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Breast cancer, as one of the most common malignancies in women, exhibits

complex and heterogeneous pathological characteristics across different

subtypes. Triple-negative breast cancer (TNBC) and HER2-positive breast

cancer are two common and highly invasive subtypes within breast cancer.

The stability of the breast microbiota is closely intertwined with the immune

environment, and immunotherapy is a common approach for treating breast

cancer.Tertiary lymphoid structures (TLSs), recently discovered immune cell

aggregates surrounding breast cancer, resemble secondary lymphoid organs

(SLOs) and are associated with the prognosis and survival of some breast cancer

patients, offering new avenues for immunotherapy. Machine learning, as a form

of artificial intelligence, has increasingly been used for detecting biomarkers and

constructing tumor prognosis models. This article systematically reviews the

latest research progress on TLSs in breast cancer and the application of machine

learning in the detection of TLSs and the study of breast cancer prognosis. The

insights provided contribute valuable perspectives for further exploring the

biological differences among different subtypes of breast cancer and

formulating personalized treatment strategies.
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Introduction

Since 2019, breast cancer has surpassed lung cancer as the malignant tumor with the

highest global incidence (1), and its incidence is closely related to socioeconomic

development, with the highest risk of disease in economically transformed regions and the

lowest survival rates in economically underdeveloped regions (2). Underdiagnosis,

misdiagnosis and lack of effective treatments are the most important reasons for the huge

differences in prevalence and survival rates worldwide (3). The current treatment options for

breast cancer include various modalities such as surgery, radiation, immunization, endocrine,
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targeted,chemotherapy and Chinese medicine. Immunotherapy has

made significant breakthroughs in recent years, with immune

checkpoint inhibitors in particular boosting survival in many

patients. However, this approach has shown significant results in

only a subset of patients, with relatively low success rates. Objective

remission rates in the vast majority of clinical studies were less than

20%, while median progression-free survival and overall survival were

less than 3 and 24 months (4). Therefore, there is a need for in-depth

research on new methods and ideas for the treatment of breast

cancer. TLSs are a class of ectopic lymphoid organs that form in non-

lymphoid tissues and are common in conditions such as tumors,

chronic inflammation, and autoimmune diseases. Because TLSs are

formed in non-lymphoid tissues, they have a more flexible ability to

respond to local abnormal lesions, thus playing an important

immunomodulatory role in chronic inflammation and tumor

development and contributing to the efficiency of immune

response and local therapeutic efficacy. The presence of TLSs has

been observed in a variety of malignant tumors such as non-small cell

lung cancer, colorectal cancer, breast cancer, melanoma, sarcoma,

and renal cell carcinoma (5). Recent findings indicate that researchers

are gradually recognizing the positive role of TLSs in treating breast

cancer patients. These insights have provided clinicians with new

perspectives to reformulate breast cancer treatment protocols from an

immune perspective (6). Machine learning belongs to a kind of

artificial intelligence, with the arrival of the era of big data, the

ability of computers to quickly process complex and huge data is

increasingly dominant, and in recent years the increasing popularity

of high-throughput histological data and the success of artificial

intelligence technology has made machine learning in a variety of

fields widely used (7–9). Machine learning is more efficient than

humans in predicting and prognosticating treatment for some

cancers. This review summarizes the current understanding of

TLSs in breast cancer and the potential application of machine

learning in the study of TLSs and breast cancer.
Detecting TLSs through
machine learning

The most common techniques for detecting TLSs are multiple

immunofluorescence, hematoxylin and eosin (HE) staining, of which

multiple immunofluorescence is difficult to generalize in research due to

its high cost, small field of view, and high complexity. In contrast, HE

staining is easier and remains the clinical standard in histopathology. TLSs

have been detected by pathologists on HE slides, but manual detection is

time-consuming and laborious, and results vary according to the level of

expertise.Li, Z et al. (10) developed amachine-learning-based computational

tool for the automatic detection and quantitative assessment of TLSs on

routine HE slides. They confirmed its independent prognostic value in an

international multicenter cohort of 1924 patients with six common

gastrointestinal cancers. An important advantage of this method is the

automated enumeration and quantitative characterization of TLSs. This

study, the largest to date, confirms the association of TLSs with the survival

of patients with gastrointestinal cancers.
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Composition of TLSs

TLSs contain within them T cells, B cells, dendritic cells, and

high endothelial venules (HEV) (11). Similar to SLOs, both share

the components of B cells, T cells, and dendritic cells. However,

compared to SLOs, TLSs have a simpler organization with scattered

lymphocyte aggregates and lack the connective tissue membrane of

SLOs (12). The non-enveloped structure of TLSs allows the immune

cells to fully interact with the surrounding microenvironment, and,

unlike SLOs, TLSs do not persist in a specific location, but rather are

formed under specific pathologic conditions, independent of

secondary lymphoid organ regions. TLSs are formed under

specific pathological conditions, independent of secondary

lymphoid organ regions, and trigger immune responses under the

regulation of clear inflammatory signals. However, the mechanism

that triggers the formation of TLSs remains unclear (13).
T cells, B cells and dendritic cells

The T-cell zone is located in the periphery of TLSs and consists

mainly of clusters of T cells and mature dendritic cells; the B-cell

zone is located in the central region of TLSs and consists of a large

number of B cells and some T cells, follicular dendritic cells, and

macrophages. In the T-cell zone, T cells are activated by stimulation

with specific antigens, and dendritic cells capture and present

antigens so that T cells can recognize and bind to them. Activated

T cells proliferate rapidly to form effector T cells, which

subsequently migrate to the site of infection to execute an

immune attack (14–16). In the B-cell region, B cells are activated

and differentiate into plasma cells that produce specific antibodies

against antigens. Similarly, dendritic cells capture and present

foreign antigens to B cells in this process, initiating antibody

production. This coordinated immune response mechanism

ensures the body’s immune balance (17–21). Researchers

comprehensively analyzed 69 studies covering 19 types of cancers

and showed a positive correlation between tumor-infiltrating B cells

(including plasma cells) and clinical outcome in half of the cases,

while the rest showed either a negative correlation (9.3%) or a

neutral effect (40.7%) (22). Helmink and others investigated the

density and distribution of B cells and their relationship with TLSs

and found that the same properties of memory B cells and plasma

cells required for the acquired immune response may contribute to

an effective T cell response after neoadjuvant immune checkpoint

blockade. Importantly, these B cells may act by altering T cell

activation and function and through other mechanisms with key

immune components of TLSs (23). Evidence suggests that B cells

predict a better prognosis and a higher response rate to

immunotherapy only if they form TLSs, and that B cells outside

of TLSs may suppress antitumor immunity and promote tumor

growth (24). These studies reveal that B cells in the tumor

microenvironment not only correlate with clinical outcomes, but

may also play a critical role in T cell responses in the context

of immunotherapy.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1382701
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1382701
HEV

HEV is a unique vascular structure in the lymphatic system,

which helps the formation of TLSs through its unique morphology

and function, and contributes to lymphocyte colonization and

immunoregulation in the lymphatic system. Most of the current

opinions believe that the formation of TLSs is highly dependent on

SLOs and HEV (25–28). Some of the lymphocytes in SLOs spread to

tumor tissues through lymphatic vessels or HEV when stimulated

by inflammatory factors for a long period of time, thus initiating the

formation of TLSs (29). In a retrospective cohort study, Martinet

analyzed data containing 146 patients with invasive breast cancer

and showed that the density of HEV was positively correlated with

patients’ disease-free survival, metastasis-free survival, and overall

survival, demonstrating their important role in the formation of

TLSs (30). Therefore, tumor HEV may be potential therapeutic

targets in cancer diagnosis and treatment. For example, Colbeck

and his team effectively killed tumor cells in the Foxp3DTR mouse

model by depleting Treg cells to promote the self-expanding circuit

of T-cell activation as well as the formation of HEV in the tumor,

which in turn induced the formation and maturation of TLSs in the

tumor (31).
The formation process of TLSs

CXCL13 and IL-7 are involved in the
formation of TLSs

The body undergoes a complex series of reactions in response to

damaged tissues or pathogens in an inflammatory state. This

process involves the release of signaling molecules (e.g.,

inflammatory cytokines, chemokines, growth factors) from

damaged tissues at the site of inflammation, which then attracts

surrounding immune cells toward the damaged area (32, 33).

Chemokine C-X-C motif ligand 13 (CXCL13) and interleukin

(IL)-7 are key chemokines. They are released near the site of

inflammation and can direct the migration of lymphoid tissue

inducer cells (LTi) (Figure 1). CXCL13 recruits B cells to the

tumor region to form TLSs, and the investigators revealed that, in

the tumor microenvironment, Th-CXCL13 cells clustered in the

central B-cell region and formed within the follicular TLSs. co-

localization. Notably, they may attract B cells through chemotaxis as

a way to promote the formation and maturation of follicular TLSs

(34). CXCL13 has been identified as one of the most potent

predictors of improved survival in human cancers (35–38), and

the production of CXCL13 by T cells infiltrating inflammatory

tissues may be a critical step in the initiation of TLSs formation (39).

Some studies have confirmed the presence of dense TLSs and

tumor-infiltrating lymphocytes (TILs) in clear cell renal cell

carcinoma and demonstrated the oncogenic role of CXCL13

expression in clear cell renal cell carcinoma (40), and Hsieh

analyzed the disease-free survival of 794 breast cancer patients

(Disease-Free Survival, DFS) in 794 breast cancer patients and the

clinical correlation between CXCL13 showed that CXCL13
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patients, especially in the HER2 group. Researchers went on to

investigate 996 breast cancer patients receiving neoadjuvant

chemotherapy and showed that CXCL13 expression was highly

correlated with complete remission in HER2 patients (41), a finding

that could help in the development of new immunotherapies. These

studies have confirmed that CXCL13 expression induces the

formation of TLSs.IL-7 is a pluripotent cytokine that maintains

the homeostasis of the immune system and plays a crucial role in

the development, proliferation, and differentiation of T cells as well

as in the promotion of B-cell maturation through the activation of

the IL-7 receptor (42–46). The expansion of the lymphatic vessels

associated with TLSs occurs in two distinct phases. The first stage of

expansion is dependent on IL-7. the second stage is responsible for

the drainage of leukocytes from the gland and is regulated by

lymphotoxin (LT) bR signaling. Maria Iolyeva have demonstrated

that autocrine signaling for IL-7 on lymphatic endothelial cells in

SLOs regulates lymphatic vessel remodeling and expansion (47). In

addition, fibroblast-derived IL-7 may support lymphangiogenesis

in a paracrine manner (48), and all of these findings could suggest

that IL-7 is a key regulatory molecule for lymphatic vessel

expansion in TLSs (49). Indeed, prophylactic blockade of IL-7

affects lymphatic endothelial cell proliferation, which determines

the formation of smaller caliber lymphatic vessels. Although this

defect is not complete, it could still indicate that IL-7 plays a role in

the early stages of lymphangiogenesis associated with TLSs.
FIGURE 1

The mechanism of TLS formation.The primary pathway for TLSs
formation involves stromal cells secreting CXCL13 and IL-7 to
recruit LTi cells into the tumor tissue. The interaction between the
LTa1b2 ligand on LTi cell surfaces and the LTb receptor induces the
formation of HEV. Immunocytes within HEV and some lymphocytes
in SLO, under prolonged stimulation by inflammatory factors,
disseminate into the tumor tissue, giving rise to the initial
morphology of TLSs.
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LTi’s involvement in the formation of TLSs

LTi is a special class of lymphocytes that plays an important role in

induction during embryonic development and lymphoid

organogenesis.LTi expresses many molecules related to lymphoid

organogenesis, such as tumor necrosis factor-associated activation-

inducing cytokines, nuclear factor kappa B receptor activator (50–54).

Besides these proteins, LTi expresses molecules that bind to the LTbR
receptor on the surface of stromal cells. LTi also secretes IL-17, which

stimulates stromal cells to release a variety of chemokines, including

CXCL12, CXCL13, CCL19, and CCL21 (55–58), which in turn attracts

more lymphocytes to accumulate in the region where TLSs form.

Cupedo and his team found that intradermal injection of nascent LTi

induced TLSs (59). Ectopic expression of LTa in pancreatic islets also

induces the formation of TLSs, and Picarella found that LTa-deficient
mice completely lacked peripheral lymphoid organs (60); in contrast,

specific expression of the LTa transgene in the kidney and pancreas

triggered severe chronic inflammation with concomitant formation of

TLSs that had the ability to promote antigen-specific responses and

antibody class switching.In addition, in contrast to overexpression of

only LTa, simultaneous overexpression of both LTa and LTb leads to

more pronounced formation of TLSs compared to overexpression of

only LTa (61).
Application of machine learning in
breast cancer

Existing research suggests that machine learning is increasingly

used for clinical cancer diagnosis, grading, genetic alteration prediction,

and disease prognosis, and that it can identify molecular markers for

cancer treatment (62–67), predict surgical outcomes (68), and interpret

electrocardiograms. Liu, X et al. developed a novel breast cancer

recurrence and metastasis risk assessment framework from

histopathology images using image features and machine learning

techniques (69), The study is expected to reduce the workload of

pathologists and improve the chances of survival for breast cancer

patients. Sammut, S.-J. analyzed breast tumors from patients with

primary invasive cancers who participated in the TransNEO study at

Cambridge University Hospitals NHS Foundation Trust between 2013

and 2017, and found that machine-learning models combining clinical,

molecular, and numerical pathology data for predicting response to

treatment significantly outperformed models based on clinical

variables, emphasizing the The importance of data integration for

response prediction and can be used to generate similar predictors for

other cancers (70). Machine learning can not only diagnose and assess

the prognosis of breast cancer from a pathologic perspective, but also

help clinicians choose breast cancer treatments from an imaging

perspective. Yu, Y. et al. (71) then developed an efficient preoperative

magnetic resonance imaging imaging histology for assessing axillary

lymph node status in breast cancer using machine learning techniques,

which can identify patients with axillary lymph node metastasis in

early-stage invasive breast cancer preoperatively. While machine

learning has made significant progress in the diagnosis, treatment,

and prognosis assessment of breast cancer, it also has limitations. The
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performance of machine learning algorithms highly depends on the

quality and quantity of input data. Therefore, incomplete or biased

datasets may affect the accuracy of the model.
Microbiota and Immunological
Research in Breast Cancer

The human microbiota refers to the collection of microorganisms

that inhabit the human body. While most microorganisms are

beneficial to the human body, an imbalance in the microbial

community, where harmful bacteria outnumber beneficial ones, can

lead to various diseases, including cancer. In recent years, researchers

have uncovered previously unrecognized connections between

immune microenvironment dysregulation and breast cancer (72–76).

There is limited knowledge about the microbial composition associated

with normal breast tissue and breast-related diseases. Human breasts

are not sterile; they harbor diverse bacterial communities. Studies have

confirmed that, besides the skin, somemicrobial communities in breast

tissue can also translocate from the gastrointestinal tract through the

nipple, possibly facilitated by breastfeeding and/or oral contact through

sexual activity (77). This breast microbiota stimulates resident immune

cells to maintain healthy breast tissue. Additionally, the types of

bacteria present and their metabolic activities, such as their ability to

degrade carcinogenic substances, may also contribute. Xuan, C.

observed that the baseline expression of antimicrobial response genes

in tumors is lower than in healthy breast tissue. Microbial DNA is

present in the breast, suggesting that bacteria or their components may

influence the local immune microenvironment (78). Banerjee et al.

examined the specific and common viral, bacterial, fungal, and parasitic

features of each breast cancer subtype. They identified distinct patterns

in triple-negative and triple-positive breast cancer samples, while ER-

positive and HER2-positive samples exhibited similar microbial

characteristics. These features, unique or shared among different

breast cancer types, offer a new research avenue for gaining further

insights into the treatment and prognosis of breast cancer. This

provides a novel understanding of the role of the microbiota in

breast cancer (79). Research has found that postmenopausal women

newly diagnosed with breast cancer exhibit less diversity and

compositional differences in their fecal microbiota compared to

women without breast cancer. This discovery suggests that the gut

microbiota may influence the risk of breast cancer occurrence and

could potentially do so through estrogen-independent pathways (80).

The stability of the microbiota in the breast is closely intertwined with

the immune environment. Clinical practitioners can develop tailored

treatment strategies based on the mechanisms of action of the

microbiota in the breast in improving the prognosis of breast cancer.
Mechanisms of TLSs formation
involving other factors

Inflammation-related necrosis and macrophage infiltration may

be associated with the formation of TLSs. Tumor necrosis is often

accompanied by the onset of an inflammatory response in which
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damaged tissue releases inflammatory factors and cytokines in

response to external aggression. In some cases, cell necrosis

within the tumor results in the formation of foci of inflammatory

necrosis. These necrotic foci become one of the underlying

conditions for the formation of TLSs, which attract immune cells

(especially macrophages) by releasing a large number of signaling

molecules that accumulate in the damaged area (81). The high

degree of plasticity of macrophages can adapt to various

microenvironmental changes in t issues, and M1-type

macrophages, which are usually activated by toll-like receptors,

mostly exhibit anti-pro-inflammatory effects in the immune

response (82–85). Olson demonstrated that modulation of

phagocytosis in macrophages effectively inhibits tumor

progression and improves the prognosis of cancer patients (86).

Under inflammatory conditions, macrophages activate and release

more inflammatory mediators and chemokines, which further

direct immune cells to migrate to the region of TLSs, contributing

to the structural formation and maintenance of TLSs (87).
Expression of TLSs in different breast
cancer subtypes

TLSs have been shown to have a favorable prognostic function in a

variety of malignancies, but have been less well studied in breast cancer.

In the available studies, significant differences were found between

TLSs-positive and TLSs-negative subgroups within the same molecular

subtype of breast cancer, with significant effects on breast cancer

recurrence, lymphovascular infiltration and perineural infiltration

(88). TLSs in the breast cancer stroma have been associated with

activation of tumor angiogenesis, suggesting that this may be a factor

favoring breast cancer metastasis, but most of these studies have been

performed in animal models and there are no data on human tissues

(89).TLSs were detected in 60% of breast cancer tumors and correlated

with higher infiltration of TILs by Buisseret. PD-1 and PD-L1

expression were also associated with higher density of TILs and

TLSs, in addition TILs density, TLSs and PD-L1 expression were

associated with more aggressive tumor characteristics (90), on the basis

of this study, researchers found a positive correlation between the

expression of immune checkpoint molecules and baseline TILs and

TLSs suggesting that assessing these parameters in breast cancer

patients may identify immunomodulatory therapies in tumors that

are responsive to them (91).
TLSs and TNBC

With the in-depth study of TLSs in various types of malignant

tumors, more and more researchers are finding TLSs in TNBC (92–

94). TNBC refers to a subtype of breast cancer that lacks ER, PR,

and HER2, which accounts for 15%-20% of breast cancer cases, and

more than 50% of patients recur within the first 3-5 years after

diagnosis, making it the most malignant subtype of breast cancer

(95, 96). Current treatment options are limited to surgery, adjuvant

chemotherapy and radiotherapy (97–101). However, these

treatments have certain drawbacks: 1. Surgery may result in
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breast size, which may have an impact on the patient’s

psychological and emotional wel l-being. 2. Adjuvant

chemotherapy and radiotherapy may cause damage to the

immune system. In recent years, immunotherapy has emerged as

an innovative treatment option that significantly reduces damage to

healthy cells by activating the patient’s own immune system to fight

cancer cells (102–105). Available immunotherapies such as PD-1/

PD-L1 inhibitors, CTLA-4 inhibitors, and immune-checkpoint

combination therapies have dramatically improved the condition

of patients with breast cancer and the adverse effects of

the treatment.

TLSs have been reported to be present in approximately 60% of

breast cancers (106), and most papers aimed at determining the

presence of TLSs or their impact on breast cancer prognosis have

been reported mainly in the TNBC subtype.Figenschau

demonstrated that tumors with higher levels of TILs were

associated with the formation of intra-tumoral TLSs, higher

tumor grade, and higher degree of inflammation, which led to a

poorer prognosis (107). In addition, TLSs were found to correlate

with DFS and overall survival in some TNBC patients, providing

new ideas for the treatment of TNBC.Schmid found that PD-L0

expression was moderately correlated with TILs in TNBC (r = 45.0-

59.8) (108). Researchers showed a positive correlation with TILs in

TNBC when using HE-stained sl ides and CD3/CD20

immunohistochemistry (IHC)-stained slides, by which they found

that, compared to TNBC with low plasma cell density, the presence

of TLSs in TNBC with high plasma cell density significantly higher

numbers (109), in addition they confirmed that TNBC with higher

plasma cell density were also associated with higher B-cell density.

The investigators collected 108 patients with TNBC treated with

neoadjuvant chemotherapy and measured the amount of TILs and

TLSs on histopathology using HE-stained slides. HEV densities and

subpopulations of TILs by IHC measuring MECA79, CD3, CD8,

and CD20, and the amount of TLSs in core needle biopsies from

neoadjuvant chemotherapy prior to TNBC using a digital computer

analyzer were found to be higher levels of TLSs as represented by

MECA79-positive HEV densities, and higher levels of TILs in the

HE slides were pathologic complete remission predictors. On the

basis of this finding, it was concluded that the approach of

increasing HEV may be beneficial for cancer immunotherapy and

is of great clinical therapeutic relevance. They also evaluated the

percentage of TLSs positivity in all molecular subtypes of breast

cancer.Luminal B breast cancer subtype had a high percentage of

TLSs positive cases among Luminal subtypes 27.58% followed by

Luminal A-BC (24.13%) and Luminal B-HER2 (10.34%) (109).
TLSs and HER2-positive breast cancer

Studies have shown that the presence of TLSs may be an important

good prognostic indicator for patients withHER2-positive breast cancer,

regardless of the level of TILs (110). The HER2 receptor belongs to a

family of receptors consisting of four cell surface receptors (HER1-4).

When expressed at normal levels, HER2 regulates cell growth,

differentiation and survival. However, in pathological conditions
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where HER2 is overexpressed, it leads to aggressive tumor growth.

Therefore, the prognosis associated with HER2-positive breast cancer is

usually poor and most patients with HER2-positive breast cancer are

resistant to targeted hormonal therapy.The most common drugs for

treating HER2-positive breast cancer include trastuzumab, lapatinib,

pertuzumab, and ado-trastuzumab emtansine. However, there are still

questions regarding the optimal sequence, duration, and combination

(with or without chemotherapy) of anti-HER2 targeted therapies, both

in advanced and adjuvant settings (111–114). Since the presence of TLSs

is associated with anti-tumor immune responses and prolonged patient

survival, the study of TLSs in HER2-positive breast cancer is of great

clinical guidance. It has been shown in the literature that the favorable

outcome of many HER2-positive breast cancer patients treated with

chemotherapy and/or HER2-targeted therapy is attributed to active

anti-tumor immunity, passive immunotherapy (115). Therefore, the

presence of TLSs may be an indicator of treatment response in HER2-

positive breast cancer patients. It has been found that in HER2-positive

patients, the presence of TLSs at the infiltration margins and/or

peritumor was associated with better DFS, but not with overall

survival (110). Tumor TLSs are surrounded by a specific vascular

system, including peripheral lymph node address-positive vessels,

which may allow direct migration of peripheral blood lymphocytes

into the TLSs. Indeed, primitive T cells and B cells can be found in

tumor TLSs, which escape the local immunosuppressive effects of the

tumor environment and thus promote more effective antitumor

immunity. A significant correlation was found between the extent of

TLSs and HER2 IHC score or HER2 gene copy number, as well as a

strong correlation between the percentage of precancerous lesions in the

ducts and the extent of TLSs (116). It can therefore be hypothesized that

increased HER2 protein expression or associated mutations may act as

immunogenic factors that attract lymphocytes to the tissue and promote

TLSs. Another possible explanation is that the acne necrosis commonly

seen in HER2-positive intraductal precancerous lesions may be

associated with increased macrophage infiltration, which also plays an

important role in the immune response as antigen-presenting

cells (117).
Conclusions

In summary, the in-depth investigation of the relationship between

breast cancer and TLSs has brought new ideas and prospects for the

clinical diagnosis and treatment of this type of malignant tumor.

Machine learning demonstrates high efficiency in the detection of

TLSs and the diagnosis and prognosis of breast cancer.Immune

checkpoint inhibitors based on TLSs have become an important
Frontiers in Oncology 06
breakthrough in breast cancer treatment, but not all patients can

benefit from them. In the future, we should focus on researching the

distribution and activity of TLSs, making effective use of machine

learning to identify beneficiary populations, and ensuring more precise

selection before treatment. Furthermore, by exploring the molecular

signaling pathways influencing the formation and function of TLSs, as

well as the microbial characteristics of each subtype of breast cancer,

identifying intervention targets, and developing novel treatment

strategies, it is possible to formulate personalized treatment plans

based on individual patients. This approach has the potential to

significantly enhance treatment efficacy and reduce unnecessary

medical interventions.
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