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Recurrent and metastatic breast cancer is frequently treatment resistant. A

wealth of evidence suggests that reprogrammed lipid metabolism supports

cancer recurrence. Overexpression of the RON and DEK oncoproteins in

breast cancer is associated with poor outcome. Both proteins promote cancer

metastasis in laboratory models, but their influence on lipid metabolite levels

remain unknown. To measure RON- and DEK-dependent steady-state lipid

metabolite levels, a nuclear magnetic resonance (NMR)-based approach was

utilized. The observed differences identified a lipid metabolism-related gene

expression signature that is prognostic of overall survival (OS), distant metastasis-

free survival (DMFS), post-progression survival (PPS), and recurrence-free survival

(RFS) in patients with breast cancer. RON loss led to decreased cholesterol and

sphingomyelin levels, whereas DEK loss increased total fatty acid levels and

decreased free glycerol levels. Lipid-related genes were then queried to define a

signature that predicts poor outcomes for patients with breast cancer patients.

Taken together, RON and DEK differentially regulate lipidmetabolism in amanner

that predicts and may promote breast cancer metastasis and recurrence.
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1 Introduction

Advances in treatments have resulted in an overall 90% 5-year

survival rate for breast cancer patients (1). However, a large gap

remains between survival rates of those with localized versus distant

metastatic breast cancer. While localized breast cancer has a 98%

survival rate, distant metastatic breast cancer has a 31% survival

rate. In addition, the 10-year survival rate for breast cancer

decreases from 85% to 46.9% for local recurrence and to less than

5% for distant recurrence (2–4). This highlights an unmet need to

identify markers and drivers of metastatic and recurrent breast

cancer to improve currently unacceptable outcomes.

Herein, we focus on two genes that have already been associated

with poor outcomes in patients with breast cancer. RON is a

receptor tyrosine kinase overexpressed in over 50% of breast

cancers independent of subtype (5), and stimulates cancer,

metastasis, and recurrence (6). DEK is a chromatin-associated

oncogene that also promotes breast cancer stemness and

metastasis and can be stimulated by RON signaling (7). Together,

high DEK and RON expression levels were strongly linked to poor

outcomes in human subjects (5, 8). Previous studies have shown

that fatty acids can regulate tumor cell growth, invasion, and

progression both positively and negatively (9–12). In addition,

increases in cholesterol biosynthesis and cholesterol levels have

been associated with RON-driven breast cancer stem cell (BCSC)

phenotypes (6, 13). Lipid metabolism is the new frontier of cancer

biomarkers and targets (14) and might be a potential driver of

RON- and DEK-associated metastasis and recurrence. We

hypothesized that RON and DEK upregulation in breast cancer is

required for lipid metabolism that is linked to poor outcomes.

We have used 1H-NMR (nuclear magnetic resonance)

spectroscopy to determine relative abundances of different intact

lipids in families defined by (i) headgroup (phosphatidylcholine

(PC), phosphatidylethanolamine (PE)) and average degree of fatty

acyl chain unsaturation, (ii) sphingomyelin, and (iii) cholesterol,

rather than individual lipid species. This provides a broad overview

of the complex lipids detectable in cells (15, 16). We found that

breast cancer cells with RON and DEK loss of function harbor

independent dysregulation of defined lipid metabolites, including

cholesterol, unsaturated fatty acids, glycerol, sphingomyelin, and

glycerophospholipids. By examining relevant transcriptionally

regulated enzymes, we identified a lipid metabolism-related gene

signature that predicts breast cancer recurrence, and also poor

outcomes for lung, ovarian, and gastric cancer. These data also

support a role for RON and DEK in energy metabolism to support

breast cancer recurrence and metastasis.
2 Materials and methods

2.1 Cell culture

The well-characterized and widely published R7 (control),

R7sgRON (RON targeted), and R7shDEK (DEK targeted) murine

breast cancer cell lines were cultured as previously described (7, 17)
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in complete Dulbecco’s Modified Eagle’s Medium (DMEM)

containing 5% FBS, 1% penicillin–streptomycin, and 0.2%

fungizone. R7sgRON cells were obtained from serial dilution of

px458-sgRON-transfected R7 cells. Px458 was obtained from

Addgene (48138), whereas RON sgRNA was obtained from IDT

(sgRON sequence: ACCTGCAGCTCACCCTTCTAC). R7shDEK

cells were maintained with 1 mg/mL of puromycin for selection. For

NMR experiments, cells were seeded in 10-cm plates in complete

DMEM containing 5% dialyzed FBS.
2.2 Cell collection and processing

The three isogenic breast cancer cell lines were plated and

incubated for 24 h. At the time of collection, cells were 80%–90%

confluent; the medium was aspirated, and the cells were washed and

quenched as per prior protocols (18). Polar and non-polar

metabolites were extracted using the solvent partition method

with acetonitrile: water: chloroform (CH3CN: H2O: CHCl3) at

ratios 2: 1.5: 1 (V/V) (18, 19). A mixture of chloroform and

methanol (1:1) containing 1 mM butylated hydroxytoluene

(BHT) was added to the lipid fraction for storage at −80°C. The

upper aqueous phases (polar metabolites) were lyophilized

(CentriVap Labconco), and the lower organic phases (lipidic non-

polar metabolites) were dried in a SpeedVac at room temperature.
2.3 NMR spectroscopy

Dried organic phases (lipids) were reconstituted in 220 µL of

100% methanol-d4 containing 0.05% v/v of tetramethylsilane

(TMS) (Cambridge Isotopes Lab, Andover, MA), vortexed, and

centrifuged at room temperature. 200 µL of the supernatant was

transferred into a 3-mmNMR tube. All NMR spectra were recorded

at 288 K on a Bruker Avance III HD 600-MHz spectrometer

(Bruker BioSpin) equipped with a 5-mm Broad Band Observed

(BBO) Prodigy probe. For each sample, one-dimensional (1D) 1H-

NMR experiments were acquired using the noesygppr1d pulse

sequence with presaturation of the residual water resonance using

a 25-Hz bandwidth, 512 transients, a 15-ppm spectral width, a 4.0-s

relaxation delay, and a 2.0-s acquisition time resulting in 44,640

data points. Prior to Fourier transformation, each 1H spectrum was

zero-filled to 128 K data points and apodized with a 1-Hz

exponential line-broadening function. All spectra were recorded

and transformed with the use of TopSpin 3.6.2 software (Bruker

BioSpin, USA) and processed (phased and baseline corrected) using

MestReNova software (MNova v12.0.3, Spain). Spectra were

internally calibrated to the methyl group of the TMS at 0 ppm.

Representative lipid families (glycerophospholipids, sterols,

sphingolipids, glycerophospholipids, and fatty acids) were

identified and assigned by using in-house databases, pure

standards, and literature reports (16, 20, 21). Additionally, for

selecting samples, 2D 1H-1H TOtal Correlation SpectroscopY

(TOCSY) experiments were recorded to facilitate and confirm the

identification of analytes. The area of each assigned lipid class was

manually integrated using the global spectra deconvolution (GSD)
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algorithm available in MestReNova software (MNova v12.0.3,

Spain), as previously described (18).
2.4 Statistical analysis

To assess the relative abundance of each species of lipids

identified compared with the R7 (control) group, each peak area

was internally normalized to the area of the (CH3)3-N
+ choline

resonance at 3.22 ppm in the same spectrum. Principal component

analysis (PCA) was carried out on the data scaled to unit variance

by dividing each variable by its standard deviation (SD) using the R

software. Univariate statistical analysis was used to determine the

relevant spectral regions responsible for the discrimination between

the groups. One-way ANOVA was used to generate pairwise

comparisons between the R7, R7sgRON and R7shDEK groups.

The Benjamini–Hochberg procedure (22) was used to control the

false discovery rate of the pairwise comparison at q = 0.05. The

control group was set to 1 for comparison, and the data were

expressed as fold change of the relative amount of the different lipid

adducts. Data are displayed as mean ± standard error of the

mean (SEM).
2.5 Design and validation of a predictive
gene signature

Select genes encoding enzymes involved in lipid metabolism

(fatty acids, cholesterol, steroids, sphingolipids, phospholipids,

triglycerides, glycolipids, and cardiolipins) were utilized to stratify

breast cancer patient outcomes with respect to relapse-free survival

(RFS) in the Gene Expression Omnibus-derived KMplot datasets

(23). A comprehensive list of genes associated with these lipid-

related pathways was obtained (24, 25). This initial list was then

refined to generate a gene signature based on the log-rank p-value

for RFS, using the KMplot webtool. Stratification into low and high

gene expression groups was performed using a sliding cutoff

approach from the KMplot webtool which optimizes hazard ratio

(HR) values. Genes with worse outcomes from lower expression

had their values inverted for the gene signature. Genes whose

expression statistically significantly stratified RFS (p value < 0.05)

were used to construct the lipid gene signature through the

arithmetic mean of each gene. Each signature was subjected to a

sliding cutoff. Additionally, the gene signature was used to test

breast cancer patient overall survival (OS), distant metastasis-free

survival (DMFS), and post-progression survival (PPS) in the Gene

Expression Omnibus-derived KMplot datasets (23). The signature

was then validated using The Cancer Genome Atlas (TCGA) Pan

Cancer dataset (26) Overall Survival (OS) and Progression Free

Survival (PFS). Finally, we tested the gene signatures for their

capacity to predict response to chemotherapy in node-positive

breast cancer patients using receiver-operator characteristic

(ROC) analysis from the ROCplot webtool (27) analyzing GEO-

derived breast cancer patient data. For the ROC analysis, genes that

were upregulated and led to worse outcomes were tested separately

from genes that were downregulated. Finally, the gene signature was
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tested using the KMplot dataset for ovarian and lung cancer (28, 29)

and the ROCplot webtool for 6-month survival in ovarian

cancer (27).
3 Results

3.1 Lipidomic profile of breast cancer by
1H-NMR spectroscopy

To qualitatively and quantitatively define RON- and DEK-

dependent reprogramming of lipid metabolites, NMR

spectroscopy was applied to R7 breast cancer cells and the

corresponding RON or DEK knockdown cell lines. Specifically,

proton (1H) NMR determined lipid composition in the presence

and absence of RON and DEK. Despite the inherent width of

individual lipid resonances, as well as the wide variety and

complexity of the lipid species, good-quality spectra were

obtained for all samples. A representative 1D 1H NMR spectrum

of the total lipid fraction of R7sgRON is shown in Figure 1A where

the most representative lipid families were identified and assigned.

As previously described (16, 30, 31), the 1H-NMR resonances of the

subunits of the different lipid classes were distributed as follows: the

methyl (CH3) and methylene (CH2) resonances from cholesterol

and the acyl chains are located from 0.65 ppm to 3.00 ppm

(Figures 1B–D). The spectral region between 3.05 and 5.25 ppm

(Figures 1D–F) comprises the phospholipid head group and

glycerol backbone moieties of the glycerophospholipids. The vinyl

proton peaks resound between 5.30 ppm and 6.00 ppm (Figure 1F).

Therein, we determined the relative abundance of different subunits

of complex lipids, including sterols (e.g., cholesterol), sphingolipids,

glycerophospholipids, and fatty acids. We applied principal

component analysis (PCA) as an exploratory tool to assess the

separation of the three groups based on their lipid profiles

(Supplementary Figure S1). Clear separation observed in the PCA

plot provides visual evidence of distinct lipid patterns among the

groups (Supplementary Figure S1A). The corresponding loading

plot identified the most important variables driving the PCAmodel,

correlations between variables, and species contributing to the

group separation (Supplementary Figure S1B). Each individual

lipid region was then evaluated statistically using one-way ANOVA.
3.2 RON promotes cholesterol biosynthesis

Cholesterol biosynthesis is associated with increased breast

cancer stem cell potential and increased recurrence (32) and

entails a series of highly complex reactions that occur in the

endoplasmic reticulum (ER) (33). The process begins with Acetyl-

CoA and eventually results in a four-ring structure with a side chain

and a total of 27 carbons (Figures 2A, B). Once formed, cholesterol

is transported via non-vesicular and vesicular mechanisms (34).

Vesicular transport of cholesterol occurs through organelle

membranes, such as in endosomes and the Golgi apparatus, to

the cellular membrane with the participation of sterol and oxysterol

trafficking proteins (35, 36) (Figure 2A). Cholesterol upregulation is
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a poor prognostic factor in breast cancer and is associated with

shortened relapse-free survival. Cholesterol also acts as an estrogen

receptor agonist via its metabolite 27-hydroxycholesterol,

supporting recurrence and metastasis progression (13, 37).

Cholesterol resonances from 1H spectra were integrated,

quantified, and used to determine cholesterol levels in the R7,

R7sgRON, and R7shDEK cell lines. The methyl (CH3) cholesterol

resonance at positions C18, and C26, C27, showed that RON loss
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decreased cholesterol levels. In contrast, DEK loss did not impact

cholesterol levels and even elevated them compared with the R7

control (Figures 2C, D). In line with our previous study (6) wherein

RON promoted key genes and enzymes in the cholesterol

biosynthesis pathway as well as the incorporation of glucose-

derived carbon into cholesterol, this establishes that RON (but

not DEK) overexpression contributed to the promotion of

cholesterol biosynthesis.
FIGURE 1

Representative 1H spectrum derived from the whole-cell lipid extract of R7sgRON cell line. (A) Full 1H spectrum acquired in a Bruker Avance
spectrometer operating at 600 MHz. There were 512 transients that were acquired at 288 K, apodized using 1-Hz line broadening exponential,
Fourier transformed, phased, and baseline corrected. (B–F) Expansion of different regions of the 1H spectrum (0.00 ppm–6.00 ppm) of the total lipid
fraction showing the assignments of the lipid classes identified. C, cholesterol; FA, fatty acids; PC, phosphocholine; SM, sphingomyelin; BHT,
butylated hydroxytoluene (solvent, antioxidant).
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3.3 RON expression in breast cancer
increases sphingomyelin levels

Sphingolipids are important structural constituents of cell

membranes. Ceramide is a precursor and essential intermediate in

the synthesis and metabolism of all sphingolipids (Figure 3A).
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Sphingomyelin is produced by the transfer of phosphorylcholine

from phosphatidylcholine to ceramide and constitutes the most

abundant sphingolipid in mammalian cells. Sphingomyelin can also

be hydrolyzed to produce ceramide, a pro-apoptotic molecule

(Figure 3A). Quantification of the 1H-NMR peaks at 5.70 ppm

corresponding to the olefinic CH of the sphingomyelin showed that
FIGURE 3

RON knockout decreases sphingomyelin levels. (A) Schematic representation of the synthesis of sphingomyelin and other derivatives of ceramide.
Translation products from the KMplot.com-derived lipid metabolism gene signature have been added where appropriate, with an upward arrow
indicating that upregulation of this gene is associated with worse patient outcomes. (B) Intracellular fold change of sphingomyelin measured from
sphingomyelin olefinic CH 1H-NMR. Bar plots indicate mean ± SEM. Replicates of each cell line are shown as individual dots (n = 7). Statistical
significance was assessed using one-way ANOVA. *P ≤ 0.05. GM4, N-acetylneuraminyl-galactosylceramide; NEU4, N-acetyl-alpha-neuraminidase 4;
UGT8, UDP glycosyltransferase 8; SMS, sphingomyelin synthase.
FIGURE 2

RON stimulates cholesterol metabolism. (A) Cholesterol biosynthesis pathway. Multistep reactions are illustrated with discontinuous arrows. Relevant
enzymes from the KMplot.com-derived lipid metabolism gene signature are shown where appropriate, with an upward arrow indicating that gene
induction is associated with worse patient outcomes and a downward arrow indicating that gene suppression is associated with worse patient
outcomes. (B) Chemical structure of cholesterol. The carbon positions highlighted in red represent the cholesterol atoms quantified by NMR and
compared between cell lines. (C) Comparison of 1D 1H-NOESY spectra of the lipid fraction from R7, R7sgRON, and R7shDEK corresponding with the
cholesterol peaks analyzed by 1H-NMR. (D) Intracellular fold change of cholesterol measured from C26, C27-CH3, and C18-CH3 carbon positions
and quantified by 1H-NMR and expressed as a fold change of the control group (R7). Bar plots indicate mean ± SEM. Replicates of each cell line are
shown as individual dots (n = 7). Statistical significance was assessed using one-way ANOVA. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.
PM, plasma membrane; MVK, mevalonate kinase; DHCR7, 7-dehydrocholesterol reductase; STARD3, StAR-related lipid transfer domain containing 3;
OSBPL5, oxysterol binding protein like 5.
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the R7sgRON cells had decreased sphingomyelin levels compared

with both the R7 and R7shDEK cell lines (Figure 3B). This implies

that RON, but not DEK, potentially promotes sphingomyelin

synthesis and breast cancer progression. Both ceramide and

sphingomyelin act as regulatory molecules that inversely control

cellular proliferation and tumor progression. Increased production

(or reduced degradation) of sphingomyelin indirectly promotes cell

proliferation due to decreased ceramide levels. Moreover, aberrant

accumulation of sphingomyelin in the plasma membrane impairs

membrane fluidity and permeability. As a consequence,

sphingomyelin not only decreases cell–cell communication in

favor of uncontrolled proliferation and invasion but also impairs

anticancer drug influx, contributing to chemotherapeutic

resistance (38).

In addition, several sphingolipid enzymes play a key role in the

ceramide–sphingomyelin homeostasis and cancer progression.

UDP glycosyltransferase 8 (UGT8) mediates the synthesis of

galactosylceramide from ceramide using UDP-galactose as a

donor (Figure 3A). Higher UGT8 mRNA and protein levels were

observed in breast cancer metastases to the lung compared with

their respective primary tumors (39). The overexpression of UGT8

and accumulation of its product galactosylceramide are associated

with increased aggressiveness and worse prognosis in breast cancer

(39, 40). Notably, UGT8 has already been identified as part of a six-

gene signature that correlates with a higher risk for developing lung

metastases and has been validated in three independent cohorts of

breast cancer patients (41).

Finally, sphingomyelin synthase (SMS) mediates the formation

of sphingomyelin from ceramide. High SMS expression leads to the

concomitant accumulation of sphingomyelin and reduction of

ceramide. An imbalance in ceramide–sphingomyelin homeostasis

stimulates cancer cell proliferation by reducing ceramide-related

apoptosis and induces tumor invasiveness and migration by

enhancing epithelial-to-mesenchymal transition (EMT) (42, 43).
3.4 DEK regulates glycerophospholipid
levels and free glycerol availability

Intracellular glycerol is used as a building block for

glycerophospholipids, which are the major lipids in cell

membranes and can be incorporated into vesicles for either

intracellular or extracellular transport. The glycerol moiety of

triacylglycerols (and other acylglycerols) can be generated from

three sources: glucose, glycerol, or other metabolites such as

pyruvate, alanine, lactate, or TCA cycle intermediates via

glyceroneogenesis (44, 45) (Figure 4A). Glycerol was identified,

assigned, and quantified in several lipid classes. The 1H NMR peaks

of the protons located at positions C1 and C3 of the glycerol

backbone (CH2OR1–CHOR2–CH2OR3) of TAG generated two

sets of peaks at 4.16 ppm and 4.45 ppm. The double doublet at

4.45 ppm was well resolved and isolated and thus integrated and

used for quantification (Figure 4B). In addition, the glyceryl C3H2

group (CH2OR1–CHOR2-CH2–X) of glycerophospholipids was

readily observed and used for quantification (Figure 4C). In both

cases, R7shDEK cell lines harbored significantly increased levels
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compared with the R7 and R7sgRON cell lines. In contrast, when

comparing the NMR peaks derived from free glycerol, both C1H3

and C3H3 and C2H2 resonances showed that the R7shDEK cells

had decreased free glycerol levels compared with both the R7 and

R7sgRON cell lines, and there was no difference between glycerol

levels in R7 and R7sgRON cell lines (Figure 4D). These results

suggest that DEK but not RON expression could lead to decreased

levels of TAG and other glycerophospholipids and increased free

glycerol levels.

Triacylglycerols (TAGs) are the major energy reservoir in

animals. They contain three esters of glycerol with fatty acids

(FA). The main source of free glycerol in cells is lipolysis, which

occurs via the breakdown of triacylglycerols into glycerol and free

fatty acids (FFAs). Glycerol can also be produced directly from

glycerol-3-phosphate via glycolysis (46) (Figure 4A). FAs,

specifically the fatty acyl chains as components of complex lipids,

are essential for maintaining cell membrane architecture. In fact, de

novo FA synthesis (lipogenesis) has been recognized as a hallmark

of malignancy. In breast cancer, FA synthesis was reported to be

heightened via the upregulation of several lipogenic enzymes, such

as FASN and ACLY (47–49).

The main substrate for the biosynthesis of FA is acetyl-CoA,

which is first carboxylated by acetyl-CoA carboxylase to form

malonyl-CoA. The condensation of seven molecules of malonyl-

CoA and one molecule of acetyl-CoA ultimately generates

palmitate, a 16-carbon saturated FA. Palmitoyl-CoA is the main

product of lipogenesis and can later be elongated and desaturated to

produce other FA species. In cancer cells, as a consequence of

increased de novo lipogenesis, saturated and monounsaturated FA

are the dominant species of FA (12). This provides an advantage for

cancer progression and metastasis, since these forms of FA are more

stable, less susceptible to peroxidation, and ultimately more

resistant to cellular damage (50). Hence, the composition of these

FAs is also decisive for the survival of tumor cells. The decreased

level of unsaturation in membranes may affect their properties and

those of integral membrane proteins.

Quantification of the olefinic (C=CH), as well as the bis-allylic

(–CH2) group, which is specific for linoleic acid, revealed that

R7shDEK cells harbor significantly increased levels of unsaturated

FAs (Figures 4E, F) compared with the R7 and R7sgRON cell lines.

This suggests that DEK expression decreases unsaturated FAs, thus

decreasing membrane fluidity. In addition, the analysis of the a-
methylene FA group showed that total FA levels are increased in

R7shDEK compared with R7 and R7sgRON. GPATs (glycerol-3-

phosphate acyltransferases) catalyze the first step of the de novo

biosynthesis of TAG and glycerophospholipids, whereas the

AGPATs (acylglycerolphosphate acyltransferase) and MBOAT1

(membrane-bound O-acyltransferase domain containing 1)

catalyze the second step (51). These enzymes have a central role

as modulators of lipid homeostasis and storage (52, 53). Specifically,

downregulation of GPAT2 has been associated with malignancy,

proliferation, and survival in breast cancer cell lines (54). Inhibition

of MGLL (monoacylglycerol lipase), which is an enzyme involved in

the generation of fatty acids and glycerophospholipids from

monoacylglycerol, was associated with decreased infiltration into

the blood–brain barrier in triple-negative breast cancer in mouse
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models (55). This contrasts with our findings below that decreased

MGLL mRNA levels are associated with worse prognosis in breast

cancer. However, it is important to note that mRNA levels do not

necessarily reflect protein levels and/or enzyme activity (56).
3.5 A gene signature of lipid metabolic
enzymes predicts breast, ovarian, and lung
cancer outcome

We next focused on genes involved in the metabolism of various

lipid classes (fatty acids, cholesterol, steroids, sphingolipids,

phospholipids, triglycerides, glycolipids, and cardiolipins) and

determined where the expression of genes encoding metabolic

enzymes in these pathways was associated with worse outcomes

in breast cancer outside of the RON/DEK context. We focused on

relapse-free survival (RFS) since breast cancer outcomes worsen

substantially upon relapse. Using the KMplot webtool, we

investigated overall survival (OS, Figure 5A), distant metastasis-

free survival (DMFS, Figure 5B), post-progression survival (PPS,

Figure 5C), and recurrence-free survival (RFS, Figure 5D) from the
Frontiers in Oncology 07
Gene Expression Omnibus (GEO)-derived dataset and identified a

gene signature of 47 genes associated with significantly decreased

patient survival regardless of breast cancer subtype. Table 1 shows

the panel of genes, the respective lipid group associated with each

gene, and up- or downregulation in patients with worse outcomes.

Genes that are predictive of poor patient outcomes when

upregulated include the following: enzymes involved in the

hydrolyzation of acyl-CoA molecules, such as ACOT7 and

ACOT13 (57, 58); DHCR7, an enzyme involved in the final steps

of cholesterol biosynthesis (59); and ARSK, an enzyme involved in

the modification of steroids, glycolipids, and carbohydrates (60).

Genes that are predictive of good patient outcomes when

upregulated include ELOVL5, an enzyme involved in the

elongation of fatty acids (61); BDH2, an enzyme involved in fatty

acid beta oxidation (62); ETNK1, an enzyme required for the first

step of phosphatidylethanolamine synthesis (63); and MGLL, an

enzyme involved in the production of fatty acids and glycerol from

acylglycerides (64).

We next queried the gene signature using an independent

Breast Cancer dataset derived from TCGA Pan-Cancer Atlas

using overall survival (OS, Figure 6A) and progression-free
FIGURE 4

DEK knockdown increases glycerophospholipids and FA while decreasing free glycerol. (A) Schematic representation of metabolic processes
involved in the production of glycerol, glycerophospholipids, and fatty acids. Translation products from the KMplot.com-derived lipid metabolism
gene signature have been added where appropriate, with an upward arrow indicating that upregulation of this gene is associated with worse patient
outcomes and a downward arrow indicating that downregulation of this gene is associated with better patient outcomes. (B) Intracellular fold
change of the protons located at positions C1 and C3 of the glycerol backbone (CH2OR1–CHOR2–CH2OR3) of the TAG. (C) The glyceryl C3H2

group (CH2OR1–CHOR2–CH2-X) of glycerophospholipids. (D) The NMR peaks derived from free glycerol, both C1H3 and C3H3 and C2H2

resonances. (E) Analysis of the bis-allylic (–CH2) groups, which is specific for linoleic acid, the olefinic (–CH), and a-methylene fatty acid group of
the acyl chain. (F) Chemical structure of a representative fatty acid. The blue dots represent the carbon position analyzed by 1H-NMR. Bar plots
indicate mean ± SEM. Replicates of each cell line are shown as individual dots (n = 7). Statistical significance was assessed using one-way ANOVA. *P
≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. MGLL, monoglyceride lipase; DGAT2, diacylglycerol O-acyltransferase 2; GPAT2, 1-acylglycerol-3-
phosphate O-acyltransferase 2; GPAT4, glycerol-3-phosphate acyltransferase 4; AGPAT3, 1-acylglycerol-3-phosphate O-acyltransferase 3; AGPAT5,
1-acylglycerol-3-phosphate O-acyltransferase 5; MBOAT1, membrane-bound O-acyltransferase domain containing 1.
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survival (PFS, Figure 6B), as well as Ovarian Cancer (Figure 6C) and

Lung Cancer datasets (Figure 6D) (26). This analysis recapitulated

the results obtained from the dataset used in the KMplot webtool.

We further characterized the lipid gene signature in breast cancer

by narrowing our focus to either Node+ or Node− patients using data

from KMplot.com (Figure 7). The gene signature predicted worse

overall survival (Figures 7A, D), recurrence-free survival (Figures 7B,

E), and distant metastasis-free survival (Figures 7C, F) regardless of

nodal status, with a hazard ratio of 20.49 for distant free metastasis in

Node− patients (Figure 7F). Importantly, this implies that in patients

with early-stage (Node−) breast cancer, this gene signature is highly

predictive of progression to metastatic disease.

We then tested the predictive potential of the above lipid

metabolism signature for breast cancer, ovarian cancer, colorectal

cancer, and glioblastoma response to therapy using the ROCplot

webtool. The genes were separated into two sets. One set included

genes that were overexpressed in cancers that had recurred, whereas

the other set included genes that were underexpressed in cancers

that had recurred. Genes that were overexpressed were predictive of
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a complete response to chemotherapy in breast cancer (Figure 8A),

whereas genes that were underexpressed were predictive of relapse-

free survival in breast cancer (Figure 8B). Both sets of genes were

predictive of relapse-free survival in Node+ breast cancer

(Figures 8C, D).

To further refine the lipid gene signature to its necessary

components, we determined the minimal number of lipid

metabolism related genes predictive of breast cancer outcomes

and arrived at four genes based on their RNA-seq expression in

R7 and T47D cell lines compared with their isogenic shRON

counterparts (65): DHCR7, BDH2, ELOVL5, and ARSK.

Compared with the above signature of 47 genes, these four genes

were equally sufficient to predict poor overall survival, distant

metastasis-free survival, post-progression survival, and

recurrence-free survival at 60 months (Figures 9A–D). In

addition, ROC analysis was performed using these four genes on

the ROCplot webtool showing a prediction of complete response to

chemotherapy similar to that of the 47 gene signature

(Supplementary Figure S2).
FIGURE 5

A gene expression signature for lipid metabolism based on KMplot.com GEO-derived breast cancer dataset. Gene Expression Omnibus-derived
KMplot breast cancer datasets (23) were used to query. (A) Overall survival (OS), (B) distant metastasis-free survival (DMFS), (C) post-progression
survival (PPS), and (D) recurrence-free survival (RFS) of breast cancer patients stratified by expression of the lipid gene signature (Table 1).
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TABLE 1 Lipid metabolism genes with prognostic capacity.

Lipid
class

Gene
Upregulated (Up) or

downregulated (Down)

Log-rank p-value

RFS OS DMFS PPS

Fatty acids

ACOT7 Up 9e−05 0.055 0.031 0.0014

ACOT13 Up 1.7e−08 0.071 0.00024 0.045

ME1 Up 2.9e−15 0.001 4.3e−08 0.02

ANGPTL4 Up 5.7e−11 1.8e−06 4.9e−07 0.083

OLAH Down 0.018 0.12 0.31 0.09

ACACB Down <1e−16 0.0022 6e−10 0.12

IVD Down 3.1e−16 0.00043 0.00057 0.037

FASN Down 3.5e−06 0.018 5.7e−05 0.022

ACSL6 Down 7.2e−06 0.00033 0.0027 0.12

ELOVL5 Down <1e−16 6.3e−07 <1e−16 0.00013

CPT1C Down 3.1e−05 0.092 0.043 0.031

CPT1B Down 1.4e−15 0.012 0.14 0.016

ACADSB Down <1e−16 1.8e−10 1.3e−09 0.023

ACAA2 Down 2.8e−05 0.3 0.037 0.038

ACOX1 Down 0.0074 0.094 0.13 0.14

PTGR1 Down 1.9e−05 0.0024 0.007 0.0019

FAAH Down <1e−16 0.0089 2.1e−05 0.18

ACSF2 Down <1e−16 2.8e−05 9.1e−11 0.00033

BDH2 Down 6.9e−11 0.0018 6.5e−05 0.042

ACOT11 Down 9e−05 0.055 0.031 0.0014

MBOAT1 Down 2.3e−15 5e−07 1.5e−05 0.085

Cholesterol

DHCR7 Up 3.3e−15 8.5e−09 9.7e−10 0.0017

MVK Down 3e−14 0.062 0.0011 0.11

STARD3 Down 6.8e−06 1e−04 0.0023 0.00088

OSBPL5 Down 9.4e−12 0.01 0.062 0.36

Steroid

SRD5A1 Up 9.5e−14 0.0015 2.4e−10 0.0019

HSD17B2 Up 5.3e−05 2.7e−05 3.9e−05 0.0039

NCOA1 Down 3e−10 0.00078 1.3e−06 0.16

Sphingolipids UGT8 Up 3.4e−05 0.0061 0.021 0.019

Phospholipids

LCLAT1 Up 1.8e−05 0.079 0.035 0.26

PLAAT1 Up <1e−16 3.8e−05 2.2e−12 0.0057

AGPAT3 Down 7e−12 0.0046 0.0017 0.29

AGPAT5 Down 1.1e−06 0.0012 0.051 0.028

GPAT4 Down 2.8e−12 0.24 0.28 0.31

INPP4B Down 3e−12 0.0034 8.8e−10 0.025

ETNK1 Down 1.4e−05 0.00041 0.022 0.36

PLAAT5 Down 1.1e−10 0.0064 0.00037 0.068

PITPNM2 Down 6e−09 0.0011 0.052 0.0028

(Continued)
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TABLE 1 Continued

Lipid
class

Gene
Upregulated (Up) or

downregulated (Down)

Log-rank p-value

RFS OS DMFS PPS

SLC44A4 Down <1e−16 0.00052 1.2e−09 0.14

Triglycerides

DGAT2 Up 0.0021 0.00033 0.0071 0.016

APOA5 Down 7.8e−08 0.026 0.074 0.021

GPAT2 Down 0.0025 0.34 0.023 0.037

MGLL Down 0.003 0.0022 0.21 0.24

Glycolipids
ARSK Up 5.7e−14 0.036 0.032 0.11

NEU4 Up 4.4e−06 0.014 0.041 0.16

Cardiolipins PLD6 Down 9.9e−08 0.13 0.019 0.014
F
rontiers in Onc
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Genes are displayed with a notation of upregulated (Up) or downregulated (Down) in breast cancer in association with worse outcomes. The log-rank p-value for Kaplan–Meier survival curves
obtained from the KMplot webtool (23) are included for relapse-free survival (RFS), overall survival (OS), distant metastasis-free survival (DMFS), and post-progression survival (PPS).
FIGURE 6

Confirmation of a gene expression signature via a TCGA-based breast cancer dataset and KMplot.com ovarian and lung cancer. The gene signature
developed on the KMplot cancer datasets (Table 1) was tested against a breast cancer dataset from The Cancer Genome Atlas (TCGA) Pan-Cancer
datasets to examine (A) overall survival (OS) and (B) progression-free survival (PFS). Additionally, Gene Expression Omnibus-derived KMplot ovarian
cancer (C) and lung cancer (D) datasets (26, 27) were used to query the effectiveness of the gene signature in cancers other than breast cancer via
overall survival (OS).
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4 Discussion

RON and DEK are implicated in breast cancer metastasis and

recurrence, and since these same phenotypes have been linked to

lipid dysregulation, the gene signature discovered here might

have diagnostic and prognostic potential for patients with breast

and other cancer types. In the present study, 1H-NMR

spectroscopy was employed as an exploratory tool to identify

dysregulated lipid families and characterize the lipid metabolic

profile of murine breast cancer cells with respect to loss of RON

or DEK expression. Specifically, we obtained global information

on glycerophospholipid head groups and backbones, acyl chain

length, and degree of unsaturation of fatty acids, as well as

cholesterol and sphingolipid content. Although NMR-based

methods are generally less sensitive than MS and can be

limited by overlapping signals, here we describe a simple and

efficient NMR-based lipidomic method to provide a non-

destructive comprehensive lipid profile in a single experiment

with minimal sample processing and without multiple

internal standards.

A wealth of evidence has shown that lipid metabolism is

important in metastasis and recurrence of breast cancer. For

instance, cholesterol biosynthesis inhibition using statins

lowered the risk of recurrence (66). We have further shown

that RON signaling increases cholesterol levels and that RON-

stimulated metastasis and recurrence can be suppressed by

statins. In addition, fatty acid synthesis promotes DNA
Frontiers in Oncology 11
damage and ROS production in residual breast cancer cells

(67). Although the exact roles that DNA damage and ROS play

in cancer are unclear, the data presented in the gene signature

here imply that fatty acid synthesis may suppress cancer

progression, perhaps due to modulation of DNA damage and

ROS levels. Independent of RON, DEK appears to lower total

fatty acid levels, as a possible contributor to the pro-tumor

capabilities of DEK in breast cancer. Although clinical data are

lacking, trends in the published cellular literature indicate that

sphingolipids and phospholipids also play key roles in breast

cancer recurrence and metastasis (68–70). RON, independent of

DEK, seems to increase sphingomyelin levels. The literature

combined with the lipid data presented in this report supports

possible roles for RON and DEK in the reprogramming of breast

cancer cells toward a cancer stem cell phenotype. Specifically,

RON appears to promote cholesterol and sphingomyelin levels

whereas DEK suppresses cholesterol and total fatty acid levels.

However, further investigations are necessary to establish the

functional consequences of the observed lipid profile.

We have previously reported studies of the polar fractions from

the above cell lines (18). Integrating the polar and non-polar data

increases our understanding of the impact of RON and DEK on

pathways that feed into lipid metabolism. For instance, we

previously found that pyruvate levels were suppressed by RON

but stimulated by DEK. Pyruvate can be metabolized into glycerol,

which also shows a similar pattern as pyruvate with suppression by

RON, and stimulation by DEK in the absence of glycerol changes.
FIGURE 7

Survival analysis of Node+ and Node− breast cancer patients from GEO-derived datasets on KMplot.com. Gene Expression Omnibus-derived KMplot
breast cancer datasets (23) were used to query (A, D) overall survival (OS), (B, E) recurrence-free survival (RFS), and (C, F) distant metastasis-free
survival (DMFS) of breast cancer patients stratified by expression of the lipid gene signature (Table 1).
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This indicates that RON and DEK may independently regulate the

flux of pyruvate into different pathways. In addition, pyruvate can

be converted into acetyl-CoA and used for fatty acid and cholesterol

synthesis. Other contributors to acetyl-CoA levels that we have

previously measured include isoleucine, which was found to be

increased by both DEK and RON; glutamate, which was not affected

by RON or DEK knockdown; citrate, which was found to be

suppressed by both RON and DEK; and acetate, which was found

to be increased by both RON and DEK. However, in the absence of

tracer experiments, it is difficult to determine the relative

contributions of these different pathways to lipid synthesis.

For phospholipids, we found in our previous manuscript that

phosphatidylcholine levels were stimulated by RON and DEK,

whereas glycerophosphatidylcholine was suppressed by RON and
Frontiers in Oncology 12
stimulated by DEK. The observed dysregulation of specific

phospholipids in the absence of RON occurred without any

change in total phospholipid levels, and the lack of a change in

the glycerol signature. In addition, we observed alterations in

sphingolipid levels, the degree of unsaturation, and cholesterol

level, which is importantly involved in membrane lipid raft

function. This suggests that RON and DEK may control pathways

that influence the physical properties of membranes including

fluidity and signaling, important possible contributors to

metastasis and recurrence in breast cancer.

There is evidence that implicates ELOVL5 (61), DHCR7 (71),

ACOT7 (72), ME1 (73), ACACB (74), FASN (75), ACSL6 (76),

CPT1B (77), FAAH (78), ANGPTL4 (79), STARD3 (80), SRD5A1

(81), HSD171B (82), NCOA1 (83), UGT8 (40), INPP4B (84),
FIGURE 8

Breast cancer patient response to therapy compared with the gene expression signature from ROCplot.com. (A) Receiver-operator characteristic
(ROC) analysis of breast cancer patient complete response to chemotherapy stratified by expression of genes in the lipid gene signature (Table 1)
found to be upregulated in recurrent breast cancer. (B) Receiver-operator characteristic (ROC) analysis of breast cancer patient recurrence-free
survival (RFS) to chemotherapy stratified by expression of genes in the gene signature found to be downregulated in recurrent breast cancer.
Receiver-operator characteristic (ROC) analysis of node-positive breast cancer patient RFS to therapy stratified by expression of genes in the gene
signature found to be (C) upregulated and (D) downregulated in recurrent breast cancer.
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DGAT2 (85), MBOAT1 (86), PTGR1 (87), and PLD6 (88) in breast

cancer prognosis. However, these studies focused on changes in

growth, proliferation, and prognosis and did not report on changes

in metabolites. Several genes included in the predictive lipid-related

gene signature have not yet been studied in the context of breast

cancer, which include ACAA2, ACSF2, AGPAT3, AGPAT6,

APOA5, ARSK, BDH2, CBR4, ACOT13, ACOT11, MVK, OLAH,

ACADSB, ACOX1, IVD, LCLAT1, MGLL, SLC44A4, PLAAT1,

PLAAT5, and PITPNM2. This indicates a need for additional

studies of the functional roles of these genes as potential drivers

of breast cancer metastasis and recurrence. For example, the hazard
Frontiers in Oncology 13
ratio for the ACADSB RFS curve alone was 0.54, which indicates

that patients with high ACADSB levels in their tumors are half as

likely to have recurrence compared with patients with low

ACADSB, thus supporting a potential high value of this gene as a

predictive biomarker and driver or survival.

To define the significance of the gene signature, we focused

on node +ve breast cancers, which have already spread to lymph

nodes and carry a high likelihood of recurrence. Focusing on the

group of 47 genes (Table 1) that were indicative of improved

response to treatment in node +ve patients, we also identified

patients at a higher risk of recurrence and non-response to

treatment. We were able to narrow this gene signature down to

a combination of only four genes which fully retain the

predictive power of the previous signature. At least some of

these genes might be functionally involved in cancer phenotypes

that portend poor outcome, and in this case, their therapeutic

modulation may result in new avenues to suppress breast cancer

recurrence and/or treatment resistance. Lipid profiles identified

in sgRON and shDEK murine cell lines are the foundation for

future research in animal models of breast cancer recurrence and

metastasis. Data validation in human models is now critical to

advance lipid related biomarkers and targets toward

clinical application.
TABLE 2 Four lipid metabolism genes with prognostic capacity.

Gene
Upregulated (Up) or

downregulated (Down)

ELOVL5 Down

BDH2 Down

DHCR7 Up

ARSK Up
Genes are displayed with a notation of upregulated (Up) or downregulated (Down) in breast
cancer in association with worse outcomes.
FIGURE 9

A refined gene expression signature for lipid metabolisms based on KMplot.com GEO-derived breast cancer dataset. Gene Expression Omnibus-
derived KMplot breast cancer datasets (23) were used to query (A) overall survival (OS), (B) distant metastasis-free survival (DMFS), (C) post-
progression survival (PPS), and (D) recurrence-free survival (RFS) of breast cancer patients stratified by expression of the four gene lipid gene
signature (Table 2).
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SUPPLEMENTARY FIGURE 1

Multivariate statistical analysis by principal component analysis (PCA)

distinguishes cell lines based on their lipid profile. (A) PCA scatter plot
shows distinct clustering of the three cell lines (R7, R7sgRON and R7shDEK)

according to their lipid composition, indicating a clear difference in their

lipidomes. (B) Loading plot where each variable is represented as a vector,
and the length of the vector indicates the influence of that variable in the

model. Variables with longer vectors are more influential, whereas variables
with shorter vectors have less impact on the model. (C–E) PCA scatterplot for

individual cell lines: (C) R7 (n=7), (D) R7sgRON (n=7), (E) R7shDEK (n=7). Prior
to PCA, the data were scaled to unite variance to ensure equal contribution

from each variable. This distinct clustering pattern suggests that the cell lines

exhibit unique lipid signature.

SUPPLEMENTARY FIGURE 2

Breast Cancer Patient Response to therapy compared with the four gene

expression signature from ROCplot.com. Receiver-operator characteristic
(ROC) analysis of breast cancer patient complete response to chemotherapy

stratified by expression of genes in the four gene signature (Table 2).
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