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The Keap1-Nrf2 signaling pathway is a major regulator of the cytoprotective

response, participating in endogenous and exogenous stress caused by ROS

(reactive oxygen species). Nrf2 is the core of this pathway. We summarized the

literature on Keap1-Nrf2 signaling pathway and summarized the following three

aspects: structure, function pathway, and cancer and clinical application status.

This signaling pathway is similar to a double-edged sword: on the one hand, Nrf2

activity can protect cells from oxidative and electrophilic stress; on the other

hand, increasing Nrf2 activity can enhance the survival and proliferation of cancer

cells. Notably, oxidative stress is also considered a marker of cancer in humans.

Keap1-Nrf2 signaling pathway, as a typical antioxidant stress pathway, is

abnormal in a variety of human malignant tumor diseases (such as lung cancer,

liver cancer, and thyroid cancer). In recent years, research on the Keap1-Nrf2

signaling pathway has become increasingly in-depth and detailed. Therefore, it is

of great significance for cancer prevention and treatment to explore the

molecular mechanism of the occurrence and development of this pathway.
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1 Introduction

NRF2 (nuclear factor erythroid 2-related factor 2) is tightly regulated by different

mechanisms at transcriptional, epigenetic, or ARE‐binding level; however, its key

regulation is interceded by proteasome degradation mainly mediated by the repressor

protein Kelch‐like ECH‐associated protein 1 (Keap1) (1). There are differences in the

number of cysteine residues between human- and mouse-derived Keap1. There are 25

cysteine residues in mice and 27 in human-derived Keap1. Most can be modified by different

oxidants and electrophilic reagents in vitro (2). Nrf2 is an important redox-sensitive

transcription factor that is conducive to improving the oxidative stress state of the body,

promoting cell survival, and maintaining the redox homeostasis of cells by inducing and

regulating the constitutive and inducible expression of phase II detoxification enzymes and
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antioxidant enzymes in cells (3–5). The Keap1-Nrf2 signaling

pathway is a major regulator of the cell protection response, which

is involved in endogenous and exogenous stress caused by reactive

oxygen species (ROS) (6). This pathway is regulated with Nrf2 as the

core. First, Nrf2 and small Maf protein bind to an ARE (antioxidant

response element) in the regulatory region of the target gene. Second,

Nrf2 binds with Keap1 to promote its degradation through the

ubiquitin proteasome pathway (7). At the same time, this pathway

also acts as a double-edged sword: Nrf2 activity protects cells against

oxidative and electrophilic stress, while increasing Nrf2 activity

contributes to cancer cell survival and proliferation.

In view of these remarkable findings, research on the Keap1-Nrf2

signaling pathway has become increasingly in-depth and detailed in

recent years. Therefore, it is of great significance to constantly explore

the molecular mechanism of the occurrence and development of this

pathway for cancer prevention and treatment. In this review, the key

molecular mechanisms of the Keap1-Nrf2 signaling pathway in

carcinogenesis and development are summarized.
2 Structure and function of Keap1

2.1 Structure of Keap1

Keap1 was found and reported in 1999, and it belongs to the

BTB Kelch protein family (8, 9). Keap1 is a negative regulator of
Frontiers in Oncology 02
Nrf2, which mainly binds with it in the cytoplasm to form a

homodimer. Under normal circumstances, Keap1 interacts with

Cullin3 (Cul3) and Rbx1 to ubiquitinate the Nrf2 protein and

induce the proteasome to degrade it, thus preventing Nrf2 from

being translocated to the nucleus and binding to the ARE site in

DNA (10). The protein molecular weight of Keap1 is 69 kDa, which

is located at position 19q13.2 of the human chromosome. Under

normal circumstances, it is anchored to the actin skeleton in

the cytoplasm.

Keap1 is mainly composed of the following five domains

(Figure 1A): NTR domain (1–49 amino acid residues), BTB

domain (50–179 amino acid residues) that can interact with Cul3,

IVR domain (180–314 amino acid residues), six repetitive DGR

domains (315–598 amino acid residues), and the final CTR domain

(599–624 amino acid residues) (11, 12). The details are as follows:

the BTB domain, also known as the POZ domain, has diverse

functions and can participate in the polymer formation process of

the Keap1 protein; for example, it can mediate the mutual

recognition of Keap1 homodimers in the cytoplasm and bind to

the E3 ubiquitination ligase complex dependent on Cul3 (13). At

C151, a cysteine residue was found that is necessary for Keap1 to

reduce E3 activity under electrophilic stimulation (14). The IVR

domain (also known as the BACK domain) connects the BTB

domain with the Kelch/DGR domain on the C-terminal side.

Because this domain is rich in cysteine amino acid residues, it can

regulate the activity of Keap1 protein. At the same time, Keap1 can
B

A

FIGURE 1

Structure and function of Keap1. (A) The protein structure of Keap1 and the functions of its domains. (B) The regulatory network of Keap1. Several
microRNAs (miR-223, miR-200a, and miR-432-39) also affect Keap1 translation levels. The Keap1 protein is also regulated by various modifications
(such as methylation, oxidation, glycosylation, and alkylation) after translation. At the same time, it is also affected by other factors (such as P62 and
TRIM25) that regulate its expression.
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interact with the 3-box double helix motif region near the N-

terminal of Cul3 through the IVR domain (15). The Kelch/DGR

domain of Keap1 is composed of six repetitive Kelch sequences,

which contain tyrosine, tryptophan, diglycine, and other repetitive

conserved amino acid residues; Keap1 has a homodimer that can

interact with ETGE (high affinity) and DLG (low affinity) motifs in

the Neh2 domain of the Nrf2 protein (16).
2.2 Expression of Keap1

By analyzing the RNA-seq data of 27 different human tissues

(from NCBI), it was found that Keap1 was distributed in most

human tissues and organs, such as the brain, adrenal gland, bone

marrow, gallbladder, kidney, liver, spleen, and pancreas.

Interestingly, the expression level of Keap1 RNA in different

organs and tissues is quite different. For example, the expression

level of Keap1 is high in the brain, kidney, and prostate but low in

the bone marrow, pancreas, and salivary gland. The above data

come from the National Center for Biotechnology Information (17).
2.3 Current status of Keap1 research

Keap1 is part of a ubiquitin ligase (cul3-rbx1 E3) complex that

recruits pgam5, Nrf2, SLK, IKK b, P62, Sox9, Bcl-2 MIRO2,

MAD2L1, and MYO9B, which are ubiquitinated and degraded

and are involved in the regulation of multiple signaling pathways

in cells (18) (Figure 1B). For example, in the Keap1-Nrf2 pathway in

oxidative stress and metabolic processes, Nrf2 often causes

corresponding case changes after aberrant expression occurs (19,

20). An increasing number of studies have also been used to

demonstrate that Keap1 is a shuttling competent protein, i.e.,

shuttling back and forth in the nucleus and cytosol under specific

conditions, whereas a nuclear export signal (leucine) is found in

Keap1, and in large amounts of the nuclear protein prothymosin a
that binds with Keap1, revealing that Keap1 is able to translocate

from the cytoplasm into the nucleus (21). Later in the state of

oxidative stress, Keap1 is also able to enter the nucleus and bind

with Nrf2 again, allowing Nrf2 to translocate from the nucleus to

the cytoplasm again and thus allowing Nrf2, under the mediation of

Keap1, to be degraded by ubiquitination (22–25). Keap1 can act as

an E3 ubiquitination ligase for p62 (a.k.a. SQSTM1), allowing p62

to be ubiquitinated for degradation and reducing cell death in

disease (26) (Figure 2). Keap1 can also function as an IKK b, the
role of E3 ligases that inhibit NF-kB expression of the pathway,

which in turn inhibits cancer initiation (18).

It has been shown that Keap1 is not only a tumor suppressor

but also a prooncogenic protein. In terms of disease initiation and

progression, Keap1 has been implicated in several diseases, such as

kidney disease, liver disease, inflammatory disease, sarcopenia,

ophthalmic disease, neurodegenerative disease, cardiovascular

disease, and ischemia/reperfusion injury. In some critical diseases

(e.g., cancer), Keap1 has also been found to be somatically mutated,

resulting in deregulation of its function in mediating ubiquitination,

leading to cancer initiation and malignant progression. For
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example, somatic mutation of Keap1 in lung cancer, causing an

increase in Nrf2 protein expression levels, leads to lung cancer

initiation and progression. In addition, somatically acquired

mutations have also been found in a variety of human cancer

tissues, including head and neck (42%), ovarian (37%), gallbladder

(30.7%), gastric (11.1%), colorectal (7.8%), clear renal cell (4.7%),

liver (2.8%), prostate (1.3%), and glioma (1.7%), leading to the

development of cancer (27–30). Keap1 mutations in the somatic

fraction are shown in Table 1.
2.4 Regulation of Keap1

Several reports have indicated that the regulation of Keap1

mainly focuses on the transcription level, protein translation level

(e.g., the regulation of miRNAs), and posttranslational modification

clipping processing (e.g., oxidative modification, glycosylation

modification, and alkylation modification), as shown in Figure 1B.

2.4.1 Regulation of Keap1 at the
transcriptional level

Keap1, at the transcriptional level, is directly regulated by

methylated promoter regions (CpG islands). For example, in

prostate cancers (39), non-small cell lung cancers (42), breast cancer

(43), and colon cancers (44), where CpG islands act as Keap1

promoter regions, there is high methyl florescence and low expression.

2.4.2 Regulation at the translational level
Some microRNAs (also known as microRNAs, miRNAs) have

been reported to be regulated at the level of Keap1 protein

translation. For example, transfection of miR-223 in HepG2 cells

decreased the level of Keap1 protein expression, and transfection of

its inhibitor significantly increased the level of Keap1 protein

expression; the results showed that miR-223 was able to

negatively regulate the protein expression of Keap1 in the cells

(45). Another mic RNA, mir-200a, with low expression under

fructose induction, activated the expression of Keap1, reduced the

antioxidant capacity of the Keap1-Nrf2 pathway, enhanced cellular

ROS, and activated the expression of lactamase (NLRP3), resulting

in oxidative stress and lipid accumulation in cells, while the use of

polydatin, which could effectively enhance the expression level of

mir-200a, activated the antioxidant activity of the Keap1-Nrf2

pathway and could serve as one target site for the treatment of

fructose-induced related disorders (e.g., liver injury and lipid

deposition-like disorders) (46, 47). In addition, mir-432-3p has

also been found to inhibit Keap1 expression in ESCC (esophageal

squamous cell carcinoma), which in turn regulates the antioxidant

activity of the Keap1-Nrf2 pathway (48–50).

2.4.3 Regulation of Keap1 modification at the
posttranslational level
2.4.3.1 Oxidative modification

Under unstimulated conditions, redox reactions are in stable

equilibrium in living cells; however, multiple stress responses are

elicited in cells after redox stabilization is disrupted, and this condition
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is thought to be an important contributor to the development of

numerous diseases. In regulating the balance between oxidation and

reduction, EPS (Epalrestat), an electrophile, is used to activate relevant

defenses against oxidative stress. For example, in the Keap1-Nrf2 are

transcriptional pathway, which can be activated by CA (carnosic acid)

and CS (carnosol) found in rosemary to rapidly synthesize

endogenous antioxidant phase 2 enzymes. Notably, CA and CS are

electrophilic only after oxidation and themselves belong to non-

electrophilic species (51). In COPD (chronic obstructive pulmonary

disease) patients, it was observed that Keap1 changed its conformation

due to a long-term stimulation by free radicals or other chemicals in

tobacco, leading to abnormal expression of the Keap1-Nrf2 pathway.
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2.4.3.2 Glycosylation modification

O-GlcNAc (O-linked N-acetylglucosamine) is a dynamic

posttranslational modification (PTM) that reversibly modifies

serine and threonine residues of thousands of nuclear,

cytoplasmic, and mitochondrial proteins. It has been documented

that the glycosylation (o-GlcNAcylation) modification of Keap1 at

S104 is able to regulate the ubiquitination of Nrf2 and proteasomal

destruction, and glycosylation at this site is not required for Keap1

to form a dimer. Meanwhile, o-GlcNAcylation at this site can also

further optimize the conformation of Keap1 and promote

ubiquitination of Keap1 substrates in a manner that enhances

keap1-cul3 binding ability (50, 52).
FIGURE 2

Interaction between Keap1 and Nrf2. Under basic conditions, Keap1 binds to Nrf2 through ETGE and DLEG, and Nrf2 is polyadenylated by the cul3-
based E3 ligase complex. This polygeneralization leads to the rapid degradation of Nrf2 by the proteasome. At the same time, a small amount of
Nrf2 escapes from the inhibition complex and reaggregates in the nucleus, mediating the expression of basic ARE-dependent genes and thus
maintaining intracellular homeostasis. When stimulated by the outside world (drugs, phytochemicals and devivates, environmental agents, and
endogenous inducers), the inducer modifies Keap1 cysteine and inhibits Nrf2 ubiquitination by dissociating the inhibition complex. According to the
hinge and latch model, the modification of specific Keap1 cysteine residues leads to the conformational change of Keap1, leading to the separation
of the Nrf2 DLG motif from Keap1. The ubiquitination of Nrf2 is destroyed, but binding to the ETGE motif still occurs. At the same time, in another
model (Keap1-Cul3 dissociation model), the binding of Keap1 and Cul3 is destroyed under the action of electrophilic reagents, which leads to the
escape of Nrf2 from the ubiquitination system. In these two models of Keap1-Nrf2, both will induce modification and inactivate Keap1, which will
bind Nrf2. Therefore, the newly synthesized Nrf2 protein bypasses Keap1 and enters the nucleus, binds to the antioxidant response element (ARE),
and drives the expression of the Nrf2 target genes GCLC, GCLM, NQO1, HO-1, and GST. At the same time, it will also affect other processes
(glutathione synthesis, antioxidant systems, PPP/NADPH synthesis, iron regulation, etc.).
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2.4.3.3 Alkylation modification

Alkylation of one or more of the 27 cysteine sulfhydryls of

human Keap1 has been reported to result in ubiquitination or

proteasome-mediated reduction of its substrates. However,

alkylation of Keap1 can also occur in the presence of some

electrophilic compounds (e.g., quinone methides, carbenium ions,

epoxides, quinones, and quinoneimines, among others) (53).

Notably, xanthohumol, as a natural compound, is also able to

alkylate Keap1 (54, 55). Another endogenous metabolite is

itaconate, which has anti-inflammatory metabolic functions and

alkylates some of the Cys residues (e.g., C151, c257, c273, c288, and

c297, of which C151 has the strongest electrophilic activity) on the
Frontiers in Oncology 05
Keap1 protein, enhancing the expression of its antioxidant and anti-

inflammatory related downstream genes (56–59). The in-depth

study of substances such as xanthohumol and itaconic acid may

provide a new approach to the pathogenesis of related diseases

caused by Keap1.
3 Structure and function of Nrf2

3.1 Structure of Nrf2

The Nrf2 transcription factor was first identified in 1994 in a

human chronic myelogenous leukemia cell line by MOI et al. and

was later determined to be located on human chromosome 2q31.2

(60). Nrf2, also named nfe2l2 (nf-e2-like 2), encodes a total of 605

amino acids and is composed of seven different domains, followed

from the N-terminus to the C-terminus by Neh2, Neh4, Neh5,

Neh7, Neh6, Neh1, and Neh3 (20, 61–63) (Figure 3A). The

functions of each domain are specific and indispensable (64–66).

The Neh1 domain, which consists of the conserved CNC and

bZIP domains, is critical for Nrf2 binding SMAF proteins in the

nucleus to form dimers that recognize DNA sequences of target

genes (67, 68). The Neh2 domain is located in the N-terminus of

Nrf2 and contains two stretches of highly conserved amino acid

sequences (29DLG31 sequence and 79ETGE82 sequence), which

are able to bind with Nrf2’s inhibitor protein Keap1 to mediate Nrf2

degradation through the ubiquitination proteasome system (8, 9,

69). The C-terminal neh3 domain, neh4 domain, and neh5 domain

are important domains for Nrf2 to exert transcriptional regulation

of target gene activity (70–72). The neh6 domain is a serine-rich

domain that contains two conserved amino acid motifs

(343dsgis347 sequence and 382dsapgs387 sequence) that can be

recognized by GSK-3 a/b-Trcp recognition, and deletion or

mutation of either of these two sequences reduces b-Trcp-
mediated ubiquitination, i.e., this domain is a critical negative

regulatory domain that mediates proteasomal degradation of Nrf2

ubiquitination (73, 74). The neh7 domain was only formally defined

in 2013 as a domain with a negative regulatory function through the

retinal X receptor a (retinoic X receptor a, RXR a) interacting with
this region and thereby repressing Nrf2 transcriptional activity (75).
3.2 Nrf2 expression

Analysis of Nrf2-related data (transcriptome and proteome

data) in the HPA (Human Protein Atlas) database revealed its

distribution in most human tissues and organs. Nrf2 expression has

been detected in various organs, such as the brain, lung, kidney,

liver, male and female reproductive organs, lymphoid tissue

gallbladder, and muscle tissue, and in relevant cells, both in the

cytoplasm and nucleus. It is worth noting that the expression levels

of Nrf2 vary in different tissues or cells due to their functional and

structural differences, while it is possible that there are some

differences in the expression of protein and RNA levels in the

same tissue or corresponding cells. In the brain, bone marrow,
TABLE 1 Somatic mutations of Keap1 in various human cancers.

Cancer Mutation

Lung cancer (18,
31, 32)

R71L, E117K, S144F, V155F, V167F, G186R, R204P,
S224Y, L231V, S243C, P318-fs, P318L, R320Q, G333C,
G364C, S404X, L413R, D422N, G423V, G430C, N469fs,
N460fs, R470H, R470S, R479G, G480W, W497L, W544C,
R554Q, R601W, G601W, G603W, E611D

Liver cancer
(33–36)

N183S, N222K, D249Y, H274Y, R336Q, L342M, G464D,
W554Q, R601W, G603W, E611D

Endometrial
cancer (35)

C13T, T43M, R169C, H274Q, B320Q, Q337X, A356T,
G367D, P384L, H424R, R507Q

The gallbladder
adenocarcinoma
(35)

P181-fs, G332-fs, S338L, G379D

Breast
cancer (36)

C23Y, D256G, A522V

Adenocarcinoma
of the
appendix (36)

G558G

Gastric
adenocarcinoma

Q82H, S233N, F280L, L281P, C288Y, G350S

Kidney
cancer (35)

Y54D, M409T, W544R

Colorectal
cancer (35)

S45P, I125V, T142M, D165N, A191D, M503I, R536H

Ovarian cancer
(35, 37)

S45S, F107L, R116P, A159T, A188V, A189K, P412S, E611K

Esophageal
cancer (35)

E138A, V324M

Pancreatic
cancer (35)

V428V

Prostate cancer
(35, 36, 38, 39)

M209L, Y255F, T314M, D357N, A407V

Malignant
melanoma (35,
40, 41)

1518delC, 1519delG

Carcinoma of the
urinary tract (35)

E218Q, E244K

Autonomic
ganglion
disease (35)

S351
Del is the abbreviation of deletion. Fs is the abbreviation of frame shift.
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gastrointestinal, reproductive, and lymphoid tissues, the protein

expression level of Nrf2 is relatively higher than that in other

tissues, whereas the RNA expression level of Nrf2 is higher in

esophageal tissues than in other tissues. The above data come from

the National Center for Biotechnology Information (17).
3.3 Regulation of Nrf2

The related regulation of Nrf2 expression and activity can occur

at the transcriptional level, mechanistically through miRNA-

media ted regu la t ion and through trans la t iona l and

posttranslational modifications. Because Nrf2 is a soluble protein,

its regulation mainly occurs at the protein level, including protein

−protein and posttranslational modification level regulation (76).

3.3.1 Regulation of Nrf2 at the expression level
(transcriptional level and miRNA-mediated
mechanistic regulation)

Nrf2 can be activated or repressed at the transcriptional level

through its own or other transcription factors; binding to ARE and

XRE sites, such as ppar g (peroxisome proliferator activated

receptor g) (77), MEF2D (myocyte enhancer factor 2D) (78), and

AHR (aryl hydrocarbon receptor) (79), can directly activate Nrf2
Frontiers in Oncology 06
expression, while p53 (79), p97 (80), and RXR a (81), among others,

can negatively regulate Nrf2. Several miRNAs have been reported to

regulate Nrf2 expression at the posttranscriptional level, such as

mir27a, mir28, mir-93, mir-142-5p, mir-144, and mir-153. They are

able to bind at the three-terminal noncoding region in the mRNA of

Nrf2 to inhibit the expression of Nrf2 (76). Five CpG sequences are

included in the promoter region of Nrf2, which, after

hypermethylation modification occurs, can significantly inhibit

Nrf2 expression (82). The mechanisms of the regulation of

human Nrf2 gene expression are illustrated (Figure 3B).

3.3.2 Regulation of protein translation and
posttranslational modification by Nrf2

The activity regulation of Nrf2 protein can be regulated by

several pathways; three pathways are cytoplasmic pathway

regulation, endoplasmic reticulum pathway regulation, and

nuclear pathway regulation. First, under normal circumstances,

Keap1, in a homodimeric manner, recognizes DLG and ETGE

sequences in the Neh2 domain of Nrf2 and anchors it in the

cytoplasm; meanwhile, the N-terminus of the Keap1 protein

recognizes and binds to Cul3, leading to rapid degradation by the

proteasome after ubiquitination of Nrf2 (82, 83). There are also

studies indicating that Nrf2 in the nucleus undergoes acetylation,

leading to its binding to the alkaline region leucine zipper protein to
FIGURE 3

Structure and function of Nrf2. (A) Schematic diagram of the Nrf2 protein structure. (B) Schematic diagram of the regulation of human Nrf2 gene
expression. The control mechanism of nuclear factor erythroid 2p45 related factor 2 (Nrf2) gene expression. The Nrf2 gene is depicted as the
bottom of a solid black horizontal line graph, and the red right angle arrow represents the transcription start site (TSS). Breast cancer protein (BRCA)
1 increases the expression of Nrf2, which is mediated by ARNT. Lipopolysaccharide (LPS), as a factor promoting inflammation, can induce Nrf2 to
recruit TSS (kB2) from the p50–p65 heterodimer through the nuclear factor (NF)-kB binding site. In the process of tumorigenesis and development,
Nrf2 can be activated by many factors (such as Jun or Myc). Fasting increases the mRNA expression level of Nrf2, which may be mediated by
peroxisome proliferator activation (PPAR). Many miRNAs, such as miR-27a, miR-28, miR-93, miR-142-5p, miR-144, and miR-153, inhibit the
expression of Nrf2.
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antioxidant response elements, thereby triggering gene

transcription (84). Second, in the regulation of ER stress, Nrf2

expression is suppressed through the transcriptional activation of

the XBP1-HRD1 arm and the action of E3 ubiquitination-linked

enzymes (85–87). Micro-RNAs (miRNA) can serve as a very

powerful epigenetic regulator of Nrf2 (88). Third, Nrf2 is a major

transcription factor that directly or indirectly significantly regulates

over 2,000 genes. Although many of these genes are involved in

maintaining redox balance, others are involved in maintaining

balance between metabolic pathways that seem unrelated to

oxidative stress (89). Nuclear regulation occurs through

regulation by b-TrCP. It has been reported that in GSK3 b,
following the sequential phosphorylation of dsgis (in the neh6

domain) of Nrf2, b-Trcp is activated; increasing the association of

Nrf2 with the interaction force between b-TrCP accelerates the

degradation of Nrf2 (73, 90, 91).
4 The Keap1–Nrf2 pathway as a
therapeutic target

4.1 Effect of drugs on the expression of
Keap1-Nrf2 pathway

Oxidative stress plays a key role in the pathogenesis of various

human cancers (92, 93). Therefore, in some clinical studies,

oxidative stress-related reactions have also been used to

determine markers of human cancer (94). The Keap1-Nrf2

signaling pathway can prevent organ and cell damage caused by

oxidative stress and protects against the occurrence and

development of cancer (95). Because oxidative damage is

common in carcinogenesis, the Keap1-Nrf2 signaling pathway is

widely considered a potentia l therapeutic target for

chemoprevention (93). The inducers of Nrf2 can play the role of

chemopreventive agents in the following two ways: first, by

preventing carcinogens from reaching their target sites, and

second, by preventing carcinogens from interacting with

important biological molecules (such as DNA and RNA) and

proteins to play the role of chemopreventive agents (93).

Although Nrf2 has chemopreventive potential in normal and

precancerous tissues, it has also been shown to play a role in

tumor cell growth and survival in malignant cells (7, 96). High

levels of Nrf2 have been found in several types of human cancer

cells. Mutations in Keap1 or Nrf2 lead to the constitutive expression

of upregulated genes (97–99). The increased expression of Nrf2 can

play a protective role in both normal and cancer cells. The increase

in Nrf2 expression levels can lead to an increase in the expression of

detoxification enzymes, cytoprotective proteins, and transporters.

This allows cancer cells to gain advantages by enhancing cell

proliferation and can cause drug resistance to chemotherapy (7,

65, 66, 96–100). Previous studies have shown that inhibiting Nrf2 in

malignant cells can inhibit tumor growth and improve the efficacy

of chemotherapy (100–102). After interfering with the PI3K/AKT

and ERK pathways through natural flavonoids, Nrf2 was reduced at

the mRNA and protein levels, making hepatoma cells sensitive to
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chemotherapy (103, 104). Interestingly, dimethyl fumarate,

approved by the FDA as an Nrf2 activator, shows some

anticancer activity. In fact, it seems to be an Nrf2 inhibitor at

high concentrations (105). The p62 interacting with KEAP1 shows a

good effect in HCC by downregulating Nrf2 activation (103).
4.2 Clinical application of the Keap1-
Nrf2 pathway

The Keap1-Nrf2 signaling pathway is involved in both benign

and malignant tumor diseases and may be used as a prognostic

marker or therapeutic target. Nrf2 has also been shown to have an

impact on the drug resistance of cancer (such as lung cancer, liver

cancer, and thyroid cancer) to chemotherapy and radiotherapy

(106–109). Therefore, in clinical trials, the expected effects of

prevention and treatment can be achieved by targeting other

components of the Keap1-Nrf2 pathway and its downstream

signaling pathway. Clinical studies have shown that the mutation

frequency of Keap1 and Nrf2 is approximately 25% in lung cancer

patients. The prognosis of lung cancer patients with Keap1 or Nrf2

mutations is worse than that of lung cancer patients without this

mutation (99). In addition, some studies have shown that the

decrease in the expression level of Keap1 and the increase in the

expression level of Nrf2 may also be related to poor prognosis. In

general, Nrf2 is believed to contribute to both intrinsic and acquired

resistance (110, 111). Nrf2-targeted genes involved in foreign

biological metabolism can accelerate the metabolic inactivation of

antitumor drugs; genes involved in drug transport can effectively

reduce the intracellular drug concentration, and genes involved in

thiosulfur synthesis can increase the drug tolerance of tumor cells.

These multiple mechanisms together lead to chemotherapy

resistance, which is one of the most important carcinogenic

functions of Nrf2. In the process of thyroid cancer treatment,

there are few alternative drugs (7). Proteasome inhibitors are a

substitute for targeted anticancer drugs used in clinical thyroid

cancer. Proteasome inhibition usually also leads to Nrf2 activation

(112). The mechanism by which Nrf2 promotes thyroid cancer

proteasome inhibitor resistance is not limited to the interaction

with apoptosis regulators (ATF4, ORP150, etc.) but also includes

direct regulation of cell redox status. Nrf2 not only promotes

resistance to proteasome inhibitors but also promotes resistance

to other experimental therapies (109, 113, 114). Nrf2 is upregulated

in head and neck squamous cell carcinoma (HNSCC). Nrf2

reprograms a wide range of cancer metabolic pathways, and the

most notable is the pentose phosphate pathway (PPP) (115). In

cervical cancer, Nrf2 can activate EMT-related behaviors and

promote cancer metastasis (116). There are also studies indicating

that Nrf2 acts as a phenotypic stability factor in restricting complete

EMT and plays an important role in coordinating collective cancer

migration (117). In summary, a better understanding of the

relationship between the activation of the Keap1-Nrf2 signaling

pathway in cancer and the overall therapeutic effect, and the mode

of interaction and the therapeutic relevance of this interaction, will

help to further develop therapeutic drugs.
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5 Discussion

In the Keap1-Nrf2 signaling pathway, newly synthesized Nrf2

protein bypasses Keap1, translocates into the nucleus, and drives

the expression of Nrf2 target genes, such as HO-1, NQO1, GCLC,

GCLM, and GSTs (7). In Figure 4, five common molecular

mechanisms of Nrf2 signaling activation in various cancers have

been described (39, 118–123): (1) they are lost after Keap1 has been

mutated in cells or Nrf2 has disrupted its binding domain with

Keap1; (2) epigenetic silencing of Keap1 expression leads to

defective repression of Nrf2; (3) accumulation of interfering

proteins (such as p62) leads to dissociation of the Keap1-Nrf2

complex; (4) transcriptional induction of Nrf2 by oncogenic factors

(e.g., K-Ras, B-Raf and c-myc); and (5) in familial papillary renal

cancer, posttranslational modification of Keap1 cysteines by

succinylation due to loss of fumarate hydratase activity

deregulates the Keap1-Nrf2 signaling pathway.

The transcription factor Nrf2 has an important function in

mediating cellular homeostasis (20, 76, 124, 125), playing a crucial

role during tumor development (20, 125–129). It has been shown
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that tumor proliferation and Nrf1 are distinct and that malignant

proliferation is inhibited after interfering with Nrf2 expression or

knockdown (130–133). Upon inactivation of the tumor suppressor

PTEN, the activity of the PI3K-Akt pathway increases, resulting in

the elevated expression of Nrf2, which promotes cell proliferation

(134); N-cadherin expression, a marker protein of EMT, was

suppressed in cancer cells in which Nrf2 was inhibited or

knocked down (135, 136), whereas E-cadherin expression was

decreased in cancer cells in which Nrf2 was overexpressed (137).

Currently, in most reports, Keap1 is a negative regulator of Nrf2,

which is regulated through the ubiquitin proteasome system.

Accumulating evidence indicates that the Nrf2 signaling

pathway is deregulated in many cancers, leading to aberrant

expression of a Nrf2-dependent gene battery. Therefore, the

development of therapies with anti-inflammatory activity

mediated by Nrf2 is likely to have a major clinical impact. The

ongoing Nrf2 signaling pathway is leading worldwide efforts to

develop highly targeted therapeutic agents to control inflammatory

symptoms and prevent and treat major diseases such as cancer and

neurodegenerative diseases.
B C DA

FIGURE 4

Mechanisms for constitutive nuclear accumulation of Nrf2 in cancer. (A) Somatic mutations in Nrf2 or Keap1 disrupt the interaction of these two
proteins. (B) Hypermethylation of the Keap1 promoter in lung cancer and prostate cancer leads to decreased expression of Keap1 mRNA, thereby
increasing nuclear accumulation of Nrf2. (C) In familial papillary renal carcinoma, the loss of fumarate hydratase activity leads to the accumulation of
fumarate, which in turn leads to the succination of the Keap1 cysteine residue (2SC). (D) The accumulation of interfering proteins such as p62 and
p21 can interfere with the binding of Nrf2 to Keap1, leading to an increase in nuclear Nrf2.
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