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Engineered exosomes in
emerging cell-free therapy
Chaohua Si, Jianen Gao* and Xu Ma*

National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking
Union Medical College, Beijing, China
The discovery and use of exosomes ushered in a new era of cell-free therapy.

Exosomes are a subgroup of extracellular vesicles that show great potential in

disease treatment. Engineered exosomes. with their improved functions have

attracted intense interests of their application in translational medicine research.

However, the technology of engineering exosomes still faces many challenges

which have been the great limitation for their clinical application. This review

summarizes the current status of research on engineered exosomes and the

difficulties encountered in recent years, with a view to providing new approaches

and ideas for future exosome modification and new drug development.
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1 Background

Following the studies of Chargaff and West in 1946, which opened the field of

extracellular vesicle (EV) biology, several studies in 1990 showed that exosome expression

levels were altered in disease states. Since then, research on exosomes in the field of disease

treatment has grown rapidly (1–5). For example, exosomes of immune cell origin have been

shown to affect the function of the immune system (6). In addition, with the development of

exosome research technology, researchers have the ability to detect individual exosomes,

announcing that exosome research has entered the era of individual exosomes (7, 8).

Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs (9). Almost

all types of cells release exosomes, which can be seen as a regular physiological activity of cells

(10). Cells are the most basic building blocks of the human body, and their abnormal state

often leads to disease. With the development of research methods and techniques, researchers

have discovered that in addition to cells, exosomes also play a crucial role in the onset and

progression of disease (9, 11, 12). Exosomes are usually characterized by low immunogenicity,

high safety, high tissue penetration, and can circulate to almost all body cavities (13). In

addition, exosomes secreted by different cells have different tissue selectivity (14).

With the deepening of exosome research, the great potential of engineered exosomes in

the treatment of diseases, especially cancer, has been gradually recognized. Currently,

engineered exosomes are mainly used to enhance the therapeutic effect of diseases by

enhancing targeting, regulating gene expression, acting as drug carriers, altering the tumor

microenvironment, and regulating inclusion bodies, etc. However, there is no one
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technique for all situations. Researchers must endow exosomes with

a variety of characteristics depending on the actual need. For

example, melanoma-derived, loaded doxorubicin (DOX) and

peptide-targeted exosomes preferentially target disease sites while

minimizing systemic off-target problems (15, 16).

This paper reviews the development process of exosomes in recent

years, the application of immune cell-derived exosomes in tumor

therapy and the difficulties encountered in the clinical translation of

engineered exosomes. In order to provide a new method and idea for

the clinical translation of clinically applied exosomes.
2 The biogenesis and isolation
of exosomes

Exosome production is divided into two main steps, plasma

membrane double invagination and intracellular multivesicular body

(MVB) formation (10). Specifically, the plasma membrane

invaginates to form a cup-shaped structure, leading to the re-

formation of early sorting endosomes (ESEs). During synthesis, the

trans-Golgi network and endoplasmic reticulum play a facilitating

role (17–22). After a period of time, the ESE matures into late sorting

endosomes (LSEs), which eventually form MVBs. MVBs are formed

by double invagination of the plasma membrane, resulting in the

formation of MVBs containing multiple intraluminal vesicles (ILVs).

During release, MVBs are degraded by fusion mainly with lysosomes

or autophagosomes or by direct fusion with plasma membranes to

release exosomes (18, 23). At the same time, exosome uptake is an

important step in intercellular cargo transportation. The uptake of

exosomes by recipient cells occurs mainly through endocytosis,

phagocytosis, or direct fusion with the plasma membrane (24–26).

Exocytosis can be categorized into lattice protein-mediated
Frontiers in Oncology 02
exocytosis, lipid raft-mediated exocytosis, and heparan sulfate

proteoglycan-dependent exocytosis. Ultimately, successful uptake of

exosomes accomplishes the exchange of intercellular substances and

transfers cellular information from the donor cell to the recipient

cell (Figure 1).

The isolation of exosomes is important for the study of their

mechanisms and clinical applications, and the production of large-

scale, high-purity and low-cost exosomes is a major challenge that

limits the use of exosomes for clinical translation. Currently, the main

methods for exosome isolation include ultracentrifugation,

ultrafiltration, chromatography and precipitation (27). In recent

years, researchers are continuously improving exosome extraction

methods in order to obtain higher quantity and quality of exosomes.

For example, the immunoaffinity method originally utilized protein

interactions to extract exosomes. To improve this method,

researchers have used submicron-sized magnetic particles for

immunoaffinity capture-magnetic immunocapture, which increases

the amount of exosomes captured by 10-15 times (28). Another

example is the application of microfluidics to the isolation, detection

and analysis of exosomes. Microfluidics-based separation techniques

not only utilize common separation elements such as size and

density, but also incorporate some innovative sorting devices such

as electrophoresis and electromagnetism (29). The researchers

utilized a micro- and nanofluidic device to separate and capture

exosomes of liposarcoma origin, increasing the throughput per unit

of time by a factor of five (30). While this improvement has led to

improved yields of exosomes and is achievable in the laboratory, they

are often limited in clinical-grade applications by various constraints,

such as high costs, low yields, and complex procedures.

In conclusion, isolating high-quality exosomes is a crucial step

in studying their effects in tumor therapy, and the usual methods

often fail to meet the multiple requirements for isolation, such as
FIGURE 1

The biogenesis of exosomes. Fluid and extracellular components enter the cell by endocytosis, and exosome production is divided into two steps:
plasma membrane double invagination and intracellular multivesicular body formation. In this, the trans-Golgi network and endoplasmic reticulum
play a facilitating role. Subsequently, exosomes are released through cytolysis with lipid bilayers oriented similarly to the plasma membrane.
Exosomes contain different types of cell surface proteins, intracellular proteins, RNA, DNA, amino acids, and other metabolites, and serve as
mediators of proximal and distal intercellular communication in health and disease. At the same time, secretion and uptake of exosomes
accomplishes the exchange of substances between cells and the transfer of cellular information from donor cells to recipient cells. Created with
BioRender.com.
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high purity, high throughput, low cost, and few volume constraints.

Therefore, integration of multiple methods is essential for isolating

exosomes with high purity and yield, which is also an important

direction for the future development of engineered exosomes.
3 Roles and functions of
exosomes in vivo

When exosomes were discovered in the early days, researchers

usually thought they were just metabolic waste products of cells

(31). However, with the improvement of research techniques,

researchers are coming to realize that exosomes may play an

important role in the biological process of disease (10). This

review summarize the role of exosomes in disease from four

perspectives: material transport, information exchange, disease

diagnosis and disease treatment (Figure 2).
3.1 Material transport

In general, when an exosome secreted by one cell enters another

cell, it brings a variety of active substances into the recipient cell,

realizing the transportation of substances between different cells.

Many studies have demonstrated that intercellular substance
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exchange is crucial for intracellular substance homeostasis. For

example, mRNAs are essential for protein production in cells, and

it has been found that there is a class of mRNAs specifically present

in exosomes, which can accompany the exosomes into the recipient

cells, translate and alter their protein expression (32, 33). In

addition, some proteins undergo post-translational lipid

modification, which prevents them from diffusing freely in the

hydrophilic extracellular environment, making it difficult to

transport substances between cells, as in the case of WNT.

Exosomes, on the other hand, can transport proteins directly into

recipient cells for substance replenishment (34). Indeed, exosomes

have emerged as effective vehicles for the diffusion of lipophilic

ligands in the extracellular environment (35–38). At the same time,

uptake and efflux of exosomes are essential for the renewal of cell

membrane components.
3.2 Information exchange

Recent studies have confirmed that exosomes can be

transported over long distances in vivo, mediate intercellular

information transfer, and affect various physiological functions of

recipient cells, especially the nucleic acids and proteins contained in

exosomes (39, 40). The message-exchange function of exosomes has

been demonstrated in a variety of diseases, particularly cancer. For
FIGURE 2

Roles and functions of exosomes in vivo. Exosomes from different cellular sources contain different nucleic acid and protein components and
perform different functions. Some exosomes secreted by donor cells contain substances essential for the survival of recipient cells, which play a role
in substance transportation. In addition, exosomes carry genetic information that can enter the recipient cell and cause changes in its phenotype.
Changes in exosome composition often reflect the health status of the organism and can be used for disease diagnosis. Exosomes contain specific
therapeutic molecules, such as miRNA, which can be used in disease treatment. Created with BioRender.com.
frontiersin.org
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example, genetic experiments conducted by researchers in mice

have shown that small amounts of functional mRNA can follow

exosomes into receptor cells to act, and that the probability of this

occurring is increased in mouse models with peritonitis or

subcutaneous tumors (41–43). In addition to nucleic acids,

exosomal proteins reflect the protein composition of donor cells,

and exosomal proteins also cause phenotypic changes in recipient

cells after uptake by recipient cells. In addition, exosomes secreted

by glioblastoma cells that highly express epidermal growth factor

receptor variant III (EGFRvIII) are specifically enriched for

migration-promoting protein molecules and enhance their

migratory ability after being taken up by recipient cells. Second,

neural stem cells affected by inflammatory factors produce

exosomes containing interferon gamma. When ingested by

receptor cells, it induces the production of interferon g by

receptor cells (44). The above results suggest that cell-generated

signaling molecules can be loaded into exosomes and selectively

induce specific signals in recipient cells to regulate various

biological processes.
3.3 Disease diagnosis

Exosomes contain membrane proteins, cytoplasmic and nuclear

proteins, extracellular matrix proteins, metabolites and nucleic acids

(45–48). Meanwhile, exosomes are heterogeneous; exosomes

obtained from different cell sources, isolation methods and

isolation stages have different sizes, components and functions (20,

49, 50). Exosomes from different sources may have different effects on

the same cell, which may be due to differences in the inclusions of the

exosomes. Also, exosomes from the same cellular source may have

different effects on different receptor cells, and this heterogeneity may

be due to the role and function of the receptor cells (51). Based on

these reasons, the membrane proteins of exosomes, or the nucleic

acids and proteins contained in exosomes, can be used as biomarkers

of disease, especially in the diagnosis of cancer. In cancer, in addition

to the ease of obtaining samples compared to other assays, exosomes

have the significant advantage that only living cells can release

exosomes, and the contents of tumor cells reveal information about

the living cells of the tumor, which is more conducive to the patient’s

diagnosis of the disease (52–55). In addition to their potential as

diagnostic markers, exosomes can improve the sensitivity of other

methods such as liquid biopsy (52). The combination of exosomal

RNA and ctDNA produced a significant increase in the number of

mutant copies compared to ctDNA alone, significantly improving the

chances of detecting mutations from blood samples (52). Thus, the

combined analysis significantly improved the correlation of

biomarkers with treatment outcomes compared with ctDNA alone,

and the method significantly improved the success rate of liquid

biopsy trials (53, 54).
3.4 Disease treatment

Exosomes have shown great potential in the treatment of a wide

range of diseases, and cell-free therapies represented by exosomes
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have greatly expanded the therapeutic approaches for a wide range of

diseases, including cancer (56–59). First, compared with other drug

delivery vehicles, exosomes as cell products have extremely low

immunogenicity (60–62). For example, in triple-negative breast

cancer, exosomes with effective lung-targeting ability were

identified from autologous breast cancer cells, and exosomes were

used to deliver siRNAs to improve drug delivery to pre-metastatic

niche (PMN) in the lung. Demonstrating favorable biocompatibility,

higher lung affinity and gene silencing effects, it is a promising

strategy for suppressing postoperative breast cancer metastasis (63).

In addition, exosomes have the ability to cross the blood-brain barrier

and can circulate in the body for longer periods of time to maintain

therapeutic effects (64). The ability to deliver drugs efficiently is one of

the most important factors affecting the efficacy of glioblastoma

(GBM), a major obstacle when the blood-brain barrier exists.

Wang et al. prepared a biomimetic nanodrug delivery platform

using exosomes to efficiently target the brain without target

modification, and delivered drug and immune adjuvants at the

same time for safe and efficient chemo- and immuno-therapy of

GBM (65). Currently, cancer is one of the most important diseases

facing mankind and one of the major causes of human deaths

worldwide (66). Tumors are treated in a variety of ways, including

surgery, radiotherapy, chemotherapy, immunotherapy, and targeted

therapy. Radiotherapy and chemotherapy are very common

treatments, but many patients have lower treatment effects and

poorer prognosis (67, 68). Drug resistance in tumor cells is one of

the underlying causes (69). It has been reported that Mesenchymal

stem cell-derived (MSC-derived) exosomes can directly deliver

functional proteins and RNAs, such as miRNAs, which in turn

modulate apoptosis-associated proteins and reduce cellular

chemotherapy resistance (70). Exosomes from immune cells can

also directly kill tumor cells. For example, the study by Li et al. proved

that NK cells are known to exert cytotoxicity by cleaving cytotoxic

substances in granules, and the transmembrane protein Fasl on their

surface determines the fate of target cells, which provides a new

approach to the treatment of secondary hepatocellular carcinoma.

Compared to NK cells, exosomes from NK cells are enriched to more

Fasl and perforin proteins, and have a greater ability to kill tumor

cells (71). Exosomes also play an important role in the remodeling of

the tumor microenvironment, where tumor cells live. For example,

macrophages are abundant in the TME and have two distinct

phenotypes, including m1-polarized macrophages and m2-

polarized macrophages. m1-polarized macrophages and their

exosomes kill tumor cells by promoting immune responses in

the tumor microenvironment (72). In addition to the above

pathways, cellular exosomes are rich in proteins and nucleic acids

(e.g., circRNAs, miRNAs, and lncRNAs), which play an important

role in the malignant phenotype of tumors. In conclusion, these

studies demonstrate the important function of exosomes in tumor

therapy (73–75).

However, although exosomes have shown great potential in the

treatment of a wide range of diseases, there are still some difficulties

that need to be addressed. For example, the heterogeneity of cell

growth and proliferation can lead to a decrease in exosome

function, thus affecting the therapeutic effect after drug

preparation. Second, exosomes are secreted by different cells in
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different microenvironments as a means of exchanging material and

information between cells and between cells and the environment.

Thus, the composition and production of cellular exosomes are to

some extent related to the cellular state and cell culture conditions.

Different cell culture medium compositions and oxygen levels in

cell culture led to differences in the production and composition of

exosomes, which in turn lead to differences in their function. Third,

the composition and function of exosomes produced by different

cells vary widely. The packaging mechanisms of effector molecules

in exosomes of different cell types are not clear, and the existence of

packaging signals that influence the entry of molecules into

exosomes remains to be explored. Fourthly, the development of

quality standards and the selection of quality control methods in the

production process of exosomes still need to be explored, and

the efficient and stable long-term storage of exosomes is also an

important research element in the study of exosome chemogenesis.

Engineering strategies for exosomes, such as targeted modifications,

provide a new approach and idea to address these issues. In

addition, engineered exosomes in clinical translation is also faced

with the source, regulation and cost of many aspects of the problem,

how to solve these problems will be an important direction for the

future development of engineered exosomes.
4 Outstanding properties of
engineered exosomes

Above, we have discussed the role of exosomes in the treatment

of diseases. At the same time, exosomes can be engineered, and

engineered exosomes can enhance or even give some new properties

to exosomes (76). There are many studies using engineered

exosomes to treat diseases (77–79). Currently, the engineering of

exosomes is divided into four main routes: biological modification,

immune modification, physical modification and chemical

modification. The most common method for extracting exosomes

is ultrafast centrifugation. In this paper, we will introduce the

advantages of engineered exosomes over natural exosomes and

their applications in various disease models (Figure 3).
4.1 Enhance exosome targeting

It has been found that exosomes can enter receptor cells through a

variety of pathways. It can either fuse directly with the plasma

membrane or be taken up by the recipient cell through phagocytosis

and endocytosis mediated by vesicular and lattice proteins (20, 80).

From the current research, it is clear that exosomes can enter almost

any cell. One of the fundamental reasons that exosomes are

internalized by cells is the ability of these receptor cells to recognize

exosome membrane surface molecules. For example, the CXCR4/SDF-

1a interaction has been shown to mediate the selective transfer of

endothelial colony-forming cell-derived exosomes to renal (81). These

receptor-ligand interactions enhance exosome-targeted delivery (82).

This mechanism of exocytosis suggests that we can design exosome

membrane surface proteins to facilitate their targeted transport capacity
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(76). In recent years, researchers have identified a number of specific

proteins on the membrane surface of exosomes, such as lysosome-

associated membrane protein 2b (Lamp-2b), tetramin (CD63, CD81,

CD9), lactomucin (LA), and glycosylphosphatidylinositol (GPI). In

addition, surface modification strategies of exosomes, such as genetic

engineering and covalent and noncovalent modification of exosomes,

have been used for exosome-targeted therapy (83–87). For example,

Lam2b, a commonly used membrane surface protein, is significantly

enriched in dendritic cell-derived exosomes (88, 89). Lamp2b is highly

expressed on the cell surface and is frequently fused to target peptides

to obtain peptide-modified exosomes for disease therapy (90).

Meanwhile, the use of plasmids encoding target ligands genetically

engineered to fuse with transmembrane proteins in exosome donor

cells has been widely used to create engineered exosomes (83). For

example, Kim et al. co-transfected HEK293 cells with pcDNA -

cardiac-targeting peptide (CTP)-Lamp2b to generate cardiac-

targeting exosomes (91). Regardless of the modification, the ultimate

goal is to allow the exosome to enter as many receptor cells as possible,

rather than other cells, to improve therapeutic efficacy and minimize

side effects.
4.2 Regulating gene expression

Many human diseases have a genetic basis, and the timely

detection and testing of these genes is important for the diagnosis

and treatment of diseases (92). Studies on exosomes have shown that

their enriched nucleic acids play a crucial role in regulating gene

expression in recipient cells (74, 75, 93). In addition, exosomes can

serve as vectors for the regulation of gene expression. A common

approach to treating hereditary diseases is gene therapy, in which

genetic material is introduced to treat the disease (94, 95). The choice

of vector significantly affects the efficacy of gene therapy. Adeno-

associated virus (AAV) is widely used in gene therapy. However,

AAV vectors often elicit an immune response in the host, leading to

their rapid degradation, which seriously affects the effectiveness of

gene therapy (96). Cell-secreted exosomes are highly biocompatible,

low clearance, and targeted delivery, making them well suited for

gene delivery (97). Encapsulation of exosomes protects AAV vectors

from host cells and delivers them through the cytoplasmic membrane

(98). Engineered exosomes can also be used directly as gene

expression regulatory vectors (99). For example, researchers have

designed an exosome-based chondrocyte-targeted miRNA delivery

system for cartilage defect repair (100). Specialized exosomes loaded

with the CRISPR-Cas9 system can be accurately delivered to target

cells (101, 102). The lipid bilayer of the exosome membrane fuses

with liposomes to form exosome-liposome heterodimers that can

encapsulate and deliver large molecules of DNA (103, 104).

Therefore, exosomes have great value and translational potential as

gene expression regulatory vectors.
4.3 As a tool of loading drugs

In addition to serving as gene expression regulatory vectors,

exosomes can also be used to deliver drug (105). Prior to the
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discovery of exosomes, lipid nanoparticles (LNPs) have been

recognized as advantageous carriers for the protection, transport

and delivery of various drugs and vaccines to cells (106). However,

the low bioavailability, toxicity and immune response of LNPs

complexes still constrain their clinical application (105). After the

discovery of exosomes, researchers realized that exosomes have many

of the properties of liposomes that give them an advantage in drug

delivery, such as the ability of exosomes to cross biological barriers,

low immunogenicity, and the presence of unique targeting proteins

on the membrane (107, 108). Take macrophage-derived exosomes as

an example. Macrophage-derived exosomes have surface membrane

properties similar to those of macrophages, and thus M1 -

macrophage-derived exosomes (M1-exos) can be used to deliver a

variety of anticancer drugs for tumor therapy (109). Harney et al.

developed M1-exo/PTX and M1-exo/DOX for solid tumor mice

(110). Kim et al. use ultrasound to load PTX into M1-exos to treat

drug-resistant tumors (111). Nie et al. demonstrated that M1-exo

blocked CD47 and SIRPa and converted M2 macrophages to M1

macrophages, thereby enhancing macrophage phagocytosis of tumor

cells (112). In addition to macrophages, exosomes from a variety of

cells have been explored for the treatment of diseases, including

cancer, potentially offering a new cell-free therapy.
Frontiers in Oncology 06
4.4 Modifying the
tumor microenvironment

The inhibitory tumor microenvironment severely affects the

effectiveness of immunotherapy, and researchers have found that

engineered exosomes can remodel the tumor microenvironment to

improve the effectiveness of immunotherapy. For example, M1-type

macrophages are usually considered as tumor-killing macrophages,

which mainly play anti-tumor and immune-promoting roles. M2-

type tumor-associated macrophages are a major subpopulation of

suppressor immune cells. How to reprogram macrophages from

M2-type to M1-type is an important way to reverse the

immunosuppressive microenvironment of tumors (113, 114). M1

macrophage-derived exosomes loaded with ant isense

oligonucleotides (ASOs) targeting STAT6 induce the expression

of nitric oxide synthase 2 (NOS2), an M1 macrophage marker that

leads to the remodeling of the tumor-immunosuppressive

microenvironment and the activation of CD8 t-cell-mediated

adaptive immune responses (115). In addition to macrophages,

fibroblast activating protein alpha (FAP) cancer-associated

fibroblasts (CAF) are important targets for remodeling the tumor

microenvironment. targeting of FAP genes to tumor-derived
FIGURE 3

Outstanding properties of engineered exosomes. Ultracentrifugation is a very common method for exosome isolation. Depending on the purpose of
the experiment, we can modify the donor cells or exosomes, including biological modification, immunological modification, physical modification
and chemical modification, to enhance the various potentials of exosomes and to treat diseases. "X" means that in the absence of a targeting
peptide, there is no targeting of the exosome into the receptor cell. Created with BioRender.com.
frontiersin.org
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exosome-like nanovesicles (eNVs-FAP) triggers a potent and

specific cytotoxic T-lymphocyte (CTL) immune response against

both tumor cells and FAP CAFs in multiple models of Remodeling

of immunosuppressive TME (116).
4.5 Increase therapeutic component

The role of natural exosomes in tumor therapy relies on the

substances they contain, such as nucleic acids and proteins (117,

118). For these reasons, researchers have attempted to enhance the

therapeutic capabilities of exosomes by altering their composition.

Exosomes contain a variety of non-coding rna, especially miRNAs,

which are very important exosomal cargoes that can influence the

expression of various oncogenes and tumor suppressors, thus

affecting the course of the disease (32, 39, 119, 120). The

researchers found that insertion or deletion of these specific

cellular motifs or exonic motifs in the miRNA increased or

decreased the amount of the corresponding mirna in the

intracellular production of exosomes. In addition, increased

miRNA delivery mediated by EXOmotifs resulted in enhanced

repression of target genes in distal cells (121). Therefore,

improving the efficacy of exosome therapy by altering exosome

composition may be a new direction.
5 Engineered exosomes can be used
as drug delivery platforms for
disease therapy

5.1 Exosomes as nanodelivery systems

The characterization of exosomes and the emergence of exosome

engineering strategies have greatly expanded their capabilities as

nanodelivery systems. First, a variety of modification strategies can

enhance or confer certain properties to exosomes, and common

modification strategies include biological, chemical, physical, and

immunological modifications. One example regarding

biomodification is the enhancement of exosome targeting by the

addition of targeting peptides. For example, in a study by Shao et al.

on osteosarcoma, researchers coupled Exo-MEG3 with a tumor-

targeting cRGD peptide, which demonstrated precise tumor-

targeting ability and enhanced anti-tumor effects in an osteosarcoma

model (122). Exosomes can also be chemically modified, an example

of which is the development of a dual stimulus responsive acoustic

sensitizer using exosomes by Cao et al. That is, indocyanine green

(ICG), which functions as both an acoustic sensitizer and a

photoacoustic (PA) visualizer, was loaded into EVs along with

paclitaxel (PTX) and sodium bicarbonate (SBC) to achieve

combined chemoacoustic-dynamic therapy (123). Exosomes also

allow for more precise tumor targeting under conditions of external

physical interference. For example, Zhang et al. modified exosomes

derived from neutrophils with superparamagnetic iron oxide

nanoparticles (SPIONs), allowing these nanoparticles to selectively
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accumulate at tumor sites under the interference of external magnetic

fields (124). In addition, immunomodified exosomes can elicit strong

immune responses. One example is the use of exosomes with

fibroblast activating protein-alpha (FAP) as a tumor vaccine, which

can elicit a strong immune response leading to tumor therapy (116).

In summary, engineered exosomes have been shown to transport

specific substances to specific sites at specific spaces and times, which

is expected to open up new areas for future drug delivery platforms.
5.2 Application of engineered exosomes in
disease therapy

Disease treatment methods include general treatment, drug

treatment, surgical treatment, radiation therapy and so on. With

the deepening of exosome research, cell-free therapy has gradually

entered people’s vision as a new disease treatment method (125).

Cell-derived exosomes exhibit multiple biological activities and

therapeutic potential in a wide range of diseases (125). To further

enhance the efficacy of cell-free therapy, researchers have begun to

modify natural exosomes, and research on engineered exosomes has

addressed a wide range of diseases, including tumors (100, 122, 126).

For example, in cell therapy for chronic wound healing, its

effectiveness is greatly limited by immune rejection and difficulties

in maintaining cellular activity (127). Exosomes can provide a

therapeutic effect similar to that of promoting cell regeneration and

are thought to be a way to overcome these obstacles (128). Mei et al.

encapsulated humscs-derived exosomes in a bioactive scaffold

composed of polyvinyl alcohol (PVA)/sodium alginate (Alg)

nanohydrogel (exo@H) for wound healing in diabetic rats (127). In

the treatment of osteoarthritis, drug delivery to chondrocytes through

the dense, non-vascularized extracellular matrix of chondrocytes is

still a challenge, and there is currently no effective treatment method

(129). Due to the high permeability of exosomes and their potential as

vectors, He et al. have designed an exosome-based vector to achieve

specific targeted delivery of miR-140 to chondrocytes in a rat model

for the treatment of osteoarthritis (85, 130, 131).
5.3 Combination of engineered exosomes
and tumor therapies

Engineered exosomes can be used in combination with other

therapies in addition to modifying themselves to fight tumors. First,

engineered exosomes are used in conjunction with chemotherapy

drugs. For example, in the treatment of ovarian cancer, researchers

used HEK-293T cells and tumor-derived exosomes loaded with PTX,

which not only inhibited tumor growth but also prevented breast

cancer recurrence and metastasis (123). An exosome obtained from

macrophages, in combination with aminoethyl anisidine-polyethylene

glycol (AA-PEG) and PTX, showed significant anticancer effects (132).

Among them, PEG reduced the recognition and internalization of

MPS and significantly increased the residence time of exosomes in

vivo (133). Second, engineered exosomes can be used in combination
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with radiotherapy. One example is the use of M1 macrophage-derived

engineered exosomes in combination with radiotherapy to treat lung

cancer byMa et al. The mechanism is that the expression of catalase in

the membrane of M1 macrophage-derived exosomes not only

improves hypoxia in the tumor microenvironment, but also

enhances DNA damage in tumor cells, and DNA damage repair

inhibitors encapsulated in M1Exos can significantly limit DNA

damage repair (134). In addition, engineered exosomes can be used

in combination with gene therapy. Gene therapy involves the delivery

of genetic material to a patient to treat a disease through the

expression of therapeutic genes. One example is that Bose et al.

encapsulated miRNA into uPA-engineered exosomes, which not

only enhanced tumor-targeting ability, but also greatly improved

progression-free survival of patients (135). Another example is the

loading of CRISPR/Cas9 into engineered exosomes. Liu et al. loaded

Cas9 RNPs into purified exosomes isolated from hepatic stellate cells

by electroporation, which showed strong therapeutic potential in

mouse models of acute liver injury, chronic liver fibrosis and

hepatocellular carcinoma (136). In addition to the above therapies,

engineered exosomes can be used in combination with photothermal

and photodynamic therapies to treat tumors and have demonstrated

even more powerful results, and we summarize the applications of

engineered exosomes in the treatment of various diseases in recent

years (Table 1).
6 Immune cell-derived engineered
exosomes and tumor therapy

A variety of cells in the body can secrete exosomes, which tend to

have similar properties to their secreting cells, such as anti-cancer and

anti-aging (169). In recent years, numerous immunotherapies have

shown great potential in cancer treatment and are gradually gaining

recognition among researchers (170). Immunotherapy refers to the

use of the self-protection ability of the body’s immune system to

achieve the effect of killing tumors. This therapy targets human

immune cells, not tumor cells, and does not cause great harm to the

patient’s body as radiotherapy does, which is highly expected in terms

of accuracy, effectiveness and safety (171). However, problems such

as short survival time and duration of immune cells and difficulty in

breaking through the solid tumor microenvironment constrain the

effectiveness of immunotherapy (172). Exosomes based on immune

cell sources are emerging as a potential therapeutic approach to

address these limitations of cell-based therapies. Exosomes derived

from immune cells have some or all of the anti-tumor properties of

immune cells, as well as properties such as high penetration capacity

(173). Therefore, cell-free therapy is an important complement to

current anti-tumor therapies. The engineering technology of immune

cell-derived exosomes confers better anti-tumor properties.
6.1 T cell

T cell-derived exosomes are produced only after T cells are

activated. Interactions between tetraspanins, myelin, lymphocyte
Frontiers in Oncology 08
TABLE 1 Engineered exosomes for cancer therapy.

Cancer

Current
clinical

treatment
methods

Mechanism of engi-
neered exosomes

Ref.

Breast cancer

Chemotherapy
Increase uptake of IGG by

recipient cells and release PTX
for disease treatment

(123)

Chemotherapy

Increase CD8+ T cell level and
serum cytokine concentration,

activate GNR-mediated
thermal ablation

(137)

Chemotherapy
Blocking the function of miR-21
and attenuating DOX resistance

(138)

Photothermal
therapy

Inhibition of malignant
phenotype and accelerated

drug release
(139)

Sonodynamic
therapy

Trigger sonotoxicity against
cancer cells

(140)

Gene therapy Deliver TPD52 siRNA (141)

Gene therapy Deliver miRNA (142)

Gene therapy Overexpression of miRNA (135)

Gene therapy Block HER2 synthesis (143)

Immune
therapy

Redirect and activate T cells (144)

Immune
therapy

Enhanced antigen-
antibody response

(145)

Immune
therapy

Induce ICD in breast cancer (146)

Immune
therapy

Activation of cytotoxic T cells (147)

Colorectal
cancer

Chemotherapy

The malignant phenotype and
drug resistance were changed,
while the expression of PTEN
and hMSH2 was increased

(148)

Chemotherapy

Changes in phenotype and drug
resistance, and the expression of

PAEP was down-regulated.
NME1 expression was

up-regulated

(149)

Immune
therapy

Silence STAT6 expression and
remodel the TME

(115)

Chronic
myelogenous
leukemia

Immune
therapy

Activated T cell (150)

Glioblastoma

Sonodynamic
therapy

Enhance the ability to target and
penetrate the blood-brain barrier

and alter the
tumor microenvironment

(151)

Radiotherapy
Enhance the targeting efficiency

of RGD-EV
(152)

Gene therapy
Deliver miRNA degradation

functional molecules
(153)

Gene therapy (154)

(Continued)
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proteins, and ceramides were found to be critical for the biogenesis of

T cell-derived exosomes (174). The study by Wang et al. proved that

T-cell-derived exosomes may reflect the immune properties of T cells,

for example, killing target cells directly, acting in association with B

cells, producing cytokines, and creating optimal conditions for

immune cells to function in a paracrine or autocrine form (175).

Currently, engineering for T-lymphocytes is mainly focused on acting

as gene expression vectors, which means constructing himeric

antigen receptor T (CAR-T) cells for tumor therapy (176). Zhu

et al. proved that CAR-T cell-derived exosomes can reduce the

cytotoxicity of CAR-T therapies and have the ability to cross the
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blood-brain barrier and carry many cytotoxic molecules (FasL,

Apo2L, perforin, etc.), which have demonstrated great efficacy as a

gene-expression-regulating vector in tumor therapy (177). Hong

et al.demonstrated that CAR-T cell-derived exosomes inhibit solid

tumors, including triple negative breast cancer and lung cancer, and

can affect the tumor microenvironment with relative safety (178,

179). Meanwhile, Haque et al. found that CAR-T cell-derived

exosomes can be used to enhance the effects of cancer

immunochemotherapy as well as to induce cell-contact toxicity

(177, 180). These results demonstrate the great potential of T cell-

derived exosomes for tumor therapy.
6.2 Natural killer cell

Natural killer cells (NK cells) are important immune cells in the

body, derived from bone marrow, belong to the lymphocytes, the

third type of lymphocytes except T cells and B cells, and can kill

tumor cells non-specifically without prior sensitization (181). NK

cells are classified into four main anti-tumor modalities: perforin/

granzyme pathway, mediation of tumor apoptosis, ADCC pathway,

and secretion of cytokines. NK cell-derived exosomes possess anti-

tumor functions similar to those of their secreting cells (182).

However, NK cells are a somewhat heterogeneous group of cells

with differences in the function of their derived exosomes, potentially

affecting future therapeutic outcomes. NK92 cells are human-derived

NK cell lines that have a stable source, less difficulty in genetic

modification manipulation relative to primary NK cells, and greater

cytotoxicity and cytokine-producing capacity relative to primary NK

cells (183). NK92 cells are human-derived NK cell lines with stable

source, lower difficulty of gene modification operation relative to NK

cells, and stronger cytotoxicity and cytokine-producing ability relative

to NK cells, which is a hotspot for anti-tumor research at present

(184). In view of the therapeutic properties of NK92 cell exosomes,

researchers have modified the exosome surface proteins, combined

them with single-chain antibodies recognizing tumor-associated

antigens, and established the exosome surface display technology of

single-chain antibodies to tumor-associated antigens, which enhances

the broad-spectrum tumor targeting of the exosomes or the targeting

of specific tumor cells or improves the therapeutic efficacy of

antitumor drugs through the endogenous overexpression of effector

molecules in the cells (185).
6.3 Other innate immune cells

Neutrophils are the most abundant innate immune cells

circulating in the body, and their derived exosomes induce

apoptosis in tumor cells by delivering cytotoxic proteins and

activating the caspase signaling pathway (124). Based on these

properties, the researchers modified N-Ex with superparamagnetic

iron oxide nanoparticles (SPIONs) for higher tumor-targeting

therapeutic effects. Meanwhile, exosome-loaded DOX was used to

enhance the inhibition of tumor cells (124). Dendritic cells (DCs) are
TABLE 1 Continued

Cancer

Current
clinical

treatment
methods

Mechanism of engi-
neered exosomes

Ref.

Inhibit GC progression through
sponging miR-1307-3p

Hepatocellular
Carcinoma

Radiotherapy Facilitate radioiodine uptake (155)

Radiotherapy
The expression of miRNA was
up-regulated and the phenotype
of the receptor cells was changed

(156)

Gene therapy
Delivery gene expression

regulatory system
(157)

Gene therapy
Overexpression of miRNA in

recipient cells leads to
phenotypic changes

(158)

Lung cancer

Radiotherapy
Macrophages were induced to

activate to M1 type and
immunosuppression was lifted

(134)

Gene therapy
Decrease b-catenin expression

and proliferation
(159)

Gene therapy
Delivery gene expression

regulatory system
(160)

Melanoma

Immune
therapy

Enhance tumor antigen
presentation capacity

(161)

Immune
therapy

Activate endogenous T cells (162)

Immune
therapy

Activate Th1 cell responses (163)

Non Small
Cell

Lung Cancer

Chemotherapy Enhance exosome targeting (132)

Chemotherapy Loaded drug (164)

Osteosarcoma
Gene therapy

Enhance the internalization of
miRNA in tumor cells and affect
the phenotype of tumor cells

(165)

Gene therapy Deliver miRNA (166)

Pancreatic
cancer

Photodynamic
therapy

Promote DCs cell maturation
and produce TAA

(167)

Gene therapy Deliver siRNA (168)

Gene therapy Enhancing drug endocytosis (168)
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sentinel antigen-presenting cells of the immune system. DC-derived

exosomes, which also contain functional MHC peptide complexes,

co-stimulatory molecules, and other components that interact with

immune cells, have the potential to promote immune cell-dependent

tumor rejection and offer significant advantages over cell-based

immunotherapies involving DC (186). Macrophages are immune

cells that are widely distributed in the blood and tissues and are

classified into M1 and M2 types (187, 188). M1-Exos)and M2-Exos

have different functions, and the direction of macrophage

polarization also affects the therapeutic efficacy, reprogramming of

macrophages induces macrophage polarization in the M1-type

direction and improves the therapeutic efficacy (189).
7 Conclusion

There is growing evidence that exosomes can be used as a

vehicle for disease treatment with encouraging results. However,

natural exosomes have some drawbacks, for example,

heterogeneity, which can greatly reduce the effectiveness of

disease treatment. Unlike natural exosomes, engineered

exosomes can be modified in a variety of ways according to

specific human wishes, thus enhancing or even conferring some

new properties, and exosomes of immune cell origin have shown

great potential in tumor therapy. However, the clinical translation

of engineered exosomes also faces some difficulties, such as

exosome isolation, quantification and analysis of exosomes in

the clinical stage of engineered exosomes standardized methods

still lack consensus, and how to accurately quantify the

components of exosomes is also a difficult problem. Therefore, if
Frontiers in Oncology 10
we want to develop exosome-based drug delivery systems on a

large scale in the clinic, we need to solve the above problems first.
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Glossary

EV extracellular vesicle

DOX doxorubicin

MVB multivesicular body

ESEs early sorting endosomes

LSEs late sorting endosomes

ILVs intraluminal vesicles

EGFRvIII epidermal growth factor receptor variant III

MSC-derived Mesenchymal stem cell-derived

Lamp-2b lysosome-associated membrane protein 2b

LA lactomucin

GPI glycosylphosphatidylinositol

CTP cardiac-targeting peptide

AAV Adeno-associated virus

LNPs lipid nanoparticles

M1-exos M1 - macrophage-derived exosomes

ASOs n oligonucleotides

NOS2 itric oxide synthase 2

FAP fibroblast activating protein alpha

CAF cancer-associated fibroblasts

CTL T-lymphocyte

CAR-T constructing himeric antigen receptor T

NK cells Natural killer cells

SPIONs superparamagnetic iron oxide nanoparticles

PMN pre-metastatic niche

GBM glioblastoma
F
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