstracts, 75 primary

studies that were initially eligible were retained. Upon

downloading and reading the full texts, 3 summary, 6 reviews and

30 studies with incomplete data were excluded. Eventually, 36

primary studies were included (33–68) (Figure 1).
3.2 Study characteristics

The 36 studies included in this analysis were mostly published

between 2020 and 2024. They were conducted in various countries
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including China, Italy, Japan, and Canada. Among these studies, 24

specifically focused on the differential diagnosis of malignant

parotid tumors (33–37, 40, 41, 43, 44, 47, 48, 50, 52–57, 59–61,

63, 66, 67). There were 12 studies on the differential diagnosis of

benign parotid tumors (39, 42, 45, 46, 48, 50, 51, 58, 62, 64, 65, 68), 9

studies on the differential diagnosis of pleomorphic adenoma (42,

46, 48, 51, 58, 62, 64, 65, 68), and 3 studies on the differential

diagnosis of Warthin’s tumors (38, 39, 45). In these 36 studies, MRI

radiomics was utilized in 19 studies (33, 36, 37, 39–41, 43, 45, 48, 50,

52–55, 57, 60, 62, 64, 66), while CT radiomics was used in 16 studies

(34, 35, 38, 42, 44, 46–48, 51, 56, 59, 61, 63, 65, 67, 68). One study

employed both MRI and CT radiomics (58). Among the 19 studies

that used radiomic features as modeling variables (35–39, 43, 44, 47,

50, 55, 59–63, 65–68), 12 studies incorporated clinical features and

radiomic features, or radiomic features alone, into their modeling

variables (34, 42, 45, 46, 49, 51–54, 56, 58, 64). Two studies (40, 41)

considered ADC values as a single modeling variable for the

differential diagnosis of parotid lesions, while three studies (33,

48, 57) included them as one of the modeling variables.
3.3 Assessment of study quality

The included studies failed to consider the variations in output

images produced by the same equipment under different
FIGURE 1

Literature screening process.
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parameters. They also did not conduct multiple measurements at

different times in the same individual, perform prospective

registration, explore the detection further and discuss biological

correlation, demonstrate the level of agreement with the “gold

standard,” or construct clinical impact curves. Consequently, they

received a score of zero on the Radiomics Quality Score (RQS). Out

of the 33 studies, random sampling was predominantly used for

internal validation. Among them, 6 studies had independent

external validation (35, 45, 49, 54, 55, 61). Eight studies provided

an analysis of cut-off values (45, 46, 48, 49, 55, 58, 61, 64, 66), while

8 studies constructed calibration curves (45, 46, 48, 49, 54, 56, 61,

64). The average RQS score for the included studies was 6.83

(Supplementary Material, Annex 3).
3.4 Meta-analysis

3.4.1 Diagnosis of malignant tumors of
parotid gland
3.4.1.1 CT radiomics

Five eligible studies reported CT-based models for the diagnosis

of malignant tumors of parotid gland (34, 35, 42, 47, 61). CT-based

models in the training set demonstrated the following performance

metrics: a sensitivity of 0.74 [95% CI: 0.66, 0.80], a specificity of 0.88

[95% CI: 0.84, 0.92], a PLR of 6.4 [95% CI: 4.4, 9.3], an NLR of 0.30

[95% CI: 0.23, 0.40], a DOR of 21 [95% CI: 11, 40], and an SROC

curve value of 0.89 [95% CI: 1.00-0.00] (Figure 2A; Supplementary

Figure S1). Deek’s funnel plot reveals the presence of publication

bias (P) among the models. The prevalence of malignant parotid

tumors estimated in the included studies serves as the prior

probability of the diagnostic experiment. It should be noted that

the actual probability of a malignant parotid tumor was 73% if the

model identified it as such (Supplementary Figures S2, S3).

In the validation set (34, 35, 42, 44, 61, 63, 67), CT-based

models demonstrated a sensitivity of 0.80 [95% CI: 0.74, 0.86], a

specificity of 0.84 [95% CI: 0.78, 0.88], a PLR of 4.9 [95% CI: 3.5,

7.0], an NLR of 0.23[95% CI: 0.17, 0.33], a DOR of 22 [95% CI: 11,

39], and an SROC of 0.89 [95% CI: 0.27-0.99] (Figure 2B;

Supplementary Figure S4). Deek’s funnel plot revealed no

evidence of publication bias among the models (P). Taking into

account the estimated prevalence of malignant parotid tumors from

the studies included as the prior probability for the diagnostic

experiment, the observed probability of a malignant parotid tumor

was 79% if the model detected a malignant parotid tumor

(Supplementary Figures S5, S6).

3.4.1.2 MRI radiomics

Seven primary studies reported MRI-based models for the

diagnosis of malignant tumors of the parotid gland (36, 43, 50,

54–57, 66). MRI-based models demonstrated a sensitivity of 0.86

[95% CI: 0.74, 0.93], a specificity of 0.90 [95% CI: 0.83, 0.95], a PLR

of 9.2 [95% CI: 4.5, 19.0], an NLR of 0.14 [95% CI: 0.07, 0.31], a PLR

of 8.8 [95% CI: 4.6, 16.9], an NLR of 0.16 [95% CI: 0.08, 0.31], a

DOR of 56 [95% CI: 16, 194], and an SROC of 0.94 [95% CI: 0.92 -

0.96] (Figure 3A; Supplementary Figure S7). Deek’s funnel plot

illustrated that there was no evidence of publication bias among the
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models analyzed (P). By considering the prevalence of malignant

parotid tumors estimated in the included studies as the prior

probability for the diagnostic experiment, it was found that the

actual probability of a malignant parotid tumor was 78% if the

model identified it as such (Supplementary Figures S8, S9).

In the validation set, nine primary studies have reported models

based on MRI for the diagnosis of malignant tumors in the parotid

gland (33, 37, 43, 48, 54–56, 61, 66). MRI-based models

demonstrated a sensitivity of 0.83 [95% CI: 0.76, 0.88], a

specificity of 0.82 [95% CI: 0.77, 0.86], a PLR of 4.6 [95% CI: 3.6,

5.9], an NLR of 0.21 [95% CI: 0.15, 0.29], a DOR of 22 [95% CI: 15,

30], and an SROC of 0.89 [95% CI: 0.17-1.00] (Figure 3B;

Supplementary Figure S10). Deek’s funnel plot did not indicate

any signs of publication bias among the models (P). Taking into

account the prevalence of pleomorphic adenoma estimated in the

studies considered as the prior probability for the diagnostic

experiment, the actual probability of a parotid tumor being

malignant was 64% if the model identified it as such

(Supplementary Figures S11, S12).

3.4.1.3 Clinical features

Four primary studies have presented models based on clinical

features to diagnose malignant tumors of the parotid gland (34, 42,

54, 56). The machine learning model, which solely relies on clinical

features, exhibited a sensitivity of 0.68 [95% CI: 0.58, 0.77], a

specificity of 0.81 [95% CI: 0.66, 0.90], a PLR of 3.6 [95% CI: 2.1,

6.1], an NLR of 0.39 [95% CI: 0.31, 0.50], a DOR of 9 [95% CI: 5, 16],

and an SROC of 0.78 [95% CI: 1.00-0.00] (Figure 4A; Supplementary

Figure S13). Deek’s funnel plot did not indicate any publication bias

across the different models (P). Considering the prevalence of

malignant parotid tumors estimated in the included studies as the

prior probability of the diagnostic experiment, the actual probability

of a malignant parotid tumor reached 60% if the model identified it

(Supplementary Figures S14, S15). In the validation set, five studies

described models based on clinical features for diagnosing malignant

tumors of the parotid gland (34, 42, 48, 54, 56). The machine learning

model, relying on clinical features alone, demonstrated a sensitivity of

0.64 [95% CI: 0.55, 0.73], a specificity of 0.83 [95% CI: 0.71, 0.91], a

PLR of 3.8 [95% CI: 2.2, 6.6], an NLR of 0.43 [95% CI: 0.34, 0.54], a

DOR of 9 [95% CI: 5, 17], and an SROC of 0.73 [95% CI: 0.19-0.97]

(Figure 4B; Supplementary Figure S16). Deek’s funnel plot indicated

the presence of publication bias among the models (P). With the

prevalence of malignant parotid tumors estimated in the included

studies as the prior probability of the diagnostic experiment, the

actual probability of a malignant parotid tumor reached 62% when

the model identified it (Supplementary Figures S17, S18).

3.4.1.4 Integration of radiomic features with
clinical features

Three primary studies have reported models that models based

on MRI combined with clinical features for the diagnosis of

malignant tumors of the parotid gland (52, 54, 56). The machine

learning model, which incorporated radiomic features in addition

to clinical attributes, demonstrated a sensitivity of 0.88 [95% CI:

0.81, 0.92], a specificity of 0.92 [95% CI: 0.80, 0.97], a PLR of 10.4

[95% CI: 4.1, 26.6], an NLR of 0.13 [95% CI: 0.08, 0.22], a DOR of
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78 [95% CI: 21, 289], and an SROC of 0.93 [95% CI: 1.00-0.00]

(Figure 5; Supplementary Figure S19). Deek’s funnel plot analysis

revealed no evidence of publication bias between the models (P). By

using the prevalence of malignant parotid tumors estimated from

the included studies as the prior probability of the diagnostic
Frontiers in Oncology 06
experiment, the actual probability of identifying a malignant

parotid tumor using the model was 91% (Supplementary Figures

S20, S21). In the validation set, there were 3 primary studies that

presented models using CT and clinical features for the diagnosis of

malignant tumors of the parotid gland [34.35,42]. These machine
B

A

FIGURE 2

The Forest plot of radiomics based on CT for the diagnosis of malignant tumors. (A) The training set; (B) The validation set.
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learning models demonstrated a sensitivity of 0.68[95% CI: 0.60,

0.76], a specificity of 0.91[95% CI: 0.88, 0.94], a PLR of 7.7[95% CI:

5.4, 11.1], an NLR of 0.35[95% CI: 0.27, 0.45], a DOR of 22[95% CI:

13, 38], and an SROC of 0.89[95% CI: 1.00 - 0.00] (Figure 6A;

Supplementary Figure S22). The funnel plot devised by Deek
Frontiers in Oncology 07
indicated the presence of publication bias among the models (P).

Considering the prevalence of malignant parotid tumors estimated

in the included studies as the prior probability of the diagnostic

experiment, the actual probability of having a malignant parotid

tumor was 75% if the model identified the tumor as malignant
B

A

FIGURE 3

The Forest plot of radiomics based on MRI for the diagnosis of malignant tumors. (A) The training set; (B) The validation set.
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(Supplementary Figures S23, S24). Five primary studies have

presented MRI-based models combined with clinical features for

diagnosing malignant tumors of the parotid gland (48, 52, 54, 56).

By utilizing radiomic features together with clinical features, the

machine learning model exhibited a sensitivity of 0.82 [95% CI:
Frontiers in Oncology 08
0.69, 0.90], a specificity of 0.88 [95% CI: 0.81, 0.92], a PLR of 6.6

[95% CI: 4.4, 10.1], an NLR of 0.21 [95% CI: 0.12, 0.35], a DOR of

32 [95% CI: 17, 56], and an SROC of 0.92 [95% CI: 1.00-0.00]

(Figure 6B; Supplementary Figure S25). The Deek’s funnel plot

indicated the presence of publication bias among the models (P).
B

A

FIGURE 4

The Forest plot based on clinical features for the diagnosis of malignant tumors. (A) The training set; (B) The validation set.
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When considering the prevalence of malignant parotid tumors

estimated in the included studies as the prior probability of the

diagnostic experiment, the actual probability of a malignant parotid

tumor was determined to be 75% if the model identified it as

malignant (Supplementary Figures S26, S27).

One study found that for the diagnosis of Warthin’s tumors,

models utilizing either clinical features alone or radiomic features

(MRI) combined with clinical features were reported (45). In the

training set, the machine learning model solely based on clinical

features demonstrated a sensitivity of 0.6829 and a specificity of

0.8235. On the other hand, the LR model, which incorporated

radiomic features (MRI) along with clinical features, showed a

higher sensitivity of 0.9268 and a specificity of 0.8529. When

validated, the model exhibited a sensitivity of 0.8571 and a

specificity of 0.625. Another study focused on the diagnosis of

Warthin’s tumors using ADC values exclusively (42). The machine

learning model constructed based on ADC values achieved a

sensitivity of 0.83 and a specificity of 0.8. In the realm of

pleomorphic adenoma diagnosis, one study reported models

combining radiomic features (MRI) with clinical features (64). In

the training set, the LR model incorporating radiomic features

(MRI) demonstrated a sensitivity of 0.875 and a specificity of

0.9524. Lastly, two primary studies reported models for the

diagnosis of malignant tumors of the parotid gland using

radiomic features (CT) combined with clinical features (34, 42).

In the training set, the SVM model relying on these combined

features achieved a sensitivity of 0.763~0.797 and a specificity of

0.912~0.953. When validated, this SVM model demonstrated a

sensitivity of 0.696~0.755 and a specificity of 0.904~0.935.
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3.4.1.5 ADC

Two primary studies have reported models solely based on ADC

values for diagnosing malignant tumors of the parotid gland (39, 57).

In the training set, the machine learning model relying solely on ADC

values demonstrated a sensitivity of [0.24542~0.87583] and a specificity

of [0.18997~0.80317]. Similarly, in the validation set, four primary

studies reported models solely based on ADC values for diagnosing

malignant tumors of the parotid gland (33, 39, 41, 48). The machine

learning model, utilizing only ADC values, exhibited a sensitivity of

0.66 [95% CI: 0.38, 0.85], a specificity of 0.81 [95% CI: 0.74, 0.87], a

PLR of 3.4 [95% CI: 2.7, 4.4], an NLR of 0.43 [95% CI: 0.22, 0.83], a

DOR of 8 [95% CI: 3, 19], and an SROC of 0.83 [95% CI: 1.00-0.00]

(Figure 7; Supplementary Figure S28). It was indicated byDeek’s funnel

plot that publication bias was present among the models (P).

Considering the estimated prevalence of malignant tumors in the

parotid gland from the primary studies in this systematic review as

the prior probability, the nomogram illustrated that the model could

correctly identify malignant tumors of the parotid gland with a

probability of 43% (Supplementary Figures S29, S30).

3.4.2 Diagnosis of benign tumors of parotid gland
3.4.2.1 Diagnosis of Warthin’s tumors
3.4.2.1.1 Ct Radiomics

One primary study reported CT-based models for the diagnosis

of Warthin’s tumors (38). In the training set, the CT-based models

constructed by RF had a sensitivity of [0.89~0.94] and a specificity

of [0.67~1], respectively. In the validation set, six CT-based models

(10) constructed by RF had a sensitivity of 0.85[95%CI:0.75,0.91]

and a specificity of 0.96[95%CI:0.71,1.00], a PLR of 22.0[95%
FIGURE 5

The Forest plot based on MRI-based models combined with clinical features for the diagnosis of malignant tumors (The training set).
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CI:2.5,197.7], an NLR of 0.16[95%CI:0.10,0.26], and a DOR of 137

[95%CI:16,1155], and an SROC of 0.92[95%CI:0.90-0.94] (Figure 8;

Supplementary Figure S30). Deek's funnel plot revealed no evidence

of publication bias between models (P). With the prevalence of
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Warthin's tumors estimated in the included studies as the prior

probability of the diagnostic experiment, the actual probability of

Warthin’s tumors was 97% if the model identified a Warthin’s

tumor (Supplementary Figures S32, S33).
B

A

FIGURE 6

The Forest plot based on CT-based models combined with clinical features for the diagnosis of malignant tumors. (A) The training set; (B) The
validation set.
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FIGURE 7

The Forest plot based on ADC values alone for the diagnosis of malignant tumors (The validation set).
FIGURE 8

The Forest plot of radiomics based on CT-based for the diagnosis of Warthin’s tumors (The validation set).
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3.4.2.1.2 MRI Radiomics

Three primary studies reported MRI-based models for the

diagnosis of Warthin's tumors (39, 45, 50), and MRI-based

models demonstrated a sensitivity of 0.87[95%CI:0.80,0.91], a

specificity of 0.86[95%CI:0.80,0.91], a PLR of 6.4[95%CI:4.2,9.6],

an NLR of 0.16[95%CI:0.10,0.23], a DOR of 41[95%CI:21,79], and a

SROC of 0.93[95%CI:0.90-0.95] (Figure 9; Supplementary Figure

S34). Deek's funnel plot indicated the absence of publication bias

between models (P). With the prevalence of Warthin's tumors

estimated in the included studies as the prior probability of the

diagnostic experiment, the actual probability of Warthin’s tumors

was 87% if the model identified a Warthin’s tumor (Supplementary

Figures S35, S36). In the validation set, one study (23)

constructed an LR model, which had a sensitivity of 0.78 and a

specificity of 0.87.

3.4.2.2 Diagnosis of pleomorphic adenoma
3.4.2.2.1 Ct Radiomics

Five studies reported CT-based models for the diagnosis of

pleomorphic adenoma (46, 49, 51, 65, 68). In the training set, CT-

based models had a sensitivity of 0.87[95%CI:0.81,0.92], a

specificity of 0.84[95%CI:0.78,0.89], a PLR of 5.5[95%CI:4.0,7.6],

an NLR of 0.15[95%CI: 0.10, 0.23], a DOR of 37[95%CI:23, 59], and

a SROC of 0.92 [95%CI:0.89-0.94] (Figure 10A; Supplementary

Figure S37). Deek’s funnel plot indicated no evidence of publication

bias between models (P). With the prevalence of pleomorphic

adenoma estimated in the included studies as the prior

probability of the diagnostic experiment, the actual probability of
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pleomorphic adenoma was 89% if the model identified a

pleomorphic adenoma (Supplementary Figures S38, S39). In the

validation set, six studies reported CT-based models for the

diagnosis of pleomorphic adenoma, CT-based models had a

sensitivity of 0.90[95%CI:0.74,0.97], a specificity of 0.77[95%

CI:0.66,0.85], a PLR of 3.9[95%CI:2.5,5.9], an NLR of 0.12[95%

CI: 0.04, 0.37], a DOR of 31[95%CI: 9,112], and a SROC of 0.80

[95%CI:0.76- 0.83] (Figure 10B; Supplementary Figure S40). Deek’s

funnel plot indicated no evidence of publication bias between

models (P). With the prevalence of pleomorphic adenoma

estimated in the included studies as the prior probability of the

diagnostic experiment, the actual probability of pleomorphic

adenoma was 87% if the model identified a pleomorphic

adenoma (Supplementary Figures S41, S42) (46, 49, 69).

3.4.2.2.2 MRI Radiomics

Four studies reported MRI-based models for the diagnosis of

pleomorphic adenoma (50, 58, 62, 64). In the training set, MRI-

based models had a sensitivity of 0.83[95%CI:0.80,0.86], a

specificity of 0.81[95%CI:0.77~0.84], a PLR of 4.3[95%CI:3.5,5.2],

an NLR of 0.21[95%CI:0.17,0.25], a DOR of 21[95%CI:15,29], and a

SROC of 0.89[95%CI:0.86-0.91] (Figure 11; Supplementary Figure

S43). Deek's funnel plot indicated no evidence of bias between

models (P). With the prevalence of pleomorphic adenoma

estimated in the included studies as the prior probability of the

diagnostic experiment, the actual probability of pleomorphic

adenoma was 84% if the model identified a pleomorphic

adenoma (Supplementary Figures S44, S45).
FIGURE 9

The Forest plot of radiomics based on MRI-based for the diagnosis of Warthin’s tumors (The training set).
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3.4.2.3 Clinical features

Six primary studies reported models based on clinical features for

the diagnosis of malignant tumors of the parotid gland (46, 51, 58, 64,

66, 68), and the machine learning model relying on clinical features
Frontiers in Oncology 13
alone demonstrated a sensitivity of 0.78[95%CI:0.46,0.93], a specificity

of 0.82[95%CI:0.72,0.88], a PLR of 4.2[95%CI:2.8,6.4], an NLR of 0.27

[95%CI:0.09,0.78], a DOR of16[95%CI:4,56], and a SROC of 0.86 [95%

CI:0.82-0.88] (Figure 12A; Supplementary Figure S46). Deek's funnel
B

A

FIGURE 10

The Forest plot of radiomics based on CT-based for the diagnosis of pleomorphic adenoma. (A) The training set; (B) The validation set.
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plot indicated no evidence of publication bias between models (P).

With the prevalence of pleomorphic adenoma estimated in the

included studies as the prior probability of the diagnostic

experiment, the actual probability of pleomorphic adenoma was 86%

if the model identified a pleomorphic adenoma (Supplementary

Figures S47, S48). In the validation set, five studies based on clinical

features for the diagnosis of pleomorphic adenoma had a sensitivity of

0.89[95%CI: 0.80,0.94], a specificity of 0.78[95%CI:0.67,0.87], a PLR of

4.1[95%CI:2.6,6.5], an NLR of 0.14[95%CI:0.07,0.27], a DOR of 29

[95%CI:12,71], and a SROC of 0.90 [95%CI:0.87-0.92] (Figure 12B;

Supplementary Figure S49). Deek’s funnel plot indicated no evidence of

publication bias between models (P). With the prevalence of

pleomorphic adenoma estimated in the included studies as the prior

probability of the diagnostic experiment, the actual probability of

pleomorphic adenoma was 86% if the model identified a

pleomorphic adenoma (Supplementary Figures S50, S51) (46, 49, 64).

3.4.2.4 Integration of radiomic features with
clinical features

Three primary studies reported CT-based models combined

with clinical features for the diagnosis of pleomorphic adenoma (46,

49, 51). The machine learning model, incorporating radiomic

features alongside clinical attributes, demonstrated a sensitivity of

0.94 [95%CI: 0.90, 0.96], a specificity of 0.90[95%CI:0.84, 0.94], a

PLR of 9.7 [95%CI: 5.8,16.3], an NLR of 0.07[95%CI:0.04,0.11], a

DOR of 148[95%CI:62, 352], and an SROC of 0.97[95%CI:0.95-

0.98] (Figure 13; Supplementary Figure S52). Deek's funnel plot

revealed no evidence of publication bias between models (P). With

the prevalence of malignant parotid tumor estimated in the
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included studies as the prior probability of the diagnostic

experiment, the actual probability of malignant parotid tumor

was 94% if the model identified a malignant parotid tumor

(Supplementary Figures S53, S54).

4 Discussion

4.1 Summary of the main findings

The validation set results reveal that the CT-based model

exhibited a sensitivity of 0.80 [95% CI: 0.74 - 0.86] and a specificity

of 0.84 [95% CI: 0.78 - 0.88] for detecting parotid tumors,

predominantly malignant parotid tumors. In contrast, the MRI-

based models demonstrated a sensitivity of 0.83[95% CI: 0.76 -

0.88] and a specificity of 0.82[95% CI: 0.77 - 0.86], indicating a

commendable diagnostic performance. It is worth mentioning that

the focus of existing studies on benign tumors, particularly Warthin’s

tumor and pleomorphic adenoma, has been limited. However, it is

essential to approach the findings concerning these tumors with

caution due to the small number of primary studies examining them.
4.2 Comparison with previous reviews

This systematic review highlights the potential of radiomics in

distinguishing between benign and malignant parotid tumors.

Moreover, both invasive and non-invasive methods are utilized to

differentiate between the two. C. Carrie Liu et al. (70) presented

supporting evidence for the use of ultrasound-guided Fine Needle
FIGURE 11

The Forest plot of radiomics based on MRI-based for the diagnosis of pleomorphic adenoma (The training set).
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Aspiration (FNA) as a means of differentiation. Their findings

indicate that FNA has a sensitivity of 0.882 (95% CI: 0.509-0.982)

and a specificity of 0.995 (95% CI: 0.960-0.999) in this regard. Hee

Joon Kim (71) provided evidence for the use of ultrasound-guided

Core Needle Biopsy (CNB) as a method for discriminating between
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benign and malignant parotid tumors. The reported sensitivity and

specificity of CNB were 0.94 (95% CI: 0.92-0.96) and 0.98 (95% CI:

0.97-0.99), respectively. Yun-Fei Zhang et al. (72) supported the use

of ultrasound elastography in distinguishing between the two types of

tumors. The reported sensitivity and specificity were 0.67 (95% CI:
B

A

FIGURE 12

The Forest plot based on clinical features for the diagnosis of pleomorphic adenoma. (A) The training set; (B) The validation set.
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0.59-0.74) and 0.64 (95% CI: 0.60-0.68), respectively. Jing Chen et al.

(73) provided further evidence by calculating the ADC value through

diffusion-weighted imaging (DWI) for discriminating between

benign and malignant parotid tumors, with a reported sensitivity of

0.89 (95% CI: 0.82-0.93) and specificity of 0.76 (95% CI: 0.67-0.83).

In their study, Ying-Ying Liang et al. (74) presented evidence-

based findings on differentiating between benign and malignant

parotid tumors using various MRI techniques. The results

demonstrated that conventional MRI, diffusion-weighted imaging

(DWI), dynamic contrast-enhanced scanning (DCE), and their

combined examination had sensitivities and specificities of 0.76

[95% CI: 0.63-0.86]/0.91 [95% CI: 0.81-0.97]/0.80 [95% CI: 0.70-0]

and 0.83 [95% CI: 0.77-0.88]/0.56 [95% CI: 0.47-0.64]/0.90[95% CI:

0.86-0.94]/0.90 [95% CI: 0.85-0.94], respectively. Our data revealed

that CT-based models had a sensitivity of 0.80[95% CI: 0.73-0.85]

and a specificity of 0.85 [95% CI: 0.80-0.89] in discriminating

between benign and malignant parotid tumors, particularly

malignant tumors of the parotid gland. In the validation set, CT-

based models demonstrated a sensitivity of 0.83 [95% CI: 0.76-0.88]

and a specificity of 0.81 [95% CI: 0.77-0.85]. Furthermore, the

accuracy of CT or MRI-based models surpassed that of ultrasound

elastography. Compared to the ADC values calculated by DWI, CT

or MRI-based models exhibited a higher specificity and a lower

sensitivity. Although the accuracy of CT- and MRI-based models

exceeded that of conventional MRI, it was lower than that of DCE.

DWI-based models possessed a higher sensitivity but a lower

specificity compared to CT- and MRI-based radiomics. The

accuracy of FNA and CNB was higher than that of CT- and MRI-

based models. Additionally, Roie Fisher (69) provided evidence-
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based support for FNA in identifying Warthin’s tumor, with a

sensitivity and specificity of 93.7% [95% CI: 92.1-95.3] and 97.9%

[95% CI: 97.9-98.9], respectively. This accuracy surpassed that of

MRI-based models in our study. These findings suggest that existing

radiomics is not significantly superior to conventional invasive or

noninvasive diagnostic methods in disease diagnosis. Therefore,

further studies are necessary to improve the diagnostic accuracy.

At the same time, the diagnostic advantage of radiomics should not

be overlooked. The aforementioned studies primarily rely on

laboratory methods or radiologist diagnosis, which are inefficient

and have limited ability in early differential diagnosis between

benign and malignant parotid tumors. Radiomics, however, offers

a fast and less error-prone approach to disease diagnosis compared

to conventional methods, contributing to the progress of radiomics.

Our included studies have revealed that CT-based radiomics

demonstrates excellent performance in distinguishing between

malignant parotid tumors and pleomorphic adenoma (PA). Its

accuracy is comparable to that of MRI, with no significant

inferiority observed. It is worth noting that PA, which accounts for

65% of all parotid tumors, is considered a borderline tumor.

Moreover, studies pertaining to this topic suggest that there is a 5%

or higher risk of malignant transformation associated with PA (75),

and incomplete removal of PA also carries the risk of local recurrence.

It has been reported that the recurrence rate of patients undergoing

PA extraction is higher than that of patients undergoing

parotidectomy (76), so preoperative differential diagnosis of PA is

necessary. However, in the field of clinical practice, the utilization of

MRI is constrained by its relatively high cost and lower level of patient

acceptance in comparison to CT. Hence, it would be prudent to
FIGURE 13

The Forest plot based on CT-based models combined with clinical features for the diagnosis of pleomorphic adenoma. (The training set).
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consider the development of a more cost-effective and widely accepted

differentiation method based on CT in future research endeavors.

The RQS scores for the included studies are concerning,

suggesting potential high bias in these investigations. Therefore, it

is important to conduct a comprehensive evaluation of the RQS scale,

as certain criteria within the scale seem excessively strict and may not

be in line with current practices in radiomics research. Given these

circumstances, a careful scrutiny of the RQS scale is warranted.

Before initiating the research, it is necessary to adjust and

compare the parameters under different equipment. Alternatively,

conducting multiple imaging sessions at different times after

starting the study would also be beneficial. The majority of the

included studies utilized retrospective designs, which poses

challenges in ensuring adherence to the scale requirements.

Furthermore, most of these studies were not publicly registered,

even though registered scores constitute a substantial portion of the

overall scale. Many primary studies received zero scores due to their

primarily single-center nature, which makes it difficult to achieve

independent external validation. Moreover, plotting decision curves

and clinical impact curves for CNN and SVMmodels is challenging

under the current conditions, further hindering their scores.
4.3 Strengths and limitations of the study

This study provides evidence-based insights into the diagnosis and

distinction of benign and malignant parotid tumors using radiomics,

marking a significant contribution to the field. It serves as a valuable

reference for the advancement of radiomics in this particular area.

However, it is important to note that our study does have certain

limitations. Firstly, while there is a diverse range of radiomic methods

available, they have not been extensively explored in our research.

Secondly, the number of studies on Warthin’s tumor and pleomorphic

adenoma is relatively small, which restricts the scope of our findings.
5 Conclusions

Models based on radiomics have the potential to improve the

accuracy of distinguishing between benign and malignant parotid

tumors. This can provide clinicians with personalized, non-invasive

predictive methods before surgery, allowing for valuable predictions

and facilitating better treatment strategies for patients. In future studies,

it is important to utilize standardized radiomics-based features, more

reliable feature selection methods, and advanced model development

tools to further enhance the diagnostic accuracy of AI in differentiating

between benign and malignant parotid gland tumors.
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