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2.5D peritumoural radiomics
predicts postoperative
recurrence in stage I
lung adenocarcinoma
Haimei Lan1†, Chaosheng Wei1†, Fengming Xu1, Eqing Yang1,
Dayu Lu2, Qing Feng1* and Tao Li1*

1Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China, 2Department of
Radiology, Longtan Hospital, Liuzhou, Guangxi, China
Objective: Radiomics can non-invasively predict the prognosis of a tumour by

applying advanced imaging feature algorithms.The aim of this study was to predict

the chance of postoperative recurrence by modelling tumour radiomics and

peritumour radiomics and clinical features in patients with stage I lung

adenocarcinoma (LUAD).

Materials and methods: Retrospective analysis of 190 patients with postoperative

pathologically confirmed stage I LUAD from centre 1, who were divided into training

cohort and internal validation cohort, with centre 2 added as external validation

cohort. To develop a combined radiation-clinical omics model nomogram

incorporating clinical features based on images from low-dose lung cancer

screening CT plain for predicting postoperative recurrence and to evaluate the

performance of the nomogram in the training cohort, internal validation cohort and

external validation cohort.

Results: A total of 190 patients were included in the model in centre 1 and

randomised into a training cohort of 133 and an internal validation cohort of 57 in

a ratio of 7:3, and 39were included in centre 2 as an external validation cohort. In the

training cohort (AUC=0.865, 95% CI 0.824-0.906), internal validation cohort

(AUC=0.902, 95% CI 0.851-0.953) and external validation cohort (AUC=0.830,95%

CI 0.751-0.908), the combined radiation-clinical omicsmodel had a good predictive

ability. The combined model performed significantly better than the conventional

single-modality models (clinical model, radiomic model), and the calibration curve

and decision curve analysis (DCA) showed high accuracy and clinical utility of

the nomogram.
Abbreviations: 2.5D, 2.5-dimension; 3D, Three-dimension; AUC, Area under the receiver operating

characteristic curve; NSCLC, Non-small cell lung cancer; ROC, Receiver operating characteristic curve;

ROI, Region of interest; SCLC, Small cell lung cancer; LUAD, Lung adenocarcinoma; LUSC, Lung squamous

carcinoma; ICC, Intraclass correlation coefficient; TNM, Tumor, node, and metastasis; PPV, Positive

predictive value; NPV, Negative predictive value.
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Conclusion: The combined preoperative radiation-clinical omics model provides

good predictive value for postoperative recurrence in stage ILUAD and combines

the model’s superiority in both internal and external validation cohorts,

demonstrating its potential to aid in postoperative treatment strategies.
KEYWORDS

radiomics, lung adenocarcinoma, postoperative recurrence, nomogram, peritumoral regions
1 Introduction

Lung cancer is a significant contributor to global cancer

mortality (1). Lung cancer is classified into two main groups (2,

3): non-small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC), of which about 85% of patients belong to NSCLC, which

includes lung adenocarcinoma (LUAD), lung squamous carcinoma

(LUSC), and other histological subtypes. In NSCLC patients, LUAD

accounts for the largest proportion. With the development of low-

dose computed tomography(LDCT) lung cancer screening, a large

number of patients with early-stage NSCLC have been screened,

and in particular, a considerable number of patients with stage I

LUAD have been screened (4, 5), for which surgical resection is the

preferred treatment (6). However, studies have found that the risk

of recurrence remains high, even with a 20-50% recurrence rate for

completely resected stage I LUAD (7). Therefore, assessment of

postoperative recurrence is crucial for the prognosis of stage

I LUAD.

Currently, most studies have focused on assessing benign and

malignant tumours (8), disregarding the prognostic impact of subtle

changes in the peritumoural microenvironment (9, 10).

Furthermore, studies on the prognosis of LUAD have primarily

concentrated on evaluating the prognosis of intermediate and

advanced lung cancer based on genes and treatment regimens

(11–14), while neglecting the impact of certain clinical factors

such as immunohistochemistry and density on the prognosis. It is

important to note that due to the heterogeneity of tumours (15, 16),

even at the same stage, the prognosis can vary significantly.

Moreover, most of the previous studies have been on two-

dimension (2D) and three-dimension (3D) prognostic models

(17, 18), and nowadays some scholars have started to study 2.5-

dimension (2.5D) models (19) as well. Through the peritumoural

radiomics prognostic study of stage I LUAD (20, 21), this study not

only makes up for the shortcomings of previous studies, but also

develops a new 2.5D peritumoural radiation-clinical omics model.
02
Compared with previous 2D or 3D radiomics features, the method

is newer and more effective in studying the prognosis of LUAD.
2 Materials and methods

2.1 Patient selection and follow-up

This retrospective study was approved by two institutional

review boards of the Guangxi Zhuang Autonomous Region

(NO.LW2024009), exempting patients from informed consent.

We collected medical records of all patients with stage I LUAD

who underwent surgical resection and were pathologically

confirmed between January 2010 and December 2018 at the

centre 1. The inclusion criteria (1): underwent surgical complete

resection of the lung lesion (2); postoperative pathological diagnosis

of invasive stage I lung adenocarcinoma (3); CT examination within

2 weeks before surgery. The exclusion criteria (1): the presence of

multiple primary cancers or other malignancies in the lungs (2);

preoperative neoadjuvant therapy (3); failure to complete

postoperative follow-up (4); CT image artefacts that severely

impaired the visualisation of the tumour (5); absence of low-dose

lung cancer screening CT plain images prior to surgery.

A total of 190 patients with stage I LUAD were included in

centre 1 and randomised into two cohorts in a ratio of 7:3. The

training cohort consisted of 133 patients, while the internal

validation cohort had 57 patients. Additionally, 39 patients with

stage I LUAD in centre 2 were collected as the external testing

cohort from January 2016 to December 2018, following the same

inclusion and exclusion criteria. A postoperative follow-up was

conducted, including computed tomography (CT) and/or magnetic

resonance imaging (MRI), PET-CT. Recurrence was defined as local

recurrence and distant metastasis, as per relevant studies. Local

recurrence included recurrence in N1 lymph nodes, N2 lymph

nodes, mediastinum, primary lung or pleura. Distant metastases
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included metastases to the adrenal gland, kidney, bone, brain, liver,

contralateral lung, skin or N3 (22).
2.2 Clinical characteristic

Basic patient information and clinical variables including age,

sex, white blood cell (WBC), neutrophils (NEU), C-reactive protein

(C-RP), carcinoembryonic antigen (CEA), cytokeratin 19 fragment

assay (CYFRA21-1), neuron-specific enolase assay (NSE),

carbohydrate antigen (CA) 125, CA153, squamous cell carcinoma-

associated antigen (SCCA), CA50, CA242, CA724, Ki-67, location of

the tumour, distance from the pleura, T-stage, and type of nodule.

We divided the age into two groups: less than 65 years old and

greater than or equal to 65 years old; T-stage was determined by

experienced radiologists from preoperative CT images, based on the

9th edition of the TNM staging system for lung cancer, and was

divided into T1a, T1b, and T1c; the division of the content of Ki67 is

still controversial, and we used less than 10% for low expression and

greater than or equal to 10% for high expression; and the type of

nodules of stage I LUAD that we included showed mixed ground

glass nodules (mGGN) and solid nodules (SN).
2.3 Procedure

The study workflow is summarized in Figure 1, and the

radiomics modelling pipeline in Figure 2.
Frontiers in Oncology 03
2.4 CT image acquisition

The scanning machine at both hospitals was SIEMENS

SOMATOM Definition Flash (Stellar) with the same lung scanning

parameters. All CT scans were performed from the tip of the lungs to

the base of the lungs, and the parameters of the scan reconstruction

were: Tube voltage=120kV, Effective power of tube=30mAs, Detector

col l imat ion=128 × 0.625mm, Matr ix=512×512, S l ice

thickness=0.625mm, CDTIvol=2.03mGy.
2.5 Radiomics feature extraction and
feature selection

The DICOM format images of the patients were downloaded

from the Picture Archiving and Communication Systems (PACS) and

imported into the Darwin Intelligent Science Research Platform. The

process of tumour region segmentation and radiomics feature

extraction involves the following steps (1): Modal settings: the

modal parameters for each patient were set to tumour body,

peritumoural 3mm, peritumoural 6mm, peritumoural 9mm,

peritumoural 12mm and peritumoural 15mm, and the window

widths and window positions were uniformly set to 1200 and -600

(2); 2.5D region of interest (ROI) segmentation: The ROI was

manually delineated on the CT images by two radiologists with 10

years of experience. For each CT image, the radiologist selected the

largest section of the tumour on the Darwin Intelligent Science
FIGURE 1

Flow diagram of the study population.
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research platform (23) to draw a ROI, and then selected the forward

and backward angles of 45° on this section to draw two ROIs. These

three ROIs were then merged to create a 2.5D ROI for each tumour. In

outlining ROIs, we exclude pleural walls, thick bronchial tubes, and

blood vessels (3); A total of 1125 radiomics features were extracted

using the Darwin Intelligent Science Research Platform (4); A

minimum-maximum normalised, optimal feature filter was used to

assess the linear correlation between each feature and the lesion

category labels, and the 40 most relevant features were filtered out

of 1125 features. The least absolute shrinkage and selection operator

(LASSO) algorithm was used to select the most relevant features from

40 features (Figure 3). Finally, a total of 10 features most relevant to

recurrence after surgery for stage I LUAD were selected and used to

construct a prediction model (Figure 4).
Frontiers in Oncology 04
2.6 Intra-observer and inter-
observer consistency

We used intraclass correlation coefficient (ICC) to assess intra-

and inter-observer correlation coefficients. A total of 49 patients were

randomly selected from the training set, and ROI segmentation was

independently performed by two physicians. We considered these

features to be stable when the ICC value was greater than 0.80.
2.7 Model construction and validation

To predict postoperative recurrence of stage I LUAD, we

performed univariate and multifactorial logistic regression (LR)
FIGURE 2

The radiomics modelling pipeline.
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analyses to select statistically significant clinical characteristics

(P < 0.05) for clinical modelling. Clinical characteristics that were

statistically significant for postoperative recurrence of stage I LUAD

were retained in the univariate logistic regression analysis (p<0.05).

Variables with p<0.05 in the multifactorial analysis were identified

as independent predictors associated with postoperative recurrence

and were included in the construction of the clinical model.

Combining the radiomics model with the clinical model to create

a joint model with different parameters. Receiver operating

characteristic (ROC) curves were plotted, and area under the

receiver operating characteristic curve (AUC) was calculated to

assess the efficacy of each model. We compared thirteen predictive

models, including six parameter radiomics models, clinical model,

and six radiation-clinical omics models incorporating clinical

factors. The best models were then selected from these to draw

nomogram, and we used deLong tests, calibration curves, and

decision curve analyses (DCA) to test the accuracy and clinical

utility of the nomogram.
2.8 Statistical analysis

SPSS 24.0 was used for statistical analysis. Continuous variables

were presented as mean ± standard deviation and compared using

independent samples t-test. Categorical variables were presented as

percentage counts and compared using chi-square test. The model’s
Frontiers in Oncology 05
goodness of fit was assessed using the Hosmer-Lemeshow test,

which showed no statistically significant difference (P > 0.05),

indicating good model fit. To comprehensively evaluate the

predictive efficacy of different models, we used ROC curve, AUC,

accuracy, sensitivity, specificity, Positive predictive value(PPV), and

Negative predictive value (NPV). All statistical tests were two-sided

with a significance level of p<0.05.
3 Results

3.1 Patient clinical baseline characteristics

Table 1 lists and compares the clinical baseline characteristics of

the analysed patients.
3.2 Establishment of clinical models

Logistic regression analysis was used to assess 19 possible risk

factors. Univariate and multifactorial logistic regression analyses

were performed on clinical indicators in training cohort of 133

patients with postoperative recurrence of stage I LUAD (Table 2).

Univariate logistic regression analysis showed that T1c in T-stage,

CEA, NSE, ≥10% in Ki67, and SN in nodal type were statistically

significant for postoperative recurrence of stage ILUAD. For
FIGURE 4

The final 10 features selected (10 textures).
FIGURE 3

Feature selection using the LASSO algorithm [(A), LASSO path; (B), MSE path].
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TABLE 1 Clinical baseline characteristics.

Training Set
(n1 = 133)

Internal Test Set
(n2 = 57)

p value
(n1 VS n2)

External Test Set
(n3 = 39)

p value
(n1 VS n3)

Age 0.838 0.571

<65 88(66.2) 43 (75.4) 25 (64.1)

≥65 45(33.8) 14 (24.6) 14 (35.9)

Sex 0.777 0.705

Male 66 (49.6) 27 (47.4) 18 (46.2)

Female 67 (50.4) 30 (52.6) 21 (53.8)

Stage 0.213 0.371

T1a 8 (6.0) 7 (12.2) 4 (10.2)

T1b 77 (57.9) 38 (66.7) 23 (59.0)

T1c 48 (36.1) 12 (21.1) 12 (30.8)

WBC (Mean ± SD) 6.97 ± 2.34 6.93 ± 2.06 0.911 6.77 ± 1.87 0.707

NEU (Mean ± SD) 4.30 ± 2.04 4.14 ± 1.48 0.604 3.99 ± 1.53 0.441

C-RP (Mean ± SD) 6.08 ± 14.58 2.66 ± 3.63 0.093 4.56 ± 14.98 0.585

CEA (Mean ± SD) 5.38 ± 7.90 3.82 ± 4.14 0.082 7.02 ± 18.99 0.431

CYFRA21-1 (Mean ± SD) 3.09 ± 1.74 3.55 ± 2.28 0.175 2.97 ± 1.86 0.776

NSE (Mean ± SD) 13.26 ± 3.69 13.93 ± 6.19 0.392 13.18 ± 4.74 0.792

CA125 (Mean ± SD) 15.29 ± 12.00 12.03 ± 16.85 0.156 14.09 ± 15.03 0.678

CA15-3 (Mean ± SD) 15.68 ± 15.77 13.17 ± 9.26 0.294 19.78 ± 16.23 0.318

SCCA (Mean ± SD) 1.19 ± 0.79 1.42 ± 0.86 0.088 1.55 ± 0.79 0.335

CA50 (Mean ± SD) 9.56 ± 14.43 23.93 ± 71.84 0.163 8.32 ± 9.80 0.568

CA242 (Mean ± SD) 6.59 ± 6.10 12.56 ± 34.26 0.222 5.09 ± 4.91 0.205

CA72-4 (Mean ± SD) 4.42 ± 9.16 3.82 ± 7.78 0.682 5.04 ± 13.42 0.750

Ki67 0.078 0.095

<10% 68 (51.1) 26 (45.6) 14 (35.9)

≥10% 65 (48.9) 31 (54.4) 25 (64.1)

Location 0.854 0.580

Left superior lobar 37 (27.8) 15 (26.3) 14 (35.9)

Right superior lobar 45 (33.8) 20 (35.1) 10 (25.7)

Right middle lobar 8 (6.0) 4 (7.0) 7 (17.9)

Right inferior lobar 27 (20.3) 14 (24.6) 2 (5.1)

Left inferior lobar 16 (12.0) 4 (7.0) 6 (15.4)

Distance from pleura (Mean
± SD)

1.45 ± 0.73 1.50 ± 0.65 0.640 1.50 ± 0.65 0.402

Nodule type 0.920 0.079

mGGN 43 (32.3) 18 (31.6) 18 (9.5)

SN 90 (67.7) 39 (68.4) 39 (20.5)

Recurrence 0.862 0.628

Yes 39 (29.3) 16 (28.1) 11 (28.2)

No 94 (70.7) 41 (71.9) 28 (71.8)
F
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TABLE 2 Univariate and multivariate analysis.

N(100%) OR(95%CI) p value OR(95%CI) p value

Age

<65 88(66.2) 1.000

≥65 45(33.8) 0.969(0.439-2.136) 0.937

Sex

Male 66(49.6) 1.000

Female 67(50.4) 1.270(0.601-2.685) 0.531

Stage

T1a 8(6.0) 1.000

T1b 77(7.9) 3.500(0.437-28.004) 0.238 4.092(0.497-33.707) 0.190

T1c 48(36.1) 4.549(2.135-9.695) 0.000 14.237(1.704-118.970) 0.014

WBC 1.123(0.962-1.311) 0.141 – –

NEU 1.165(0.974-1.392) 0.095 – –

C-RP 1.013(0.989-1.039) 0.293 – –

CEA 1.095(1.020-1.175) 0.012 – –

CYFRA21-1 1.182(0.943-1.481) 0.147 – –

NSE 1.126(1.005-1.263) 0.041 1.215(1.032-1.430) 0.020

CA125 1.020(0.988-1.052) 0.223 – –

CA153 1.013(0.989-1.038) 0.304 – –

SCCA 0.752(0.428-1.320) 0.320 – –

CA50 1.010(0.985-1.036) 0.430 – –

CA242 1.054(0.991-1.122) 0.097 – –

CA724 1.028(0.984-1.073) 0.216 – –

Ki67

<10% 68(51.1) 1.000

≥10% 65(48.9) 10.656(4.044-28.078) 0.000 0.081(0.020-0.322) 0.000

Location

Left superior lobar 37(27.8) 1.000 – –

Right superior lobar 45(33.8) 0.758(0.292-1.967) 0.568 – –

Right middle lobar 8(6.0) 1.250(0.255-6.119) 0.783 – –

Right inferior lobar 27(20.3) 0.595(0.191-1.859) 0.372 – –

Left inferior lobar 16(12.0) 1.250(0.368-4.251) 0.721 – –

Distance from pleura 0.822(0.470-1.439) 0.492 – –

Nodule type

mGGN 43(32.3) 1.000

SN 90(67.7) 6.205(2.039-18.881) 0.001 4.541(1.716-12.014) 0.002
F
rontiers in Oncology
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mGGN, Mmixed ground-glass nodule; SN, Solid nodules; SD, Standard deviation. Bolded indicators are meaningful.
Values in bold indicate statistical significance.
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statistically significant clinical characteristics, multifactorial logistic

regression analysis was used, which showed that NSE, ≥10% in

Ki67, T-stage in T1c and SN in nodule type were independent risk

factors for postoperative recurrence and could be used to establish

clinical models.
3.3 Performance and comparison
of models

In this study, we developed 13 models, including the radiomics

models with 6 parameters (tumour body, peritumoural 3mm,

peritumoural 6mm, peritumoural 9mm, peritumoural 12 mm,

peritumoural 15mm), the clinical model, and the six-parameter

radiation-clinical omics models that incorporates clinical factors,

and evaluated the performance of all the models. Table 3 displays

the AUC, accuracy, sensitivity, specificity, PPV, and NPV of various

models. In the training cohort, the peritumoural 9mm model

(AUC= 0.785) outperformed the clinical model (AUC= 0.772) in

terms of postoperative recurrence. When clinical features were

added to the peritumoural 9mm model, the combined radiation-

clinical omics model’s AUC significantly improved in the training
Frontiers in Oncology 08
cohort (0.865), internal validation cohort (0.902), and external

validation cohort (0.830) (p<0.001). Figure 5 shows the ROC

curves for the peritumoural 9mm model, the clinical model, and

the combined radiation-clinical omics models in the training

cohort, internal validation cohort, and external validation cohort.

In order to develop a clinically applicable and more accurate model

for predicting postoperative recurrence in stage ILUAD, we used

the LR algorithm to construct a peritumoural 9mm radiomics

nomogram incorporating some of the independent risk

factors (Figure 6).

The DeLong test showed that the AUC values of the nomogram

were significantly different from those of the other models in the

training cohort (P < 0.05). The combined radiation-clinical omics

model’s ROC curves were significantly better than those of the

radiomics and clinical models. The calibration curves of the training

cohort, and the internal validation cohort in the joint model showed

significant agreement in predicting postoperative recurrence in

stage ILUAD (Figure 7). The DCA of the training cohort, and the

internal validation cohort, showed that the nomogram of the

combined radiation-clinical omics model had a good net clinical

benefit (Figure 8), suggesting that it is a reliable clinical tool for

predicting recurrence after surgery for stage ILUAD.
TABLE 3 Diagnostic effectiveness of different models.

AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training Set

Clinical model 0.772 (0.723-0.820) 0.707 0.791 0.673 0.495 0.888

Tumor body 0.762 (0.711-0.813) 0.659 0.809 0.599 0.449 0.885

Peritumoral 3mm 0.763 (0.711-0.815) 0.632 0.852 0.542 0.430 0.901

Peritumoral 6mm 0.708 (0.651-0.766) 0.717 0.548 0.785 0.508 0.811

Peritumoral 9mm 0.785 (0.734-0.837) 0.724 0.757 0.711 0.515 0.878

Peritumoral 12mm 0.677 (0.616-0.739) 0.654 0.722 0.627 0.439 0.848

Peritumoral 15mm 0.791 (0.744-0.838) 0.714 0.687 0.725 0.503 0.851

Tumor body+Clinic 0.855 (0.817-0.893) 0.757 0.896 0.701 0.548 0.943

Peritumoral 3mm+Clinic 0.861 (0.823-0.899) 0.799 0.765 0.813 0.624 0.895

Peritumoral 6mm+Clinic 0.836 (0.794-0.878) 0.779 0.783 0.778 0.588 0.898

Peritumoral 9mm+Clinic 0.865 (0.824-0.906) 0.832 0.730 0.873 0.700 0.889

Peritumoral 12mm+Clinic 0.851 (0.810-0.892) 0.820 0.696 0.870 0.684 0.876

Peritumoral 15mm+Clinic 0.855 (0.816-0.895) 0.767 0.809 0.750 0.567 0.906

Internal Test Set

Clinical model 0.779 (0.703-0.855) 0.737 0.760 0.727 0.535 0.880

Peritumoral 9mm 0.815 (0.742-0.888) 0.813 0.640 0.884 0.696 0.856

Peritumoral 9mm+Clinic 0.902 (0.851-0.953) 0.871 0.720 0.934 0.818 0.890

External Test Set

Clinical model 0.773 (0.732-0.814) 0.721 0.764 0.704 0.512 0.880

Peritumoral 9mm 0.712 (0.603-0.820) 0.795 0.424 0.940 0.737 0.806

Peritumoral 9mm+ Clinic 0.830 (0.751-0.908) 0.821 0.727 0.857 0.667 0.889
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4 Discussion

In recent years, much attention has been paid to an emerging

technology, radiomics, which automatically extracts a large number

of imaging features from medical imaging data in a high-

throughput manner; it appears to offer an almost unlimited range

of imaging biomarkers, and shows great potential in oncology for

detecting, diagnosing, evaluating prognosis, and predicting

response to treatment (24–26). Furthermore, an increasing

number of scholars are conducting radiomics studies on the

interstitium of peripheral lung cancer, which refers to the tissue

surrounding the primary tumour, and achieving favourable

outcomes (17, 27, 28). This demonstrates the importance of the

peritumoural region in radiomics analysis (29).

Tumour radiomics is widely used for prognostic prediction in

LUAD (27). However, few studies have applied peritumoural

imaging features to aid in the prediction of stage ILUAD, and the

selection of the peritumoural region remains controversial. Previous

studies have defined the peritumoural region as ranging from 1.5 to

20 mm (8, 30, 31). Wu et al. concluded that peritumour radiomic

features based on CT images are reliable for predicting the

prognosis of non-small cell carcinoma (28). The study also noted

that the peritumoural region should ideally extend 15 mm, 20 mm
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or 30 mm from the tumour border. Chen et al. measured the bulk

tumour volume as well as the bulk tumour volume in the

peritumoural 3mm, peritumoural 6mm and peritumoural 9mm

regions by extracting the radiomic feature regions (18), and finally

constructed the bulk tumour volume of peritumoural 9mm region

based on the extraction of the radiomics features had the highest

AUC (training set = 0.82, internal validation = 0.75, external

validation = 0.67). Liu et al. conducted another study where they

extracted radiomics features from intratumoural to peritumoural

3mm, peritumoural 3mm and peritumoural 6mm regions (17). The

study demonstrated that features from the intratumoural 3mm to

peritumoural 3mm region had higher predictive performance. In a

study using radiomics to predict early recurrence, Wang et al.

selected 2.1 mm, 4.2 mm, and 8.4 mm as the peritumoural

regions, extracted 2D and 3D deep learning image features, and

constructed a radiomics model via an air cavity diffusion model,

which resulted in good performance in both internal validation

cohort and external validation cohort, demonstrating its potential

for assisting in post-surgical treatment strategies (7). Wang et al.

investigated 8 models of tumour perimeter 5mm, 10mm, 15mm,

20mm as well as tumour-perimeter 5mm, tumour-perimeter

10mm, tumour-perimeter 15mm, tumour-perimeter 20mm, and

found that nomogram based on the combined model of tumour-
FIGURE 6

The radiomics nomogram incorporating some of the independent risk factors; the peritumoral 9mm model’s radscore = +4.611 *wavelet-LL_first
order_Median_lung window_peritumoral 9mm + 4.114 *original_shape 2.5D_MaximumDiameter_lung window_peritumoral 9mm-4.119.
FIGURE 5

ROC curves of peritumoral 9mm model, clinical model, and combined radiation-clinical omics model in training cohort (A), internal validation
cohort (B), and external validation cohort (C).
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perimeter 10mm and clinical features had a high predictive

efficiency for STAS status in NSCLC patients (32). It can be seen

that the researchers chose different peritumoural regions, but the

best performing peritumoural features essentially consisted of

features in the 3-9mm peritumoural regions. In addition, it was

also found in previous studies that only intratumoural features were

used to predict the prognosis of LUAD (33–36), whereas in this

study, the use of peritumoural features performed well.
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Based on these previous studies, we selected peritumoural 3mm,

peritumoural 6mm, peritumoural 9mm, peritumoural 12mm and

peritumoural 15mm as peritumoural regions, but unlike them, we

used low-dose lung cancer screening CT plain images and

performed 2.5D radiological feature extraction. In this study, we

found that the combined peritumoural 9mm radiation-clinical

omics model had the highest diagnostic efficacy (AUC=0.865)

compared to the tumour and the rest of the peritumour models,
FIGURE 8

The DCA of training cohort (A) and internal validation cohort (B).
FIGURE 7

The calibration curves of combined radiation-clinical omics model for training cohort (blue dashed line) and internal validation cohort (orange
dotted line).
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with good AUC and sensitivity, specificity, NPV, and PPV in both

the internal validation cohort and the external validation cohort,

and that it outperformed the conventional unimodal model. By

combining a peritumoural 9mm radiomics model with clinical

factors, we have also created a visual nomogram with high

predictive power and net benefit in the evaluation of recurrence

after surgery for stage ILUAD. Our study provides a new approach

to prognostic assessment, helps to adjust the treatment plan for

patients with stage ILUAD, and enables AI-personalised

management of the prognosis of these patients.

Multifactorial logistic regression analysis identified T-stage,

neuron-specific enolase assay, Ki67 and nodule type as

independent predictors of recurrence after surgery for stage

ILUAD, which can be used for clinical modelling. Higher clinical

stage, Ki67 percentage, and percentage of nodal solid component

imply higher proliferation and invasiveness of tumour cells and

higher risk of postoperative recurrence, which is consistent with

previous reports (37–39). In addition, multifactorial logistic

regression showed that neuron-specific enolase assay and nodule

type were also independent predictors of postoperative recurrence,

but the clinical-omics features were not significant; therefore, we

developed a nomogram combining some of the independent

predictors in combination with peritumoural 9mm radiomic

features to predict the probability of recurrence in patients with

stage ILUAD. In clinical practice, the patient’s clinical information

and radiological score(radscore) are added to the nomogram to

obtain multiple probability scales, and then the total score of the

nomogram is calculated, which shows the probability of recurrence.

Notably, there was a significant improvement in the AUC of the

nomogram compared to a single radiomics and clinical model. It

can gain valuable treatment time for patients with stage ILUAD that

may recur, and it can help to develop a more rational and effective

treatment plan. When it is known that a patient has a high

probability of recurrence after surgery, some adjuvant treatments

such as chemoradiotherapy or targeted drugs can be taken to reduce

the chance of recurrence.

In addition, DeLong test of AUC for each model showed that in

the training cohort, the AUC values for the nomogram were

significantly different from those of the peritumoural 9mm

radiomics model and the clinical model (P < 0.05). The results of

the study showed that the combined radiation-clinical omics model

performed better than the single model, and that clinical parameters

also play an important role in predicting postoperative recurrence

for stage ILUAD.

The different models constructed in this study not only provide

intratumoural and peritumoural biological information, but also

give some guidance for clinical treatment. Furthermore, by

comparing the diagnostic performance of the different peritumour

models, the peritumoural 9mm model had the best predictive

performance overall, possibly due to the higher reproducibility of

radiomics features the further away from the intratumour area. This

finding may be related to the presence of homogeneous lung

parenchyma in the distal peritumoural area (31). Thus, in our

study, the peritumoural 9mm model showed better predictive

performance than the other models. According to the
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recommendations of the NCCN guidelines for NSCLC 2024, 4th

edition, for most patients with NSCLC, the margin requirement is

to ensure that the lung parenchyma margin distance is ≥ 2 cm or ≥

the size of the tumour nodule (40), and it was found that the

peritumoural region was often extended from the tumour border to

15 mm, 20 mm, or 30 mm (30, 41, 42). However, in our study, when

extending to 20 mm peritumour, we found it difficult to avoid thick

blood vessels and bronchioles, and complex extrapulmonary tissues,

so we only extended to 15 mm peritumour.
5 Conclusions and limitations

This study has several limitations. Firstly, it is a retrospective

study and there may be recurrent cases in the 2018 cases so far.

Secondly, the sample size in this study was small and the predictive

efficiency of the external validation cohort may be erroneous, and

due to the small sample size, we could not perform survival analysis,

and more large sample studies are needed for further validation in

the future.

In summary, the combined 2.5D peritumoural 9mm radiation-

clinical omics model is more accurate than the tumour and the rest

of the peritumoural model in predicting the prognosis of clinical

stage ILUAD, and may serve as an effective non-invasive predictive

tool, which may provide value in decision-making and defining

personalised treatments. However, since most of the studies were

conducted retrospectively, further prospective, multicentre and

biologically relevant studies based on prospective, multicentre and

biologically relevant studies should be carried out in order to

facilitate its clinical application.
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