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Gastric cancer and gastroesophageal junction cancer represent the leading

cause of tumor-related death worldwide. Although advances in

immunotherapy and molecular targeted therapy have expanded treatment

options, they have not significantly altered the prognosis for patients with

unresectable or metastatic gastric cancer. A minority of patients, particularly

those with PD-L1–positive, HER-2–positive, or MSI-high tumors, may benefit

more from immune checkpoint inhibitors and/or HER-2–directed therapies in

advanced stages. However, for those lacking specific targets and unique

molecular features, conventional chemotherapy remains the only

recommended effective and durable regimen. In this review, we summarize

the roles of various signaling pathways and further investigate the available

targets. Then, the current results of phase II/III clinical trials in advanced gastric

cancer, along with the superiorities and limitations of the existing biomarkers, are

specifically discussed. Finally, we will offer our insights in precision treatment

pattern when encountering the substantial challenges.
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1 Introduction

Gastric cancer (GC) is increasingly recognized as a major global healthcare issue,

swiftly becoming a leading cause of cancer-related deaths worldwide (1, 2). It was estimated

that, each year, over one million are newly diagnosed GC cases (3). Chronic infection with

Helicobacter pylori (H. pylori), tobacco intake, alcohol consumption, and a high-salt diet

together constitute genetic risk factors for GC (4–6). Often, radical resection is not available

at diagnosis, primarily attributing to a significant number of patients present with

unresectable or metastatic GC/gastroesophageal junction cancer (GEJC) (7). As a result,
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the majority could receive the systematic treatments based on

conventional chemotherapy (7, 8). Yet, paradoxically, the overall

5-year survival rate remains below 10%. Novel approaches

including targeted therapy and immunotherapy have emerged

due to limited efficacy of traditional chemotherapy regimens. In

the realm of precision medicine, the approach to treating advanced

GC has undergone a substantial evolution, progressively steering

toward personalized treatment pattern (9). This shift reflects the

growing emphasis on precision and individualization in oncology.

During GC progression, multiple signaling pathways and

molecular biological processes are involved. Common mutations

occur in TP53 and CDH1 genes in GC. Additionally, DNA

methylation of the MLH1 gene correlates closely with

microsatellite instability. Furthermore, signaling pathways such as

the epidermal growth factor receptor (EGFR), the mitogen-

activated protein kinase (MAPK), and the human epidermal

growth factor receptor 2 (HER-2) signaling pathways, along with

their crosstalk, contribute to cell growth, differentiation, and

migration in GC (10, 11). Another crucial axis, the vascular

endothelial growth factor (VEGF)/VEGF receptor (VEGFR), is

recognized as a pivotal mediator in tumor angiogenesis (12).

Blocking VEGF/VEGFR signal directly affects vascularization and

even reverse the immune-suppressive tumor microenvironment

(TME) by reducing the infiltration of regulatory T cells (Tregs)

and so on (13).

In the treatment of advanced GC, targeting HER-2 signaling

pathway is feasible in patients with advanced GC with HER-2–

positive; meanwhile, the addition of immunotherapy is also

recommended (14, 15). However, only about 10.4%–20.2% of
Frontiers in Oncology 02
patients with GC are HER-2–positive (16). This highlights an

urgent need for novel, targeted therapies, particularly for those

with HER-2–negative GC. As mentioned previously, the current

evidence has distinguished patients who are especially responsive to

immune checkpoint inhibitors (ICIs), including those with high-

expression programmed cell death ligand 1 (PD-L1), or with

Microsatellite instability high (MSI-H)/deficient mismatch repair

protein (dMMR), or with Epstein–Barr virus infection (17–21).

They are identified as the most suitable candidates and best-

responders to ICIs. Moreover, emerging therapeutic targets such

as Claudin 18.2 and cellular–mesenchymal-epithelial transition

factor (c-MET) are gaining attention in the field (22–24). Despite

the existing advances, the intricate roles and interactions among

distinct signaling pathways, as well as the complex networks of

multi-biomarkers informed by molecular features and genomic

heterogeneity, remain largely elusive. To facilitate the

optimization of treatment strategies in GC, we synthesize the

latest findings from in-depth trials and further shed light on the

future perspectives in this review.
2 Molecular targeted therapy in
gastric cancer

Evidence suggested that the occurrence and invasion of GC is

driven by complicated signaling webs, not only attributing to a

single factor (Figure 1; Table 1). Unfortunately, despite the

complexity and diversity of signal networks, insights on these

molecules have not yet been translated as targetable into the
FIGURE 1

The signaling pathways and corresponding molecular targeted therapy in gastric cancer. MAPKKK, mitogen-activated protein kinase kinase kinases;
p38-MAPK, p38 group of mitogen-activated protein kinases; JNK, jun amino-terminal kinase; RTKs, receptor tyrosine kinases; RAS, rat sarcoma; RAF,
rapidly accelerated fibrosarcoma; MEK, mitogen-activated protein kinase; ERK1/2, extracellular signal–related kinase 1/2; PI3K phosphoinositide 3-
kinase; AKT, protein kinase B; TSC1/2, tuberous sclerosis complex 1/2; mTORC1/2, mammalian target of rapamycin complex 1/2; 4E-BP1, eukaryotic
translation initiation factor 4E (eIF4E)–binding protein 1; STAT, signal transducers and activators of transcription.
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clinical practice. The most maturely studied target refers to HER-2.

To better understand the mechanism of related signaling axis and to

identify more novel but promising target, we will introduce the

regulatory role of different pathways and further discuss the current

implications of pathway-based targeted agents in unresectable or

metastatic GC.
2.1 The role of MAPK signaling pathway

The MAPK family is a large serine kinase that could comprise

five components, known as the extracellular signal–related kinases

1/2 (ERK1/2), ERK3/4, ERK5, c-Jun N-terminal kinase (JNK), and

p38-MAPK, respectively (11, 25–27). The activation of the MAPK

signaling pathway is typically initiated by the stimulation of

upstream RAS proteins, which undergo a conformational shift

in guanine triphosphatases, including Kirsten rat sarcoma viral

oncogene homolog (KRAS), Harvey rat sarcoma viral oncogene

homolog (HRAS), and Neuroblastoma rat sarcoma viral oncogene

homolog (NRAS) (28–30). Then, the RAF proteins (such as Proto-

oncogene serine/threonine-protein kinase (ARAF), vrafmurine

sarcoma viral oncegene homolog B (BRAF), and Raf-1 proto-

oncogene serine/threonine-protein kinase (CRAF)) are activated

after phosphorylation, which, in turn, facilitates sequential

interactions with downstream effector proteins, culminating in

the formation of the classical RAS/RAF/MEK/ERK pathway

(31, 32).

Given the in-depth research in GC, the MAPK/ERK signaling is

involved in regulating various cellular biological functions via three

core kinases (MAPKKKs, MAPKKs, and MAPKs) (33, 34). For

instance, the matrix metalloproteinases (MMPs) have been

identified as crucial factors associated with the invasion and

migration of GC cells (35). Upstream elements of the MAPK/
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ERK pathway, such as interleukin-22 (IL-22), RAS protein activator

like 1 (RASAL1), and nuclear apoptosis-inducing factor 1 (NAIF1),

are involved in mediating cell migration and adhesion by regulating

MMP activity (35, 36). Spondin-2 (SPON2), a member of the

Mindin-F-spondin family, has been linked to metastasis in GC,

particularly when it is highly expressed (37, 38). Numerous studies

have demonstrated that SPON2 can promote the epithelial-

mesenchymal transition (EMT) of GC cells by activating the

MAPK/ERK signaling pathway, thereby accelerating metastasis

(38, 39). In addition, the JNK module targets the activator

protein-1 (AP-1) transcription factor, playing a vital role in GC

cell proliferation and apoptosis (40). Furthermore, the p38-MAPK/

AP-1 pathway has been identified as a significant factor associated

with chemotherapy resistance in human GC cells (40, 41).
2.2 The role of HER-2 signaling pathway

HER-2, a proto-oncogene, belongs to the EGFR family of

proteins, which is composed of HER-1 (ErbB1 and EGFR), HER-

2 (ErbB2 and NEU), HER-3 (ErbB3), and HER-4 (ErbB4) (10, 42).

HER-2 can form either homologous or heterologous dimers with

HER-1 or HER-3 through dimerization to directly triggering its

downstream signal cascades (RAS/RAF/MEK/ERK and PI3K/AKT

pathway included), thereby promoting cell proliferation and

migration (42–44). However, the specific ligands of HER-2

protein remain unclear. Evidence suggested that HER-2, when

coupled with HER-3, exhibits a heightened activation potential

(42). Abnormalities in HER-2, often owing to gene amplification

and mutation, are implicated in various oncogenic processes (45).

Amplification typically leads to an increase in copy numbers,

resulting in the overexpression of the HER-2 protein, which is the

most common type observed in solid tumors (such as breast cancer,
TABLE 1 The role of multiple signaling pathways in gastric cancer.

Signaling pathway Function Potential target

MAPK
Cell growth, cell differentiation, migration, tumor

invasion, cell apoptosis
RTKs, ERK, JNK, p38-MAPKs, MEK, RAS, RAF

HER-2
Cell proliferation, cell differentiation,

migration, angiogenesis
EGFR, HER-2/3/4, ERK, PTEN

PI3K/AKT/mTOR
Cell proliferation, migration, cell cycle,

apoptosis, angiogenesis
RTKs, PI3K, AKT, mTOR, PTEN, TSC1/2, mTORC1/

2, GSK3, PDK1

VEGF/VEGFR Angiogenesis, immune response VEGF, VEGFR-2

Wnt/b-catenin
Cell proliferation, cell differentiation, cell cycle,

apoptosis, migration, immune response
TCF4, Gpx4

FGFR
Cell proliferation, cell differentiation,

migration, angiogenesis
JAK, YAP

EGFR
Protein synthesis, cell growth, cell

differentiation, migration
PI3K, AKT, EIF4E

HGF/c-MET
Cell proliferation, migration, cell cycle, apoptosis,

hypoxia, inflammation
CXCL12, CXCR4

PD-1/PD-L1 Cell proliferation, apoptosis, immune response PD-L1, PD-L2, TIM-3, LAG-3, TIGHT

CTLA-4/B7 Immune response CTLA-4, B7
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GC, and non–small-cell lung cancer) (46). The role of HER-2–

targeted treatment has been confirmed in the above-mentioned

tumor types, especially for those with high HER-2 expression (47,

48). In metastatic GC, approximately 6%–32% of patients are

detected as HER-2–positive via an immunohistochemistry (IHC)

score of 3+ or an IHC score of 2+ in combination with fluorescence

in situ hybridization (FISH) positivity, which is significantly

correlated with prognosis (46, 49, 50). Regarding HER-2

mutation, it commonly occurs in bladder cancer and

cholangiocarcinoma (51).
2.2.1 The mechanism of anti–HER-2 drugs
The HER-2 protein is composed of three distinct domains:

extracellular domain (ECD), transmembrane domain (TMD), and

intracellular domain (ICD) containing tyrosine protein kinase

(RTK) activity (52–54). The ECD also includes two receptor-L

domains (I and III) and two cysteine-rich domains (II and IV). The

diverse drugs targeting HER-2 vary, relying on various HER-2

domains (14, 44, 55).

At present, HER-2–directed agents mainly encompass

monoclonal antibodies, small-molecule tyrosinase inhibitors

(TKIs), and antibody-conjugated drugs (ADCs) (51, 56). Taken

trastuzumab and pertuzumab as the examples, trastuzumab

frequently binds to domain IV in ECD, whereas pertuzumab

predominantly binds to domain II (14, 57). Both of them are

known to regulate tumor cell proliferation, metastasis, and

vascularization, countering HER-2’s function. Meanwhile, the

TKIs act on the ATP-binding site of the tyrosine kinase region

within the intracellular region of HER-2 protein, in order to prevent

the formation of HER-family dimers and to inhibit kinase

phosphorylation, thereby blocking the activation of downstream

signaling cascades (57). Moreover, the ADCs are engineered to link

antibodies with cytotoxic agents, further delivering those drugs

specifically to tumor cells through the antigen-antibody interaction

while minimizing exposure to normal tissues (56). Novel antibodies

such as Zanidatamab (ZW25) and KN026 are bispecific antibodies

targeting HER-2, which can simultaneously bind to two distinct,

non-overlapping epitopes on HER-2: the ECD domain IV (the

targeting-site of trastuzumab as mentioned above) and ECD

domain II (the targeting site of pertuzumab as mentioned above),

in turn, to exert the dual anti-tumor effect (14, 58, 59).
2.2.2 Therapy targeting HER-2 in GC
In 2010, the great success of ToGA trial established the new

standard therapy of trastuzumab in the first-line treatment in

patients with metastatic HER-2–postive GC (60). Compared to

the chemotherapy group alone, the median overall survival (mOS)

of trastuzumab combined with chemotherapy was longer (13.8

months vs. 11.1 months, HR = 0.74, P < 0.01), and the median

progression-free survival (mPFS) was also prolonged (6.7 months

vs. 5.5 months, HR = 0.71, P < 0.01). Moreover, the objective

response rate (ORR) (47.3% vs. 34.5%) and the disease control rate

(DCR) (78.9% vs. 69.3%) were respectively greater. Subgroup

analysis indicated that patients with HER-2 (2+) and FISH-

positive or HER-2 (3+) could benefit more from trastuzumab,
Frontiers in Oncology 04
with extended mOS (almost reaching 16 months). Then, in 2016

and in 2018, Hecht et al. and Tabernero et al., respectively, designed

a phase III, large-arm clinical trial aiming to explore the efficacy of

HER-2 blockades based on different chemotherapy regimens in GC.

Unfortunately, these results have been both disappointing. In the

LOGIC trial, the scholars failed to prove the efficacy of lapatinib

(TKI dual-targeting EGFR and HER-2) as the first-line choice (61).

The JACOB study enrolled 780 volunteers and compared triple-

combination regimen (chemotherapy plus trastuzumab and

pertuzumab) with double-combination regimen (chemotherapy

plus trastuzumab) (62). The mOS was 18.1 months vs. 14.2

months (HR = 0.85), without a remarkable improvement.

Similarly, lapatinib in second-line therapy still failed to reveal its

efficacy according to the TyTAN trial, which mainly focused on

patients with HER-2 amplification (63). To overcome the acquired

resistance of HER-2–directed agents, which mainly attributed to the

absence of phosphatase and tensin homolog (PTEN), PI3KCA

mutation, etc., novel HER-2–composed ADCs are then developed

(64, 65). In 2017, a randomized, open-label and phase II/III clinical

trial (named as GATSBY) referred an ADC drug (trastuzumab-

emtansine, T-DM1) also showed no superiority in the mOS (ADC

vs. chemotherapy, 7.9 months vs. 8.6 months, HR = 1.15, P = 0.86)

and the mPFS (2.7 months vs. 2.9 months, HR = 1.13, P = 0.31)

(66). Similarly, another study, DESTINY-Gastric01, compared the

efficacy of trastuzumab-deruxtecan (T-DXd/DS-8201a) with

irinotecan/paclitaxel for those undergoing the second-line therapy

(67). The ORR in those receiving trastuzumab-deruxtecan was

remarkably higher than those under irinotecan or paclitaxel

treatment (51% vs. 14%). More intriguingly, in two cohorts that

mainly focused on those with HER-2–low (defined as IHC score of

2+ or IHC score of 1+ but FISH-negative), the ORR in trastuzumab-

deruxtecan group and the control group were 26.3% and 9.5%,

respectively. Subsequently, trastuzumab-deruxtecan has been

approved as the current second-line choice in GC, as well as

ramucirumab plus paclitaxel. Furthermore, several ongoing

clinical trials are presently under evaluation for the use of other

ADCs, such as tucatinib, margetuximab, and zanidatamab (68).
2.3 The role of PI3K/AKT/mTOR
signaling pathway

The phosphatidylinositol-3-kinase (PI3K), a member of the

lipid kinase family, is categorized into Class I, Class II, and Class

III (29, 69). The Class I PI3K consisting of class IA and class IB

subtype is involved in the cell-growth signal transmission (69–71).

AKT is the key downstream effector of PI3K, with three subtypes

including AKT1, AKT2, and AKT3 (43, 72, 73). After triggering by

upstream tyrosine kinase receptors (RTKs), the Class I PI3K is

activated and subsequently phosphorylates phosphatidylinositol-

4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-

trisphosphonate (PIP3). Then, PIP3 interacts with the Pleckstrin

Homolgy (PH) domain of AKT, like a second messenger, to further

transport AKT from the cytoplasm to the membrane (74). Thus, the

conformational change occurs. The Ser473 and Thr308 threonine

residues of AKT are activated by phosphorylation of
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phosphoinositol-dependent kinase 1 (PDK1) and mammalian

target of rapamycin complex 2 (mTORC2), respectively (75–77).

Phosphorylated AKT (p-AKT) could directly activate the mTOR

signaling pathway or indirectly activate the mTOR signaling

pathway by inhibiting tuberous sclerosis complex 1/2 (TSC1/2)

(77, 78). In addition, activated mTORC1 participates in

downstream-protein translation, cell growth, and proliferation via

translation initiation factor (4E-BP1) and p70 ribosomal protein

kinase S6 (p70S6K) (77, 79).

It is reported that the mutation in exon 9 of the PIK3CA gene

presumably predict poor prognosis in patients with EBV-associated

GC (74, 80, 81). Another in-depth study indicated that mutations in

exon 9 of PIK3CA are closely related with poor prognosis in GC

compared to mutations in exon 20 (82, 83). In addition, a lower 5-

year survival rate was observed in those patients with MSI GC with

PIK3CA mutation than those without the above mutation. PIK3CA

amplification, accompanied an elevation in AKT and its

phosphorylation levels, eventually promotes invasion and lymph

node metastasis in GC.
2.4 The role of hepatocyte growth factor/
mesenchymal epidermal transition factor
signaling pathway

c-MET, a transmembrane tyrosine kinase that expressed on

epithelial and endothelial cells, is encoded by MET gene (84). The

hepatocyte growth factor (HGF) is the specific known high-affinity

ligand for c-MET and belongs to the family of plasminogen

associated growth factors (PRGF-1) (85, 86). When HGF binds

with c-MET, c-MET dimerization forms to induce self-

phosphorylation of residue Y1234 and Y1235 (85, 87). Its

downstream molecules, such as growth factor receptor binding

protein 2 (GRB2), GRB2-related binding protein (GAB1), Src

homologous region 2 protein tyrosine phosphatase 2 (SHP2), and

PI3K, are recruited and are then amplified through a

phosphorylation reaction cascade to activate PI3K/AKT and

MAPK axis. The above crosstalk jointly contributes to tumor

invasion and metastasis (88).

The prognosis of GC driven byMET gene is generally poor (89–

91). Abnormal c-MET signals have been reported in various tumor

studies, mainly including MET exon 14 mutation, MET

amplification, and MET protein overexpression (92, 93).

However, detection measurements via FISH, droplet-based digital

PCR (ddPCR), or next-generation sequencing (NGS) would cause

discrepancy. Y1003 and c-CblE3 ubiquitin ligase binding sites

(located in MET exon 14) are missing, resulting in delayed

ubiquitination and sustained activation of c-MET as well.

Moreover, it is estimated that there are approximately 4%–6% of

pat ients with MET-amplified GC (92) . Furthermore ,

overexpression of c-MET in GC is positively correlated with

higher risk of distant metastasis (like peritoneum, liver, and lung),

especially carcinomatous lymphangitis (94, 95). Inhibitors targeting

MET are also extensively studied in GC. For instance, a single-arm,

multi-cohort, multi-center, open-label, and phase II clinical study

aimed at evaluating the efficacy and safety of savolitinib
Frontiers in Oncology 05
monotherapy in advanced/metastatic GC with MET amplification

(the VIKTORY trial, NCT04923932) (96). Twenty patients were

totally enrolled. Notably, the ORR in 16 high MET gene copy

reached 50%, which indicated the value of c-MET inhibitor in GC.

Another anti-MET drug (onartuzumab) failed to improve efficacy

in the phase III trial (METGastric) (97). Similarly, the RILOMET-1

and RILOMET-2 study emphasizing rilotumumab in GC/GEJC

with MET(+) were both terminated attributing to the increasing

death of the rilotumumab arm (98). Altogether, targeting c-MET is

promising but challenging.
2.5 The role of fibroblast growth factor
receptor signaling pathway

Fibroblast growth factor receptor (FGFR) bound with fibroblast

growth factors (FGFs) is widely involved in tumor invasion,

differentiation, and angiogenesis (99–101). In GC, the common

abnormalities mainly consist of FGFR1 gene alteration, FGFR2

amplification, and FGFR3 rearrangement (102). After integrating

with FGF, the phosphorylation-induced FGFR activation occurs,

followed by the activation of MAPK and PI3K/AKT pathway (102).

It was reported that approximately 4.1% of GC cases were detected

as amplification in FGFR2 (102–104). The existing data have

emphasized the potential of FGFR as a biomarker. The FGFR2b-

targeted agent, bemarituzumab (a humanized IgG1 monoclonal

antibody), has been confirmed its potential in a phase II FIGHT trial

when used as the first-line treatment plus mFOLFOX standard

chemotherapy (5-FU + leucovorin + oxaliplatin) in GC (105).

Compared with the placebo with mFOLFOX, the addition of

bemarituzumab led to a higher ORR (47% vs. 33%) and a longer

PFS (9.5 months vs. 7.4 months). More importantly, for those with

FGFR2b-positive receiving bemarituzumab, an obvious OS benefit

was observed (25.4 months vs. 11.1 months, P < 0.001). A more-

sample and phase III clinical trial about bemarituzumab plus ICIs is

currently being investigated. In 2017, Van Cutsem et al. that

AZD4547 (a selective FGFR-1, FGFR-2, or FGFR-3 TKI)

monotherapy failed to prolong the mPFS versus paclitaxel (1.77

months vs. 2.12 months, P = 0.9581) (106). Other selective FGFR

inhibitors (such as derazantinib and futibatinib) are also ongoing

(107, 108).
2.6 The role of VEGF/VEGFR
signaling pathway

During the growth of tumors, new blood vessels are warranted.

Angiogenesis driven by high-level VEGF is common in the solid

tumors, as well as in GC (12, 109). VEGFR2, the main receptor for

VEGF-induced signal transduction in endothelial cells, self-

phosphorylates and is activated when binding with VEGF (110–

112). The phosphorylation of VEGFR2 at Tyr1212 provides a

docking site for GRB2 binding, whereas phosphorylation at

Tyr1175 leads to the binding with p85 subunit of PI3K and PLCg
(113). VEGFR2 is activated during angiogenesis and can be

transduced through multiple downstream pathways, including
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AKT, p38, and ERK 1/2, and is involved in regulating cell

proliferation and migration (111, 112). The activation of hypoxic

pathways can also participate in tumor angiogenesis via the

upregulation of VEGF. The core of the hypoxic pathway is the

hypoxia-inducible factor-1 (HIF-1) complex, which consists of two

subunits (HIF-1a and HIF-1b) (114, 115). Activated by the proline

hydroxylase domain (PHD), such as PHD-1, PHD-2, and PHD-3,

HIF-1a hydroxylation occurs, which is then combined with VHL

E3 ligase and degraded through the ubiquitination proteasome

pathway under normoxic conditions (114). However, the lack of

oxygen would upregulate HIF-1a and subsequently activate the

downstream (including the VEGF) to promote angiogenesis (116).

It was reported that the HIF-1a expression in GC could predict

poor prognosis (117). When blocking angiogenesis via anti-VEGF

or anti-VEGFR therapy, the secretion of pro-angiogenic cytokines is

correspondingly decreased. Table 2 showed that the clinical trials

involved anti-angiogenesis agents in advanced GC.

According to the results from the REGARD and RAINBOW

trials, the widely recognized agent, ramucirumab (a recombinant

VEGFR-2–directed monoclonal antibody), has been approved as

the second-line application in GC (118, 119). Intriguingly,

ramucirumab monotherapy indicated improvement in mOS

compared with placebo (the REGARD trial) (119). In addition, in

the RAINBOW trial, the setting of ramucirumab combined with

paclitaxel had a prolonged survival than the paclitaxel arm (9.6

months vs. 7.4 months). Another oral and small-molecule TKI,

apatinib, selectively inhibits VEGFR-2. A randomized phase III trial

in China revealed that apatinib prolonged the mOS versus placebo

in the third-line setting and beyond (6.5 months vs. 4.7 months)

(122). However, the adverse events induced by apatinib restrict its

application in clinic. Subsequently, the investigators designed a

double-blind phase III study (FRUTIGA, NCT03223376) aiming to

compare the efficacy of fruquintinib plus paclitaxel versus paclitaxel

monotherapy as the second-line setting in advanced GC/GEJC
Frontiers in Oncology 06
(124). According to the preliminary results, when coupled with

paclitaxel, fruquintinib significantly improved the PFS, the ORR,

and the DCR. However, a similar benefit failed to be observed in

overall survival (OS). The final data from FRUTIGA is still

under analysis.

As is described below, anti-angiogenic drugs can stimulate the

immune system so that the addition of ICIs could have synergistic

anti-tumor effect and overcome resistance. In an open-label, phase

Ib REGONIVO trial, the scholars claimed that the ORR of those

patients with GC who received the combination of regorafenib and

nivolumab therapy reached 44%, and the OS of whom was 5.6

months (125). In 2024, Yongqian Shu et al. designed the first phase I

clinical trial (the SPACE) that explored the efficacy of apatinib plus

camrelizumab and chemotherapy as the first-line treatment in

unresectable or metastatic GC (126). Among the 34 patients, the

ORR reached 76.5%. Moreover, 10 patients underwent curative

resection. The researchers also observed that patients with a higher

percentage of tertiary lymphatic structure and a higher baseline

infiltration of CD3+ or Foxp3+cell density had a longer OS. Taken

together, despite efforts made in anti–angiogenic-related trials, no

well-defined biomarkers have been currently established to guide

angiogenesis blockades selection.
2.7 The role of Claudin 18.2 (CLDN 18.2)

Claudin proteins (CLDNs) typically participate in intercellular

tight-junction (127). However, malignant tumor could disrupt this

adhesion, therefore exposing CLDNs epitope on the surface of

tumor cells (128, 129). The CLDN 18.2 encoded by Claudin 18.2

gene could be particularly detected in the gastric mucosa (129).

However, aberrant upregulation of the CLDN 18.2 (approximately

60%–80%) was found in GC, which has been a novel and promising
TABLE 2 Current clinical trials about anti-angiogenesis agents in unresectable or metastatic gastric cancer.

Clinical trial Regimen Line Phase Number OS (months) PFS (months)

RAINBOW (118)
Paclitaxel +
ramucirumab

vs. ramucirumab
2L III 668

9.6 vs. 7.4
(HR = 0.81)

10.0 vs. 8.1
(HR = 0.64)

RAINBOW-
Asia (118)

Paclitaxel +
ramucirumab

vs. ramucirumab
2L III 392

9.03 vs. 8.08
(HR = 0.963)

4.17 vs. 3.15
(HR = 0.765)

REGARD (119)
Ramucirumab
vs. placebo

2L III 335
5.2 vs. 3.8
(HR = 0.78)

2.1 vs. 1.3
(HR = 0.48)

INTEGRATE (120)
Regorafenib
vs. placebo

1/2L II 592 NA 2.6 vs. 0.9

LSK-ANGEL (121)
Apatinib + BSC vs.
placebo + BSC

2/3L III 460
5.78 vs. 5.13
(HR = 0.93)

2.83 vs. 1.77
(HR = 0.57)

Li et al. (122) Apatinib vs. placebo 3/4L III 273
6.5 vs. 4.7
(HR = 0.71)

2.6 vs. 1.8
(HR = 0.44)

FRUTIGA (123)
(NCT03223376)

Fruquintinib +
paclitaxel

vs. paclitaxel
2L III 699 NA

5.6 vs. 2.7
(HR = 0.57)
BSC, best support care; 1L, first line; 2L, second line; 3L, third line; PFS, progression-free survival; OS, overall survival; HR, hazard ratio; NA, not available.
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therapeutic target based on the existing data as the later-line

selection (23, 127, 130).

CLDN 18.2–targeted antibody is emerging as a promising anti-

tumor agent via antibody-dependent cytotoxicity (ADCC) (130).

Zolbetuximab (IMAB362, Claudixmab) is a human-mouse

chimeric Immunoglobulin G2 (IgG2) monoclonal antibody

targeting claudin 18.2, which specifically bind to claudin 18.2 and

then lead to ADCC and apoptosis. In 2021, Sahin et al. initiated the

FAST trial, a randomized and phase II trial, which included a total

of 334 patients with advanced GC/GEJC with CLDN 18.2–positive

and compared the efficacy of zolbetuximab plus chemotherapy

(epirubicin + oxaliplatin + capecitabine, EOX regimen) with

single EOX as the first-line treatment (131). The results showed

that the mPFS and the mOS were both prolonged in the

zolbetuximab plus EOX group (7.5 months vs. 5.3 months and

16.5 months vs. 8.9 months, respectively). Of note, the sub-analysis

indicated that those with CLDN 18.2 level ≥70% of tumor cells

could benefit more from zolbetuximab. To further explore its value

in the first-line therapy in GC, two phase III large-scale clinical trial

emerged, named as the SPOTLIGHT (NCT03504397) and the

GLOW (NCT03653507). In the SPOTLIGHT trial, participants

were randomly divided into the zobezumab + mFOLFOX group

(n = 283) or the placebo + mFOLFOX6 group (n = 282) in a 1:1

ratio (132). Compared with placebo, the adding of zolbetuximab

prolonged the mPFS (10.61 months vs. 8.67 months, P = 0.0066)

and the mOS (18.23 months vs. 15.54 months, P = 0.0053) as well.

In addition, the safety was tolerable and manageable. As for the

GLOW, this randomized, double-blind, placebo-controlled research

was designed to evaluate the potential of zolbetuximab plus

cisplatin + capecitabine (CAPOX) in patients with unresectable/

metastatic GC/GEJC with CLDN 18.2(+) and HER-2(−) (133).

Compared with placebo, the adding of zolbetuximab revealed

significant benefits in the mPFS, with median PFS of 8.21 months

vs. 6.8 months (P = 0.0007). Moreover the 1-year PFS rate in the

zolbetuximab + CAPOX arm and the placebo + CAPOX arm was

35% and 19%, respectively. Similarly, the mOS in the zolbetuximab

+ CAPOX group was obviously longer than that in the placebo +

CAPOX group (14.39 months vs. 12.16 months, P = 0.0118). In the

phase IIa trial (MONO), 54 patients with GC/GEJC were enrolled to

receive single zolbetuximab as the later-line treatment (134).

Among them, 10 patients reached disease remission. Another

CLDN 18.2–directed ADC, ATG-022, has been approved as

orphan drug in GC by Food and Drug Administration (FDA).

The preclinical data demonstrated that ATG-022 exhibited a strong

in vivo anti-tumor effect in GC patient-derived tumor xenograft

model with high-expression CLDN 18.2 (135). Consequently, the

CLINCH trial (NCT05718895) related with ATG-022 is ongoing. It

is worth noting that the potential damage of normal gastric mucosal

induced by CLDN 18.2–directed antibody or ADCs should also be

taken seriously into consideration.

In addition, several phase I trials found that CLDN 18.2–specific

CAR-T therapy brought an encouraging tumor regression in

patients with GC (115, 136–139). For example, in 2021, the

scholars represented that CT041 predominantly improved

the tumor control rate in GC/GEJC as the third-line treatment.

The ORR was 61.1%, and the DCR was 83.3%, both of which were
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significantly higher than chemo-regimen or ICIs. Then, professor

Lin Shen et al. recruited 28 patients with CLDN 18.2(+) GC/GEJC

who have previously failed at least second-line treatment

(NCT03874897) (115). The 6-month OS rate reached 81.2%.

More importantly, the ORR and the DCR were 57.1% and 75.0%,

respectively. The barriers, such as the tumor heterogeneity, safety

managements and high-cost, remain challenging.
3 The applications of immune
checkpoint inhibitors in gastric cancer

3.1 The immune checkpoint signaling
pathway in gastric cancer

Programmed cell death 1 (PD-1) and PD-L1 are two well-

recognized immune checkpoints across various tumor types (140).

As a whole, PD-1 is typically found on the surface of activated T cells,

B cells, dendritic cells (DCs), and natural killer (NK) cells. It interacts

with PD-L1/programmed cell death ligand 2 (PD-L2) on tumor cells,

contributing to the formation of an immunosuppressive

microenvironment (141). Likewise, cytotoxic T lymphocyte antigen

4 (CTLA-4) is another vital immune checkpoint, which engages with

B7 on antigen-presenting cells to collectively promote GC immune

escape (142). In addition, lymphocyte-activation gene 3 (LAG-3) is

not expressed on naive T cells. Sustained antigen stimulation triggers

LAG-3 expression on both CD4+ and CD8+ T cells, which helps

prevent autoimmune damage, gradually followed by T-cell

dysfunction (143, 144). T-cell immunoglobulin and mucin-domain

containing-3 (TIM-3) interacted with galactin-9 or galactin-3 and T-

cell immunoreceptor with Ig and ITIM domains (TIGIT) binding to

CD155 also contribute to immune escape (145–147) (Figure 1).

Consequently, blocking PD-1/PD-L1 or CTLA-4 pathways can

restore and reactivate T cells, thereby inducing an anti-tumor effect

(148, 149).
3.2 First-line treatment

3.2.1 Pembrolizumab
3.2.1.1 Pembrolizumab in HER-2–negative GC

To explore the value of pembrolizumab in patients with

unresectable or metastatic GC/GEJC with HER-2(−), the

researchers firstly investigated a multi-center, randomized,

partial-blind, and phase III trial (KEYNOTE 062, NCT02494583)

(150). The participants were randomized into three arms (the

pembrolizumab monotherapy arm, the pembrolizumab plus

CAPOX/FOLFOX arm, and the placebo plus chemotherapy arm).

Interestingly, for those with PD-L1 combined positive score (CPS)

≥1, pembrolizumab showed non-inferiority to standard

chemotherapy (10.6 months vs. 11.1 months, HR = 0.91) (151).

Moreover, subsequent analysis demonstrated that pembrolizumab

significantly prolonged the mOS than chemotherapy alone among

those with CPS ≥10 (17.4 months vs. 10.8 months, HR = 0.69). Of

note, results from the sub-analysis data found that the PFS in the
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pembrolizumab group failed to be prolonged compared with

the chemotherapy group (2.0 months vs. 6.4 months referring to

the population with CPS ≥1. Taking the long-term survival benefit

into account, pembrolizumab presumably contributes more than

chemotherapy. Just on the basis of KEYNOTE 062, another

placebo-controlled and phase III trial (KEYNOTE 859,

NCT03221426) adjusted the chemo-regimen [fluorouracil +

cisplatin (FP) or CAPOX] and then evaluated the efficacy of

pembrolizumab plus chemotherapy versus chemotherapy alone

when as the first-line treatment (152, 153). Overall, a slight

improvement was observed in the OS (12.9 months vs. 11.5

months, HR = 0.78) and the PFS (6.9 months vs. 5.6 months,

HR = 0.76). In addition, the further sub-analysis showed that the

addition of pembrolizumab consistently gained benefits in

various subgroups.

In 2023, the LEAP-015 (NCT04662710), a randomized, open-

label, two-part, and phase III clinical trial, was designed by Kohei

Shitara et al. (154). According to the data from the run-in phase of the

LEAP-015 (part I), the preliminary anti-tumor effect was observed in

the pembrolizumab + lenvatinib (a multi-receptor TKI) +

chemotherapy group (ORR, 73%; DCR, 93%). In addition, the

safety is controllable. Part II is recruiting patients with locally

advanced/metastatic GC/GEJC with HER-2(−) who were not

previously treated to investigate the efficacy of the pembrolizumab

+ lenvatinib + chemotherapy regimen versus chemotherapy alone.

3.2.1.2 Pembrolizumab in HER-2–positive GC

The KEYNOTE 811 trial (NCT03615326) mainly enrolled 698

patients with advanced GC with HER-2(+), aiming to elucidate the

potential of pembrolizumab plus trastuzumab and chemotherapy

(XELOX or PF) (155). In detail, from the third mid-term analysis,

the mPFS in the pembrolizumab + trastuzumab + chemotherapy

group and in the placebo + trastuzumab + chemotherapy group was

10.0 months vs. 8.1 months (HR = 0.73), especially in those with

PD-L1 CPS ≥1. Adding pembrolizumab also resulted in a higher

ORR (74.4% vs. 51.9%). However, the mOS was 20.0 months vs.

16.8 months (HR = 0.84), respectively, which did not reach

statistically significant difference. These encouraging results have

prompted rapid approval of pembrolizumab coupled with

trastuzumab and chemotherapy as the first-line setting in HER-2–

postive unresectable or metastatic GC.
3.2.2 Nivolumab
Similar to the KEYNOTE 062, Kang et al. initiated a multi-

center, double-blind, placebo-controlled, phase II/III study

(ATTRACTION-04, NCT02746796), in which the aim was to

explore the safety and effect of nivolumab based on SOX (S-1 +

oxaliplatin) or CAPOX in the first-line setting among 40 patients

with advanced GC/GEJC with HER-2–negative (156). However, the

ATTRACTION-04 mainly highlighted on the Asian population.

Furthermore, it did not consider the PD-L1 expression as

enrollment standard. The regimen of nivolumab plus

chemotherapy led to a longer PFS than chemotherapy alone

(10.45 months vs. 8.34 months, P = 0.0007), whereby no obvious

OS improvement in two groups (17.45 months vs. 17.15 months,
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P = 0.26). Another large-sample phase III trial (CheckMate-649,

NCT02872116) was the largest-scale research in GC

immunotherapy to date (157). Approximately 1,581 participants

were recruited. The main endpoint was the mOS and the mPFS in

those with PD-L1 CPS ≥5. Compared with chemotherapy alone, the

addition of nivolumab to chemotherapy obviously prolonged mOS

(14.4 months vs. 11.1 months, P < 0.0001) among the CPS ≥5

population, as well as the mPFS (7.7 months vs. 6.05 months, P <

0.0001). Currently, at the American Society of Clinical Oncology

(ASCO)–GI in 2024, the scholars updated the 4-year follow-up

results of Chinese patients. The 4-year OS rate among the entire

population has reached 21%. As for the participants in China, this

objective was higher, nearly reaching 25%. In the population

harboring PD-L1 CPS ≥5, the mPFS in the nivolumab +

chemotherapy arm almost doubled that in the chemotherapy arm

(8.5 months vs. 4.3 months, respectively).

3.2.3 Sintilimab
The emergence of the ORIENT-16 trial provides a novel

combination approach based on sintilimab plus oxaliplatin–based

chemo-regimen in advanced GC/GEJC when regarded as the first-

line therapy (158, 159). A total of 650 patients were included and then

were randomly assigned into the sintilimab + CAPOX group or the

placebo + CAPOX group. Final analysis results indicated that the

mOS in the sintilimab-treated arm were extended by 2.9 months

targeting the overall population (15.2 months vs. 12.3 months, P <

0.0001). A similar improvement of the mOS was equally observed in

the population with PD-L1 CPS ≥5, 19.2 vs. 12.9 months (HR = 0.66,

P < 0.0001). Moreover, the benefit was consistent across subgroup

analysis. The frequent treatment-related adverse events (AEs) were

decreased platelet and neutrophil count.

3.2.4 Tislelizumab
Tislelizumab (BGB-A317) is another anti–PD-1 agent and is

under further evaluation in the RATIONALE-305 trial (160). Also,

997 patients worldwide who have not received systematic treatment

joined in the phase III trial. In the ITT (defined as intention-to-

treat) population and PD-L1–positive population (defined as tumor

area positivity score ≥5%) treated by tislelizumab, the 2-year

durable rate of response (DOR) nearly reached 30% and 40%,

respectively. By comparison, that of the chemotherapy group was

less than 20%. Furthermore, the 2-year PFS rate of the tislelizumab

arm in the ITT population and the PD-L1(+) population was 17.6%

and 22.3%, whereas that of the chemo arm was 9.1% and 8.7%.

Similarly, these data claimed a durable response driven by

tislelizumab (160).

3.2.5 Sugemalimab
Sugemalimab (CS1001) is a PD-L1–targeted IgG4 monoclonal

antibody. A randomized, double-blind, phase III clinical research

(GEMSTONE-303) aimed to evaluate the efficacy of sugemalimab +

CAPOX versus placebo + CAPOX in first-line treatment of

advanced GC/GEJC adenocarcinoma with PD-L1 CPS ≥5 (161).

The PFS and the OS both met the endpoint. Compared with

CAPOX alone, the addition of sugemalimab improved the PFS
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(7.62 months vs. 6.08 months, P < 0.0001) and the OS (15.64

months vs. 12.45 months, P = 0.0060). Notably, in the population

with PD-L1 CPS ≥10, a more obvious benefit in the PFS and the OS

was observed. The GEMSTONE-303 firstly and accurately screened

the population with PD-L1 CPS ≥5 in advanced GC, and, in turn,

the viewpoint that GC treatments should be precisely selected has

been further clarified.

3.2.6 Avelumab
The value of ICIs maintenance treatment after induction

chemotherapy was described in the JAVELIN Gastric 100

(NCT02625610), which failed to show superiority in OS (162).

Taking the 24-month OS rate for example, that in the avelumab

maintenance arm and in the continued chemotherapy arm was

22.1% and 15.5% (P = 0.1779), respectively.

According to the results from the trials above, anti–PD-1/anti–

PD-L1 drugs based on standard chemotherapy have been confirmed

its vital role in first-line treatment of HER-2(−) advanced GC/GEJC

harboring PD-L1–positive (CPS ≥5, or even CPS ≥10). However, it

remains controversial whether those with low-expression PD-L1 (or

unknown expression) could benefit from ICIs. As for those with HER-

2(+), combining with HER-2–directed therapy is also recommended.

Another question is the feasibility of dual-ICI regimen in GC when

used as the first-line setting (such as nivolumab plus ipilimumab),

awaiting further investigation in the future.
3.3 Second-line treatment

3.3.1 ICI monotherapy
ICIs have challenged the existing role of standard chemotherapy

as the first-line choice. To further assess its efficacy in the second-

line treatment, the KEYNOTE 061 trial (NCT02370498) recruited

592 patients with GC/GEJC after previous therapy (163). In detail,

pembrolizumab monotherapy did not prolong the mOS compared

to paclitaxel (9.1 months vs. 8.3 months, P = 0.042). Even in terms

of the PFS, that of the pembrolizumab arm and the paclitaxel arm

was 1.5 months and 4.1 months, respectively. As a result,

pembrolizumab alone as the second-line treatment declared

failure. However, in-depth analysis from the sub-group results

indicated that an improved OS was observed in those PD-L1(+)

population, regardless of CPS ≥1, CPS ≥5, or CPS ≥10 (164). It is

consistent with the previous hypothesis that ICI utilization needs to

be more precise based on the PD-L1 level.
3.3.2 ICIs plus anti-angiogenesis agents
Just as previously introduced in preclinical research studies,

fruquintinib targeting VEGFR axis could enhance the infiltration of

cytotoxic T cells and reduce PD-1–positive CD8+ cells.

Simultaneously, regulating Tumor-associated macrophages

(TAMs) and promoting M1 macrophage polarization both trigger

fruquintinib to synergistically kill tumor cells with ICIs. The

feasibility of combination of fruquintinib plus ICIs has been

confirmed in several preliminary small-sample trials, which

provides an option of chemo-free when progressed after the
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failure from first-line chemotherapy. In the ASCO-GI 2024

meeting, the investigators published the updated data of

fruquintinib plus sintilimab in 14 patients with advanced GC/

GEJC after failure of platinum-based regimen (123). The ORR

was 33.3%, and the DCR was 66.7%. Only one patient

experienced grade 3/4 treatment-related adverse events (TRAEs).

Preliminarily, fruquintinib plus sintilimab is efficient and tolerable

in safety.
3.4 Later-line treatment (third line
and beyond)

In clinic, when the patients progressed after 1L and 2L

treatments, the proportion of patients who can receive the later-

line therapy significantly decreases as a result of the poor

performance status. Overall, chemotherapy regimens including

docetaxel or irinotecan in 3L treatments have limited survival

benefits, with a mOS of 5.3–5.8 months and a mPFS of

approximately 2–3 months. According to the ATTRACTION-2

(NCT02267343) and the KEYNOTE 059 trial (NCT02335411),

pembrolizumab and nivolumab alone have been both approved as

a third-line option in advanced GC/GEJC (165, 166). In the

KEYNOTE 059, 259 patients with advanced GC who previously

received treatments planned to underwent monotherapy with

pembrolizumab (166). The final data showed that the PFS and

the OS were 2.0 months and 5.6 months, respectively. In addition,

the ORR was 11.6%. Of note, cohort 3 aimed to those harboring

PD-L1(+) (defined as CPS ≥1), and the ORR of that reached 15.5%.

The ATTRACTION-2, a randomized, multi-center, placebo-

control, and phase III clinical trial, recruited 493 patients with

GC/GEJC (165). Despite PD-L1 expression, the nivolumab arm

achieved a longer OS than placebo (5.32 months vs. 4.14 months,

P < 0.0001), accompanied by manageable AEs. Another phase III

JAVELIN Gastric 300 trial (NCT02625623) failed to confirm the

efficacy of avelumab in the third-line setting (167).

Although ICIs are feasible in the third-line treatment for

patients with metastatic GC, the benefits are still restricted. How

to choose the best-responder and seek the potential beneficiary is

crucial in the future.
4 Potential molecular biomarkers in
target-based and ICI-based treatment
for GC

In recent years, the rapid advancements in genomics and

innovative therapeutic strategies, including targeted therapy and

ICIs, have significantly shifted the landscape of GC treatment

toward precision and personalized medicine. The continuous

advancements in molecular detection methods, such as NGS,

whole-exon sequencing (WES), and the liquid biopsy, unveil

novel targets to further facilitate medication selection and efficacy

prediction (168). Stratification and molecular classification at initial

diagnosis are relatively essential in GC management. The Lauren
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classification defined GC as diffuse type, intestinal type, and mixed

type. In detail, the intestinal GC is mostly seen in the elderly and

men, which is often considered to be secondary to chronic atrophic

gastritis. Yet, the diffuse-type GC cells generally lack cell adhesion

and fail to form glandular ducts, with CDH1 gene germline

mutations. Compared with the intestinal GC, the diffuse type is

more frequent in young women. Another point is that the diffuse

type is prone to lymph node metastasis and distant metastasis.

Notably, The Cancer Genome Atlas recommended to clarify

patients with GC into four subtypes, consisting of the Epstein–

Barr virus infection–related type (EBV-positive), the microsatellite

unstable type (MSI), the chromosomal unstable type (CIN), and the

genomically stable type (GS) (4, 169) (Figure 2). The CIN type

usually tends to present as intestinal phenotype, whereas the GS

type mostly presents as diffuse phenotype. Then, in 2015, the Asian

Cancer Research Group proposed another clarification system,

mainly highlighting on the microsatellite status and TP53

activation. Specifically, the researchers categorized GC into the

MSI, the microsatellite stable (MSS; or defined as EMT), the MSS

and TP53(+), or the MSS but TP53 deficiency subtype. According to

molecular features in GC, the different clarification could predict

clinical outcomes. For instance, it is reported that the GS subtypes

in GC is often associated with a poorer prognosis and lower

sensitivity to chemotherapy (170). In contrast, the MSS/EMT

subtype, frequently marked by the loss of CDH1, tends to be

more prevalent in younger patients (171). However, those with

MSI-high or EBV-positive are generally considered to benefit more

from immunotherapy.
4.1 HER-2 amplification

HER-2 amplification is of great significance in precision

medicine. Based on the analysis from the ToGA, the LOGIC, and

the JACOB trial, it is obvious that patients with HER-2–positive
Frontiers in Oncology 10
advanced GC can benefit from anti–HER-2 therapy (60–62).

Moreover, the KEYNOTE 811 study also indicates that those

patients with GC with HER-2 amplification would be suitable for

ICIs plus HER-2–targeted therapy (155). Therefore, HER-2 status

can further predict the therapeutic response and survival benefits of

advanced GC. According to HER-2 detection methods, IHC is

common. In addition, IHC 0/1+ or IHC 2+ with no amplification of

FISH can be directly judged as HER-2–negative. IHC 3+ or IHC 2+

and FISH amplification are determined as HER-2–positive. For

blood samples, the copy number of HER-2 gene somatic cells based

on ctDNA targeted sequencing in blood is highly consistent with

FISH data. For patients who cannot receive biopsy, liquid biopsy

toward HER-2 is recommended. More importantly, precise

screening of HER-2–positive GC populations urges a combination

of multiple methods in the future.
4.2 Microsatellite status

The major function of mismatch repair proteins (MMR) is to

correct and to fix the errors during DNA replication. If deficiency or

loss occurs in MMR genes (including MLH1, MSH2, MSH6, and

PMS2), then we defined it as dMMR, which is generally equivalent

to MSI-high (MSI-H). Hence, dMMR results in a continuous

accumulation of mutation-induced errors, then triggering

malignant transformation. Increasing evidence suggested that the

MSI-H tumors show better response to immunotherapy (GC

included) (20, 172). One explanation is attributed to the increase

tumor-specific neoantigens and tumor-infiltrating lymphocytes

(TILs) (173, 174). As discussed earlier, the KEYNOTE 061,

KEYNOTE 062, CheckMate-649, and JAVELIN gastric 100 trials

demonstrated that patients with GC with dMMR/MSI-H had a

better clinical outcome when treated with ICI monotherapy or ICIs

plus chemotherapy (175). Furthermore, the subgroup analysis from

the KEYNOTE 062 showed that an obvious improvement of PFS
FIGURE 2

Molecular classification and clinical features in gastric cancer. The Epstein–Barr virus infection–related type (EBV-positive), the microsatellite
unstable type (MSI), the chromosomal unstable type (CIN), and the genomically stable type (GS).
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and OS was observed in the MSI-H population regardless of

receiving ICI monotherapy or ICIs plus chemotherapy (151). In

detail, there were 14 MSI-H participants under pembrolizumab

alone. The ORR was 57.1%, and the PFS was 11.2 months. When

coupled with chemo-regimen, 17 patients with dMMR were treated

with pembrolizumab + chemo. Compared to the MSS arm, the ORR

in the MSI-H arm was much higher (64.7%). A pan-tumor clinical

trial totally enrolled 108 patients with MSI-H/dMMR (including

GC/GEJC) and explored the efficacy of serplu l imab

(NCT03941574) (176). The ORR reached 38.2%. It is worthy to

note that the 1-year OS rate and the 1-year PFS rate were 81.9% and

61.9%, respectively. Given that MSI/dMMR is a vital prediction

biomarker of immunotherapy, it is recommended to routinely

evaluate the MMR status for patients with GC before anti–PD-1/

anti–PD-L1 treatment in clinic.
4.3 PD-L1 expression

The role of PD-L1 as a biomarker has been widely discussed. It

seems that the relationship between PD-L1 expression and the

response to immunotherapy is definite; yet, what is the appropriate

and uniform cutoff value failed to reach a consensus (177). Cohort I

of the KEYNOTE 059 showed that the PD-L1 CPS ≥1 group had a

higher ORR than that of the CPS <1 group (15.5% vs. 6.4%) (166).

The KEYNOTE 061 found that, in patients with PD-L1 CPS ≥1, ≥5,

and ≥10, pembrolizumab extended OS by 0.8 months, 1.9 months,

and 2.4 months compared to paclitaxel monotherapy, respectively.

However, in the CheckMate-649 and ORIENT-16 trials, the cutoff

value of CPS was set to 5 (158, 178). Indeed, the PD-L1 CPS is

positively correlated with clinical benefits. Just based on the existing

data, we cannot distinguish whether patients with CPS 1–4 will

definitely not benefit from immunotherapy. Another cause for this

dilemma is the diversity of measurements and interpretations, such

as 22C3 pharma Dx, SP 142, and SP 263 (179, 180). Apart from

CPS, several trials utilize tumor proportion score (TPS) and TAP as

well (179, 181). Taking the RATIONALE-305 as an example, the

investigators chose TAP to interpretate PD-L1 expression. It

remains controversy over the spatiotemporal heterogeneity of

PD-L1 detection and the heterogeneity of the primary metastatic

lesion, as well as the heterogeneity between CPS, TPS, and TAP, all

of which require further exploration.
4.4 EBV infection

Approximately 10% of patients with GC are diagnosed with

EBV infection (EBV-associated GC, EBVaGC), and, in turn,

sustained infection causes increased the infiltration of CD8+ T

cells (such as CD8+ PD-1− LAG-3− T cells), as well as the

upregulation of PD-L1 and PD-L2 (19, 182, 183). As a result,

EBVaGC is thought eligible for immunotherapy and has a good
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prognosis (184). Moreover, low frequency of lymph nodes

involvements might be another feature in EBVaGC (185). A

small-sample study demonstrated that the response rate in EBV-

positive GC reached 100% (n = 6) (95). Detecting EBV via EBV-

encoded RNA in situ hybridization (EBER-ISH) becomes the gold

standard (186). With the increasing demand for biomarker

detection, only relying upon EBER-ISH is not enough in clinical

practice. NGS panel detecting of EBV status at RNA level has

emerged, including seven EBV genes (EBER1, EBER2, EBNA1,

LMP1, LMP2A/B, BZLF1, and BARF1) (186).
4.5 Tumor mutation burden

Tumor mutation burden (TMB) is defined as the total number

of somatic alterations detected per million bases (muts/Mb) (187).

Previous evidence illustrated that TMB could serve as a biomarker

independently of MSI-H and PD-L1 in immunotherapy for GC

(188, 189). Typically, the TMB-high (TMB-H) status accompanies

with the exposure of neoantigens and the further recognition by

antigen-presenting immune cells, like DCs (187). Thus, the tumor

cells are more vulnerable to anti–PD-1/anti–PD-L1 agents; that is to

say, those with TMB-high in GC can benefit more from ICIs. In

2019, Professor Xu et al. reported a phase Ib/II trial (NCT02915432)

in GC referring to toripalimab (190). A higher ORR was seen in the

candidates with TMB-H (TMB ≥12 mut/Mb, 33.3% vs. 7.1%). Based

on the results from the subgroup analysis in the KEYNOTE 061, the

cutoff value of TMB-high and TMB-low was defined as 10 mut/Mb

(191). Also, the TMB-high population had a better PFS and OS

outcome (191). Similar to PD-L1, determining the threshold of

TMB is crucial for its utilization as an alternative biomarker (192).

In addition, the heterogeneity in tissue-based TMB and blood-based

TMB also needs further larger-panel detection methods as well.
4.6 Circulating tumor cell and circulating
tumor DNA

Minimal residual lesions can be detected through liquid biopsy,

including circulating tumor cell (CTC) and circulating tumor DNA

(ctDNA), which captured the recurrence clues earlier (193–197).

Ying Jin et al. demonstrated that plasma ctDNA was correlated with

ICI-induced resistance and corresponding AEs in GC (198). Also,

several research studies emphasized the independent predicting

value of CTC and ctDNA in GC immunotherapy, but low

sensitivity and low accuracy, in part, restricted its promotion in

clinical practice (198, 199). To solve this issue, novel PCR

techniques [ddPCR; amplification refractory mutation system

(ARMS) PCR; and breads, emulsification, amplification and

magnetics (BEAMing)] and NGS-based methods have been

exploited (194, 200–202).
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4.7 Angiogenesis-related molecules (VEGF
expression, angiogenic cytokines, and
microvessel density)

Angiogenesis is one of the characteristics in cancer, and GC

typically expresses high-level VEGF and secretes pro-angiogenic

cytokines. It was reported that VEGF-D and VEGFR-3 could

independently predict the poor prognosis after resection (203).

Moreover, the researchers also found that patients with GC with

lower microvessel density prolonged the survival (204). In a phase III

and randomized trial (the AVAGAST), the baseline plasma VEGF-A

expressions and lower-baseline neuropilin-1 levels both could be the

potential biomarkers, which are correlated with the OS improvement

with bevacizumab (205). At present, although anti-angiogenic drugs

have shown potential and reliable safety in clinical trials, unique and

appropriate biomarkers have not yet been established in GC.
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4.8 Other novel molecules

The number and spatial distribution of effector T cells is

another promising biomarker. Given the complexity of TME in

GC, the scholars established one predictive model for

immunotherapy response through multi-dimensional analysis.

Taken together, signatures of infiltrating immune cells in tumor

lesions favorably reflect as non-responder, low-responder, or high-

responder. Intriguingly, CD8+ PD-1+ LAG-3− cells and its spatial

density contribute more among those studied immune cells (206).

Furthermore, the investigators found that CLDN 18.2(+) tumors

are rich in non-depleted CD8+ T cells (such as CD8+ PD-1−, CD8+

TIM3−, and CD8+ LAG3− cell subtypes) (207). In addition, CD4+

FOXP3− PD-L1−, and CD4+ FOXP3− CTLA-4− cells are also

frequently detected. It may partly explain why CLDN 18.2–

directed therapy and CLDN 18.2 CAR-T are highly effective.
TABLE 3 Current clinical trials about targeted agents in unresectable or metastatic gastric cancer.

Target Clinical
trial

Regimen Agent Line Phase Number Endpoint ORR (%)

HER-2

ToGA
(60)

Trastuzumab +
chemo
vs. chemo

mAb 1L III 594

OS, 13.8 vs.
11.1 months
PFS, 6.7 vs.
5.5 months

47.3 vs. 34.5

JACOB
(62)

Chemo +
trastuzumab +
pertuzumab
vs. Chemo
+ trastuzumab

mAb 1L III 780

OS, 18.1 vs.
14.2 months
PFS, 8.5 vs.
7.2 months

57.0 vs. 48.6

LOGIC (61)
Lapatinib +
chemo
vs. chemo

mAb 1L III 545

OS, 12.2 vs.
10.5 months
PFS, 6.0 vs.
5.4 months

53.0 vs. 39.0

TyTAN
(63)

Lapatinib +
paclitaxel
vs. paclitaxel

mAb 2L III 261

OS, 11.0 vs. 8.9
months

PFS, 5.4 vs.
4.4 months

27.0 vs. 9.0

GATSBY
(66)

Trastuzumab-
emtansine
vs.
docetaxel/
paclitaxel

ADC 2L II/III 345

OS, 7.9 vs. 8.6
months

PFS, 2.7 vs.
2.9 months

20.6 vs. 19.6

DESTINY-
Gastric01 (67)

Trastuzumab-
deruxtecan
vs.
irinotecan/
paclitaxel

ADC 2L II 188

OS, 12.5 vs. 8.4
months

PFS, 5.6 vs.
3.5 months

51.0 vs. 14.0

VEGF/
VEGFR

RAINFALL
(208)

Ramucirumab +
chemo
vs. chemo

mAb 1L III 645

OS, 11.2 vs.
10.7 months
PFS, 5.7 vs.
5.4 months

41.1 vs. 36.4

REGARD
(119)

Ramucirumab
vs. placebo

mAb 2L III 355

OS, 5.2 vs. 3.8
months

PFS, 2.1 vs.
1.3 months

3.0 vs. 3.0

RAINBOW
(118)

mAb 2L III 665
OS, 9.6 vs. 7.4

months
28.0 vs. 16.0

(Continued)
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5 Summary and future perspective

Even though there is a substantial breakthrough in advanced

GC, more druggable targets and reliable biomarkers are still

necessary (Tables 3, 4). The combination of ICIs with

chemotherapy has notably improved clinical outcomes in first-

line treatments for GC/GEJC. However, the trials CheckMate 032

and CheckMate 649 showed that the combination of nivolumab and

ipilimumab did not demonstrate improved efficacy in either first-

line or second-line treatment settings (178, 209). Specifically, cohort

3 of the CheckMate 649 trial revealed that the combination of

ipilimumab and nivolumab did not outperform chemotherapy; yet,

a longer duration of response was noted in the dual-ICI arm,

approximately double that of the chemotherapy arm. Hence,

owing to its potential in reversing acquired chemotherapy

resistance and the irreplaceable role of chemotherapy, the

combined regimen of nivolumab, ipilimumab, and chemotherapy

continues to be highly anticipated. Undoubtedly, adding

ipilimumab may increase the risk of toxicities. Then, Cadonilimab

(AK104), the only bispecific antibody targeting both PD-1 and

CTLA-4, offers a unique mechanism by simultaneously blocking the

interaction of PD-1 and CTLA-4 with their respective ligands,

differing from the simple overlap of individual ICIs (210). The

phase Ib/II trial, AK104–201, reported that AK104 in combination

with XELOX (capecitabine + oxaliplatin) extended PFS and OS

regardless of PD-L1 expression, with an acceptable safety profile

(211). Among the 88 participants, 56 patients achieved partial

response. Importantly, the proportion of patients exhibiting a
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PD-L1 CPS of ≥5 in this study was only 16.7%, markedly lower

than that observed in the CheckMate 649 and ORIENT-16, where it

was nearly 60%. Then, 2-year follow-up data updated that the ORR

reached 68.2% after AK104 treatment; in detail, five patients

reached complete response (5/88, 5.7%), and 55 patients reached

partial response (55/88, 62.5%) (212).

Meanwhile, data from real-world studies corroborate these

above findings (213). Among the 22 patients with advanced GC/

GEJC with PD-L1 CPS ≤5, 15 patients reached partial response, and

7 patients reached stable disease. Altogether, this suggests that

cadonilimab may confer benefits even to those with low or

negative PD-L1 expression levels. Motivated by the promising

results of AK104, a phase III clinical trial (AK104–302) is

currently underway. These endeavors provide fresh perspectives

in the development of anti-tumor medicines through targeting

distinct molecules. Similarly, ZW25 and KN026, which target

bispecific, non-overlapping epitopes on HER-2, have shown

superiority over conventional monoclonal antibodies. The efficacy

of AMG 910 (a CD3/Claudin 18.2 bispecific antibody) and SPX-301

(a PD-L1/Claudin 18.2 bispecific antibody) in preclinical trials for

GC has been validated.

ADCs are designed to deliver cytotoxic drugs directly to tumor

cells, primarily leveraging the antibody-dependent cellular

cytotoxicity effect. Instead, HER-2–directed ADCs alone have not

yielded satisfactory outcomes. In a recent phase I trial, researchers

investigated the efficacy and safety of combining Disitamab Vedotin

(RC48) with toripalimab in GC/GEJC (214). This trial enrolled a

total of 56 participants, with 30 cases of GC/GEJC. Among these, in
TABLE 3 Continued

Target Clinical
trial

Regimen Agent Line Phase Number Endpoint ORR (%)

Ramucirumab +
paclitaxel
vs. paclitaxel

PFS, 4.4 vs.
2.9 months

c-MET

RILOMET-1
(98)

Rilotumumab +
chemo
vs. chemo

mAb 1L III 609

OS, 8.8 vs. 10.7
months

PFS, 5.6 vs.
6.0 months

29.8 vs. 44.6

METGastric
(97)

Onartuzumab +
FOLFOX
vs. FOLFOX

mAb 1L III 562

OS, 11.0 vs.
11.3 months
PFS, 6.7 vs.
6.8 months

46.1 vs. 40.6

FGFR2

FIGHT
(105)

Bemarituzumab
+ FOLFOX
vs. FOLFOX

mAb 1L II 155

OS, NR vs. 12.9
months

PFS, 9.5 vs.
7.4 months

53.0 vs. 40.0

SHINE
(106)

AZD4547
vs. paclitaxel

TKI 2L II 71

OS, 5.5 vs. 6.6
months

PFS, 1.8 vs.
3.5 months

2.6 vs. 23.3

Claudin 18.2 FAST (131)
Zolbetuximab +
chemo
vs. chemo

mAb 1L II 252

OS, 13 vs. 8.4
months

PFS, 7.5 vs.
5.3 months

47.0 vs. 33.0
Chemo, chemotherapy; mAb, monoclonal antibody; ADC, antibody–drug conjugate; TKI, tyrosinase inhibitor; FOLFOX, 5-FU + leucovorin + oxaliplatin; PFS, progression-free survival; OS,
overall survival; ORR, objective response rate; NA, not available; NR, not reached.
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the HER-2–positive cohort and the HER-2–low cohort, the ORR

reached 56% and 46%, respectively. The potential of combining

HER-2–targeted ADCs with ICIs in the second-line or even the

first-line treatment deserves further explorations. Furthermore,

targeting other immune checkpoints, such as LAG-3 and TIGIT,

is also feasible and promising (145; 215, 216).

Apart from HER-2, other emerging targets (such as Claudin

18.2, FGFR, and c-MET) have shown their potential in advanced

GC. Considering the heterogeneity among current trials, the future

research studies require focusing on how to optimize the

combination and sequence of immunotherapy and targeted

treatments. Specifically, a reasonable combination could maximize
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the efficacy and, meanwhile, reduce adverse events. In addition,

sequential therapies also contribute to overcome drug resistance.

Moreover, novel therapeutic approaches such as CAR-T therapy

(such as Claudin 18.2-specific CAR T cells) and tumor vaccine

(such as neoantigen-loaded dendritic cell vaccine) are also

promising owing to the efforts of translational studies in GC (115,

217). Taking the issues of HER-2–targeted agents that induced

refractory as an example, small-molecule HER-2 inhibitor pyrotinib

failed to achieve the expected efficacy in GC. To claim the cause, the

scholars found that pyrotinib could upregulate the level of Cyclin

D1 in HER-2–positive GC cells; furthermore, the addition of

CDK4/6 inhibitors (SHR6390) could synergistically exert anti-
TABLE 4 Current clinical trials about ICI-based regimen in unresectable or metastatic gastric cancer.

Clinical trial Regimen Line Phase Number OS (months) PFS (months)

KEYNOTE 811
(155)

(NCT03615326)

Pembrolizumab +
trastuzumab +
XELOX/PF vs.
placebo +

trastuzumab +
XELOX/PF

1L III 698
20.0 vs. 16.8
(HR = 0.84)

10.0 vs. 8.1
(HR = 0.73)

KEYNOTE 062
(67)

(NCT02494583)

Pembrolizumab
vs. pembrolizumab +
CAPOX/FOLFOX

vs. placebo +
CAPOX/FOLFOX

1L III 763
10.6 vs. 11.1
(HR = 0.91)

2.1 vs. 6.4
(HR = 1.66)

KEYNOTE 859
(152)

(NCT03221426)

Pembrolizumab +
CAPOX/PF

vs. CAPOX/PF
1L III 545

12.9 vs. 11.5
(HR = 0.78)

6.9 vs. 5.6
(HR = 0.76)

KEYNOTE 061
(163)

(NCT02370498)

Pembrolizumab
vs. paclitaxel

2L III 592
9.1 vs. 8.3
(HR = 0.82)

1.5 vs. 4.1
(HR = 1.27)

CheckMate-649
(178)

(NCT02872116)

Nivolumab +
XELOX/FOLFOX

vs. XELOX/FOLFOX
1L III 955

14.4 vs. 11.1
(HR = 0.71)

7.7 vs. 6.05
(HR = 0.68)

ATTRACTION-04
(156)

(NCT02746796)

Nivolumab + SOX/
CAPOX

vs. SOX/CAPOX
1L II/III 724

17.45 vs. 17.15
(HR = 0.90)

10.45 vs. 8.34
(HR = 0.68)

ATTRACTION-2
(165)

(NCT02267343)

Nivolumab
vs. placebo

3L III 493
5.32 vs. 4.14
(HR = 0.63)

NA

ORIENT-16 (158)
Sintilimab + CAPOX

vs. CAPOX
1L III 650

15.2 vs. 12.3
(HR = 0.76)

7.1 vs. 5.7
(HR = 0.636)

RATIONALE-
305 (160)

Tislelizumab +
XELOX/PF vs.
XELOX/PF

1L III 997
17.2 vs. 12.6
(HR = 0.74)

7.2 vs. 5.9
(HR = 0.67)

GEMSTONE-
303 (161)

Sugemalimab +
CAPOX

vs. placebo
+ CAPOX

1L III 479
15.64 vs. 12.45
(HR = 0.75)

7.62 vs. 6.08
(HR = 0.66)

JAVELIN Gastric
100 (162)

(NCT02625610)

Avelumab
maintenance
vs. FOLFOX

– III 805
10.4 vs. 10.9
(HR = 0.91)

NA

JAVELIN Gastric
300 (167)

(NCT02625623)

Avelumab vs.
paclitaxel/irinotecan

3L III 371
4.6 vs. 5.0
(HR = 1.1)

1.4 vs. 2.7
(HR = 1.73)
FOLFOX, 5-FU + leucovorin + oxaliplatin; SOX, S-1 + oxaliplatin; CAPOX, cisplatin + capecitabine; 1L, first line; 2L, second line; 3L, third line; PFS, progression-free survival; OS, overall
survival; HR, hazard ratio; NA, not available.
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tumor effect, which have been confirmed in preclinical AVATAR

mice and a phase I clinical trial (NCT03480256) as well (218). In

another preclinical study, the researchers reported the potential

anti-angiogenesis role of Atractylenolide III (AT-III) via reducing

microvessel density and HIF-1a in advanced GC (219, 220).

Merely focusing on anti-tumor drug development and updating is

insufficient for advanced GCmanagement. Greater emphasis should be

placed on selecting appropriate candidates for treatment. Hence,

identifying reliable biomarkers is crucial for precision medicine (221,

222). Current markers such as PD-L1 positivity, MSI-high status, high

tumor mutational burden, and EBV infection do not fully meet the

requirements. Establishing a multi-biomarker network and framework

that incorporate these molecules and consider the heterogeneity of

gastric and gastroesophageal tumors, along with HER-2 status, c-MET,

or FGFR, would be instrumental in differentiating between non-

responders, low-responders, and high-responders to chemotherapy,

immunotherapy, or molecular targeted therapy. Regarding liquid

biopsies (whether NGS-based or PCR-based techniques),

standardization and optimization detection procedures via leveraging

the emerging omics methods is another critical aspect.

Ultimately, precision and personalization have become

paramount in the treatment of unresectable or metastatic GC.

The exploration and integration of existing therapeutic targets,

along with in-depth research into novel molecules, warrant

further investigation in the future.
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