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review and meta-analysis
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1Medical School, Nantong University, Nantong, China, 2Department of Radiology, Affiliated Hospital of
Nantong University, Nantong, China, 3Department of Radiology, The Second Affiliated Hospital of
Nantong University and Nantong First People’s Hospital, Nantong, China
Objectives: The aim of this study was to systematically review the studies on

radiomics models in distinguishing between lung adenocarcinoma (LUAD) and

lung squamous cell carcinoma (LUSC) and evaluate the classification performance

of radiomics models using images from various imaging techniques.

Materials and methods: PubMed, Embase and Web of Science Core Collection

were utilized to search for radiomics studies that differentiate between LUAD and

LUSC. The assessment of the quality of studies included utilized the improved

Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics

Quality Score (RQS). Meta-analysis was conducted to assess the classification

performance of radiomics models using various imaging techniques.

Results: The qualitative analysis included 40 studies, while the quantitative

synthesis included 21 studies. Median RQS for 40 studies was 12 (range -5~19).

Sixteen studies were deemed to have a low risk of bias and low concerns

regarding applicability. The radiomics model based on CT images had a pooled

sensitivity of 0.78 (95%CI: 0.71~0.83), specificity of 0.85 (95%CI:0.73~0.92), and

the area under summary receiver operating characteristic curve (SROC-AUC) of

0.86 (95%CI:0.82~0.89). As for PET images, the pooled sensitivity was 0.80 (95%

CI: 0.61~0.91), specificity was 0.77 (95%CI: 0.60~0.88), and the SROC-AUC was

0.85 (95%CI: 0.82~0.88). PET/CT images had a pooled sensitivity of 0.87 (95%CI:

0.72~0.94), specificity of 0.88 (95%CI: 0.80~0.93), and an SROC-AUC of 0.93

(95%CI: 0.91~0.95). MRI images had a pooled sensitivity of 0.73 (95%CI:

0.61~0.82), specificity of 0.80 (95%CI: 0.65~0.90), and an SROC-AUC of 0.79

(95%CI: 0.75~0.82).

Conclusion: Radiomics models demonstrate potential in distinguishing between

LUAD and LUSC. Nevertheless, it is crucial to conduct a well-designed and

powered prospective radiomics studies to establish their credibility in

clinical application.
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Introduction

According to the GLOBOCAN estimates of cancer incidence

and mortality, lung cancer is the second most common cancer and

has the highest mortality rate among all types of cancer (1). Non-

small cell lung cancer (NSCLC) is the predominant subtype, making

up approximately 85% of all lung cancer cases (2). Approximately

80% of NSCLC are attributed to lung adenocarcinoma (LUAD) and

lung squamous cell carcinoma (LUSC), which are the primary

pathological subtypes (3). The variations in histological and

biological features between LUAD and LUSC lead to notable

distinctions in their treatment plan, prognosis, and rates of

relapse (4–6). For example, targeted therapy is more beneficial for

LUAD, while LUSC is more susceptible to chemotherapy (2).

Precise identification of pathological types of NSCLC can help

clinicians take appropriate treatment in time to improve clinical

outcomes. The gold standards for classifying LUAD and LUSC are

still pathological diagnosis made from biopsy or surgical resection

lesions. However, this method is invasive, may be accompanied by

potential complications, and is not appropriate to perform in any

cases. Additionally, it may not always be feasible to ascertain the

histological subtype of small biopsies or cytology specimens

obtained during diagnostic procedures. There is an urgent need

for a precise and non-intrusive categorization of NSCLC prior

to treatment.

Computed tomography (CT) is often the first choice of

modality for the diagnosis of lung cancer. The patients with

possible lung cancer are then offered positron emission

tomography/computed tomography (PEC/CT) for staging.

Magnetic resonance imaging (MRI) has aroused interest in lung

cancer diagnosis due to its ionizing radiation-free, superior soft-

tissue contrast, and unique morpho-functional imaging capacities

(7). Sometimes, the diagnosis of lung cancer involves a combination

of CT, PET/CT, and MRI (8). However, it poses a significant

difficulty for medical professionals to visually anticipate the

histological classification of NSCLC solely based on images,

regardless of the modality, let alone to predict eligibility for

personalized treatments, e.g. targeted therapies, and individual

outcome. Radiomics, also known as a virtual biopsy, utilizes an

extensive range of imaging characteristics to measure phenotypical

variances from medical images and reveal additional concealed

information in contrast to regular features (9). The radiomics

method has been used for differential diagnosis, prognosis
02
prediction, and treatment outcome prediction (10–12). Radiomics

features can also be correlated with genetic mutations or alterations

to help personalize the management of diseases (13).

The aim of this study was to examine the studies utilizing

radiomics to differentiate between LUAD and LUSC and evaluate

the performance of radiomics models in classifying histologic

subtypes using images from various imaging techniques.
Materials and methods

The study protocol was registered on the Prospective Register of

Systematic Reviews with the registration number CRD42023412851.

This systematic review and meta-analysis were conducted according

to the PRISMA guidelines (14). The PRISMA checklist is shown in

Supplementary Table S1.
Search strategy

PubMed, Embase and Web of Science Core Collection were

queried to identify relevant studies published until July 17, 2023,

utilizing terms such as radiomics, lung adenocarcinoma, lung

squamous cell cancer with Boolean logic operation. The search

details were listed in Supplementary Table S2. The reference lists of

included studies and relevant reviews were manually examined to

identify any potential studies that may have been overlooked. There

was no language limit.
Study selection

We included studies that met the following criteria:

(1) radiomics-based model for LUAD and LUSC classification;

(2) radiomics features extracted from pre-treatment lung imaging

irrespective of the modality of imaging; (3) patients were

pathologically confirmed as LUAD or LUSC.

We excluded (1) articles that were not original full-text, such as

reviews, letters, or commentaries, as well as conference abstract;

(2) studies that did not provide information on LUAD and LUSC

classification; (3) studies that used features other than radiomics to

differentiate between LUAD and LUSC; (4) studies that used a
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sample that had already been used in another study; (5) studies that

lacked sufficient information to assess their quality.

Two reviewers (LS, with 6 years of experience in chest image

analysis, AND JZ, a broad-certified radiologist with 19 years of

experience) individually examined tiles, abstracts, and assessed the

full texts to determine eligibility. The disagreements were resolved

by consensus.
Date extraction

Basic information of each study including the surname of the

first author and the publication year were extracted. The study’s

characteristics such as sample size and study design were provided.

The index test information consisted of the imaging modality used,

segmentation method, software used for segmentation and

radiomics feature extraction, the number of radiomics features

extracted, feature selection method, classification model, and any

non-radiomics features included in the model. Furthermore, the

outcomes encompassed true positive, false positive, false negative

and true negative, along with any other statistical data that might be

used for calculation. If multiple classification objectives were

presented in a study, only the information differentiating LUAD

from LUSC based on radiomics features was extracted. If a study

where multiple radiomics models were mentioned, the model with

the highest area under the curve (AUC) was selected.

Data extraction was implemented independently by two

reviewers (LS, ZW with 4 years of experience in chest image

analysis). The disagreements were resolved by discussion.
Quality assessment

The quality of the included studies was evaluated using the

Improved Quality Assessment of Diagnostic Accuracy Studies

(QUADAS-2) and Radiomics Quality Score (RQS). The purpose

of QUADAS-2 is to evaluate the quality of primary diagnostic

studies, which includes 4 key domains: patient selection, index test,

reference standard, and flow and timing (15). The results of

QUADAS-2 were recorded using Revman 5.4. The signaling

questions of the 4 key domains were modified to tailor to our

study (16). If all signaling questions of a domain were answered

“yes”, the domain was considered at low risk of bias.

RQS, consisting of 16 items, was suggested as a means to

enhance the radiomics workflow and has been extensively

employed in evaluating the methodological quality of radiomics

studies in systematic review (9). After evaluating the studies based

on each item, a total score will be calculated for each study and

displayed on a scale ranging from -8 to 36, which can be converted

into a percentage. Scores below 0 will be considered as 0, while a

score of 36 will be equivalent to 100%.

The quality of the included studies was evaluated by two

separate reviewers (LS and JZ). Quality discrepancies were

resolved through reassessment and discussion.
Frontiers in Oncology 03
Statistical analysis

The agreement between two reviewers on each item of RQS and

each signaling question of QUADAS-2 was by expressed by a

modified Fleiss kappa statistic (17). The inter-rater agreement of

total RQS was measured using the interclass correlation coefficient

(ICC) (18). R (version 4.2.2) was utilized for the computation. A

significance level of less than 0.05 was deemed statistically significant.

Studies were pooled to estimate sensitivity and specificity along

with 95% confidence intervals (CIs) using random-effect model. To

reflect the synthesized diagnostic accuracy, the summary receiver

operating characteristic (SROC) curve was constructed and the AUC

was calculated. The chi-squared test was utilized to analyze the

statistical heterogeneity among studies and the results were presented

as the I2 statistic. Significant heterogeneity was observed when P<0.1

and I2>50%. Subgroup analysis was performed to detect the cause of

heterogeneity. To evaluate the model’s stability, sensitivity analysis was

conducted by plotting measures of goodness-of-fit, bivariate normality,

influence analysis and outlier detection. An investigation of publication

bias was conducted using Deeks’ funnel plot, and a P-value was

computed using Deeks’ asymmetry test. Two-tailed P<0.05 was

considered statistically significant.
Results

Study selection

The initial search and duplicate removal yielded 1860 unique

records. After reading titles and abstracts, 1743 were eliminated.

The remaining 117 full-texts were screened for eligibility. The

number of records and reasons for removing are listed in

Figure 1. Finally, 40 records were included in this systematic

review, out of which 21 contained enough data to generate the

diagnostic confusion matrix and were subsequently included in the

meta-analysis. Neither their reference lists nor relevant reviews

provided additional eligible studies.
Study characteristics

The characteristics of studies included in this review were listed

in Table 1 (19–58). Studies were published between 2011 and 2023.

All but one of the included studies enrolled patients retrospectively.

The range of patients in the studies that were included varied from

30 to 1419. The imaging modalities used included CT, PET/CT,

MRI and PET/MRI. Two studies (51, 58) constructed radiomics

models based on images from two or more imaging modalities.

Twenty-five studies segmented regions of interests manually, 4

automatically, and 11 semi-automatically. Most studies segmented

the regions of tumors only, while two studies (35, 41) also

segmented the peritumoral regions of interests. ITK-SNAP (8/40)

was the most used segmentation software, next the LIFEx (3/40).

Matlab (8/40) was used frequently to extract radiomics features,

followed by pyradiomics (7/40). The extracted features included
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https://doi.org/10.3389/fonc.2024.1381217
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2024.1381217
first-, second-, and higher-order features, along with shape features.

Logistic regression (11/40) and SVM (10/40) were the most two

commonly used classifiers. Sixteen studies included non-radiomics

features in multivariable models such as gender, tumor location,

and smoking status.
Study quality

The summarized QUADAS-2 results are showed in Figure 2. In

the domain of patient selection, 2 studies did not provide the

information of patient, 5 did not randomly or consecutively

enrolled patients, and the exclusion criteria in 7 studies were

inappropriate. With regards to the domain of index test, 4 studies

did not describe the imaging acquisition well, 6 did not describe the

segmentation methods in detail, 6 did not describe the feature

extraction software. Independent validation was missed in 17

studies. All included studies used the reference standard which

could correctly classify between LUAD and LUSC. The interval

between imaging and reference standards was not reported in 5

studies. The high concern of applicability was observed in the

aspects of index test (12/40) and patient selection (7/40). The

answers to 9 signaling question of included studies are showed in

Supplementary Table S3. The absolute agreement of 9 signaling

questions ranged from 86.3% to 100%.

The total RQS of included studies ranged from -5 to 19, with

median of 12 (Table 2). The median RQS proportion was 33.3%, with a

maximum of 52.8%. The RQS guideline did not define low or high

quality clearly. However, 17 studies scored less than 30%. No studies
Frontiers in Oncology 04
included in the analysis performed multiple segmentation or cost-

effective analysis. Feature reduction was conducted in 90% studies prior

to modeling. More than half of the studies (23/40) used independent

validation sets. Only 6 studies reported calibration statistics. Six studies

reported the potential clinical utility. Twenty-nine studies published

neither code nor data. The scores for each item and total scores of each

study are presented in Table 2. The Fleiss kappa statics varied from

84.4% to 100% for each item and ICC of 98.1% (95%CI: 96.4%~99.0%)

for the overall RQS showed a satisfactory level of agreement between

the two reviewers, as shown in Table 2.
Diagnostic efficacy

The pooled analysis was performed according to radiomics

studies based on various imaging techniques (Supplementary

Table S4). Analysis could not be performed on only one study

that utilized PET/MRI images. Table 3 and Figures 3–6 presented

the combined sensitivity, specificity, and SROC-AUC for CT

images, PET images, PET-CT images and MRI images. The

radiomics model utilizing PET-CT images exhibited the greatest

combined effects magnitudes, with a sensitivity of 0.87(95%CI:

0.72~0.94), specificity of 0.88(95%CI: 0.80~0.93) and SROC-AUC

of 0.93(95%CI: 0.91~0.95), correspondingly. The radiomics model,

which utilized CT and PET images, demonstrated favorable

diagnostic performance with an SROC-AUC of 0.86 (95%CI:

0.82~0.89) and 0.85(95%CI: 0.82~0.88). Additionally, it exhibited

moderate performance when applied to MRI images, achieving an

SROC-AUC of 0.79 (95%CI: 0.75~0.82).
FIGURE 1

PRISMA flowchart of study selection.
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adiomics
atures

Radiomics
feature
selection
methods

Classification
model

Non-
radiomics
features
in model

exture,
orphological,
ometric, intensity

– J48 –

tensity,
ape, texture

Correlation analysis,
univariate
analysis, ReliefF

Naive Bayesian –

rst-, second-,
gh-order

Iterative forward
including and
backward
elimination

RUSBoost –

ape, global,
LCM, GLRLM,
LSZM, NGTDM,
avelet filter

Random
permutation test,
interobserver
variation analysis,
correlation analysis

Naive Bayesian –

exture – SVM –

istogram – LR SUVmax(RG)

tensity, shape and
ze, texture, and
avelet filter

LASSO LASSO –

eometric, first-,
cond-, higher-
der, model-based,
avelet filter

Pairwise correlation RF

Air
bronchogram,
ground-glass
component,
cavitation

Pearson
correlation analysis

LR

Smoking,
longest
diameter,
longest
perpendicular
diameter

(Continued)

Sh
ie

t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.13

8
12

17

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

Study ID
Patients
(LUAD)

Imaging
modality

Study
design

Segmentation
method

Segmentation
software

Radiomics
feature
extraction
algorithm
or software

No.
radiomics
features
extracted

R
fe

Basu
2011 (19)

74 (38) CT R A
Lung Tumor
Analysis
software suite

Lung Tumor
Analysis
software suite

317
T
m
g

Wu
2016 (20)

350 (214) CT R M – Matlab 440
In
sh

Yu 2017 (21) 434(324) CT R A
Toboggan Based
Growing Automatic
Segmentation

– 52
F
h

Haga
2018 (22)

40(21) CT R S Pinnacle3 v9.10 Matlab 476

S
G
G
w

Sandino
2018 (23)

40(20) CT R M – – – T

Tsubakimoto
2018 (24)

43(25) CT P S Synapse Vincent JMP Pro – H

Zhu
2018 (25)

129(76) CT R M ITK-SNAP Matlab 485
In
si
w

Bashir
2019 (26)

206(129) CT R M ITK-SNAP Matlab 756

G
se
o
w

Digumarthy
2019 (27)

94(69) CT R S TexRAD CTTA software 11
e

i
i

h

r

https://doi.org/10.3389/fonc.2024.1381217
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Continued

s
Radiomics
feature
selection
methods

Classification
model

Non-
radiomics
features
in model

xture

CCC, hierarchical
clustering, mRMR,
incremental
forward search

SVM –

LCM,
t, AR

Fisher Score SVM Location

exture,
LASSO SVM –

stics
Spearman’s
rank correlation

SVM –

– Neural Net –

LM

t-test, wilcox test,
spearman
correlation analysis

LR –

hape,
LM,
ZLM

Mann-Whitney
U test

LR SUVmax

ture
ICC, PCA,
univariate
logistic regression

LR –

– CNN –

hape,
ZM,

DM

LASSO FNN –

rder,
LM,

DM

Fisher score RF –

hape,
let filter

– KNN –

(Continued)

Sh
ie

t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.13

8
12

17

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Study ID
Patients
(LUAD)

Imaging
modality

Study
design

Segmentation
method

Segmentation
software

Radiomics
feature
extraction
algorithm
or software

No.
radiomics
features
extracted

Radiomi
features

E 2019 (28) 181(88) CT R S – Matlab 1695
Shape, size,
boundary
sharpness, te

Liu 2019 (29) 87(47) CT R M Digital biopsy MaZda 261
Histogram,
RLM, gradie

Yamada
2019 (30)

170(82) CT R M – – 486
Histogram,
wavelet flite

Alvarez-
Jimenez
2020 (31)

101(49) CT R M – – 120
Haralick
texture, stata

Brunese
2020 (32)

130(98) CT R M – – 14 shape

Han
2020 (33)

70(41) CT R M CTKinetics APP CTKinetics APP 42
Histogram,
GLCM, GLR

Tomori
2020 (34)

40(22) CT R M LIFEx LIFEx 42
Histogram,
GLCM, GLR
NGLDM, G

Vuong
2020 (35)

105(63) CT R M MIM VISTA Z-Rad 154 Intensity, te

Chanuzwa
2021 (36)

272(185) CT R A – CNN – –

Li 2021 (37) 121(55) CECT R M ITK-SNAP PyRadiomics 107

First-order,
GLDM, GLS
GLRLM,
GLCM, NG

Liu 2021 (38) 126(72) CT R S ITK-SNAP Pyradiomics 107

Shape, first-
GLDM, GLR
GLSZM,
GLCM, NG

Marentakis
2021 (39)

102(48) CT R M – – 529
First-order,
texture, wav
c

G
n

t
r

s

L

x

s

T

o

T

s
e

https://doi.org/10.3389/fonc.2024.1381217
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Continued

iomics
tures

Radiomics
feature
selection
methods

Classification
model

Non-
radiomics
features
in model

-order,
e, texture

ICC, LASSO LR

Gender,
distant
metastasis,
NICVP

-, higher-order,
M, GLRLM,
DM,
ZM, GLDM

t-test, SVM-RFE Ensemble classifier –

-order, shape,
re,
sform-based

L2,1-
norm minimization

SVM –

e, intensity,
re, higher-order

L 2,1-

norm minimization
Bagging-
AdaBoost-SVM

–

ure

Fisher coefficient,
minimization of
both classification
error probability and
average
correlation,
mutual information

LDA –

ure – SVM Color features

-order, GLCM,
DM,
LM, GLZLM

Gini coefficient LR

Gender,
SUVmax, total
lesion
glycolysis, age

ure, shape LASSO LR Smoking

M, GLRLM,
ZM, NGTDM

CFS subset evaluator Ensemble classifier –

-order, GLCM,
LM, GLSZM,
M, wavelet filter

L 2,1

norm regularization
LDA –

(Continued)

Sh
ie

t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.13

8
12

17

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
7

Study ID
Patients
(LUAD)

Imaging
modality

Study
design

Segmentation
method

Segmentation
software

Radiomics
feature
extraction
algorithm
or software

No.
radiomics
features
extracted

Ra
fea

Chen
2022 (40)

129(87) CT R S ITK-SNAP A.K. Software 107
Firs
shap

Tang 2022
(1) (41)

105(58) CT R M
Custom-
developed package

PyRadiomics 1023

Firs
GLC
NGT
GLS

Chen
2023 (42)

324(157) CT R M – PyRadiomics 1158
Firs
text
tran

Song
2023 (43)

868(600) CT R M ITK-SNAP PyRadiomics 1409
Shap
text

Ha 2014 (44) 30(17) PET/CT R M MaZda MaZda >200 Tex

Ma 2018 (45) 299(125) PET/CT R M – Matlab – Tex

Hyun
2019 (46)

396(210) PET/CT R M – LIFEx 40
Firs
NGL
GLR

Sha 2019 (47) 100(61) PET/CT R M MIM Maestro
Chang-Gung
Image
Texture Analysis

107 Tex

Ayyildiz
2020 (48)

93(39) PET/CT R A Random walk Matlab 39
GLC
GLS

Han
2021 (49)

1419(867) PET/CT R S MATLAB PyRadiomics 688
Firs
GLR
GLD
d

t

t

t
u

u

t

t

t

t

t

https://doi.org/10.3389/fonc.2024.1381217
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Continued

diomics
atures

Radiomics
feature
selection
methods

Classification
model

Non-
radiomics
features
in model

xture LASSO LR Location

CM, GLRM,
NIDM, GLSZM,
C,
CCM, NGLD

Univariate
analysis, LASSO

LASSO
Gender, size,
SCCA,
CYFRA21.1

st-order, shape,
RLM, GLSZM,
DM, GLCM,
TDM,
LIAGe features

Spearman
correlation analysis,
chi-square test,
SVM-RFE

SVM-RBF Gender

st-, second-,
her order

GBDT
GBDT(PET)
RF(CT)

–

st-, second-order,
nventional indices

ICC,
Boruta algorithm

SVM
Gender,
smoking,
CEA, SCCA

stogram, CM,
M,
TDM, GLSZM

t-test, SVM-RFE LR
Age, smoking,
location,
LD, LPD

ape, first-, second-
er, wavelet filters

LASSO LR Smoking

st-order, GLCM,
RLM, AR, GMF,
G, LBP,
bor, wavelet

t-test, Mann-
Whitney U test

SVM –

st-order, GLRLM,
SZM, NGTDM,
CM, GLDM

F test and LASSO Gaussian process
Position,
TLG, volume

length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone difference
texture feature coding; TFCCM, texture feature coding co-occurrence matrix; AR, autoregressive
selection operator; CCC, concordance correlation coefficient; mRMR, max-relevance and min-
discriminant analysis; SVM, support vector machine; LR, logistic regression; RF, random forest;
VP, venous phase; FNN, feedforward neural network; CEA, carcinoembryonic antigen; SCCA,
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Study ID
Patients
(LUAD)

Imaging
modality

Study
design

Segmentation
method

Segmentation
software

Radiomics
feature
extraction
algorithm
or software

No.
radiomics
features
extracted

R
fe

Ji 2021 (50) 416 PET/CT R S
Chang-Gung Image
Texture Analysis

Chang-Gung
Image
Texture Analysis

54 Te

Ren
2021 (51)

315(193) PET/CT R M
Inveon
Research Workplace

Chang-Gung
Image
Texture Analysis

212

GL
GL
TF
TF

Shen
2021 (52)

250(150) PET/CT R S ITK-SNAP PyRadiomics 385

Fi
GL
GL
NG
Co

Zhou
2021 (53)

452(329) PET/CT R S LIFEx LIFEx
48(PET)
41(CT)

Fi
hi

Zhao
2022 (54)

120(62) PET/CT R S LIFEx LIFEx 91
Fi
co

Tang
2020 (55)

148(80) MRI R M
Custom-
developed package.

Matlab 1404
H
RL
NG

Yang
2023 (56)

71(46) MRI R M 3D Slicer SlicerRadiomics –
Sh
or

Bebas
2021 (57)

44(24) PET/MRI R M – QMazda 303

Fi
GL
H
Ga

Tang 2022
(2) (58)

80 (47)
PET/
MRI, CT

R M ITK-SNAP
uAI
Research Portal

2264
Fi
GL
GL

LUAD, lung adenocarcinoma; R, retrospective; P, prospective; S, semi-automatic; M, manual; A, automatic; GLCM, gray level co-occurrence matrix; GLRLM, gray level run
matrix; NGLDM, neighborhood gray-level different matrix; GLZLM, gray-level zone length matrix; RLM, run-length matrix; NGLD, neighboring gray level dependence; TFC,
model; CM, co-occurrence matrices; GMF, gradient map features; LBP, local binary patterns; HOG, histogram of oriented gradients; LASSO, least absolute shrinkage and
redundancy; RFE, recursive feature elimination; ICC, intraclass correlation coefficient; PCA, principal component analysis; GBDT, gradient boosting decision tree; LDA, linea
CNN, convolutional neural network; QDA, quadratic discriminant analysis; RBF, radial basis function; TLG, total lesion glycolysis; NIC, normalized iodine concentration;
squamous cell carcinoma antigen.
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No heterogeneity was observed among the 4 studies that

utilized MRI radiomics features, as indicated by I2 value of 0%

for the combined sensitivity and specificity (Figure 6). With

regard to the pooled analysis based on other imaging modalities,

there was substantial heterogeneity among studies with I2>50%

(Figures 3-5).
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Out of the 11 studies that developed radiomics models using CT

images, 5 studies incorporated non-radiomics features in their models,

resulting in higher sensitivity (0.82 compared to 0.76), specificity (0.95

compared to 0.77) and SROC-AUC (0.89 compared to 0.83) (Table 3,

Supplementary Figure S1) than the 6 studies did not include non-

radiomics features (Table 3, Supplementary Figure S2).
FIGURE 2

(A) Methodological quality assessment of individual studies and (B) summary of the methodological quality of included studies.
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TABLE 2 RQS of included studies.

Validation
(-5/2/3/
4/5)

gold
standard
(0/2)

Clinical
utility
(0/2)

Cost
(0/1)

Open
science
(0/1/2/
3/4)

RQS
(total)
(-8~36)

RQS (%)
(0~100%)

-5 2 0 0 0 -5 0

3 2 0 0 3 16 44.4

-5 2 0 0 0 4 11.1

2 2 0 0 0 12 33.3

-5 2 0 0 1 -1 0

-5 2 0 0 0 14 38.9

2 2 0 0 0 12 33.3

3 2 0 0 0 14 38.9

-5 2 0 0 0 5 13.9

-5 2 0 0 0 4 11.1

-5 2 0 0 0 6 16.7

-5 2 0 0 1 5 13.9

-5 2 0 0 1 5 13.9

-5 2 0 0 1 -1 0

2 2 0 0 0 13 36.1

-5 2 0 0 0 8 22.2

3 2 0 0 0 12 33.3

3 2 0 0 0 5 13.9

-5 2 0 0 0 4 11.1

2 2 0 0 0 12 33.3
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StudyID
Image

protocol
(0/1/2)

Multiple seg-
mentations

(0/1)

Inter-
scanner

differences
(0/1)

Imaging
multiple
times
(0/1)

Feature
reduction
(-3/3)

Non-
radiomic
feature
(0/1)

Biological
correlates

(0/1)

Cut-
offs
(0/1)

Discrimination
(0/1/2)

Calibration
(0/1/2)

Prospective
(0/7)

Basu
2011 (19)

0 1 0 0 -3 0 0 0 0 0 0

Wu
2016 (20)

1 1 0 0 3 0 0 1 2 0 0

Yu 2017 (21) 1 1 0 0 3 0 0 0 2 0 0

Haga
2018 (22)

1 1 1 0 3 0 0 0 2 0 0

Sandino
2018 (23)

1 1 0 0 -3 0 0 0 2 0 0

Tsubakimoto
2018 (24)

1 0 1 0 3 1 1 1 2 0 7

Zhu
2018 (25)

1 1 0 0 3 0 1 0 2 0 0

Bashir
2019 (26)

1 1 0 0 3 1 1 0 2 0 0

Digumarthy
2019 (27)

1 0 0 0 3 1 1 0 2 0 0

E 2019 (28) 1 0 0 0 3 0 1 0 2 0 0

Liu 2019 (29) 1 0 1 0 3 1 1 0 2 0 0

Yamada
2019 (30)

1 1 0 0 3 0 0 0 2 0 0

Alvarez-
Jimenez
2020 (31)

1 1 0 0 3 0 0 0 2 0 0

Brunese
2020 (32)

1 1 0 0 -3 0 0 0 2 0 0

Han
2020 (33)

1 0 1 0 3 0 1 1 2 0 0

Tomori
2020 (34)

1 1 1 0 3 1 1 1 2 0 0

Vuong
2020 (35)

1 0 0 0 3 0 1 0 2 0 0

Chanuzwa
2021 (36)

0 1 0 0 -3 0 0 0 2 0 0

Li 2021 (37) 1 1 0 0 3 0 0 0 2 0 0

Liu 2021 (38) 1 1 1 0 3 0 0 0 2 0 0
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TABLE 2 Continued

Validation
(-5/2/3/
4/5)

gold
standard
(0/2)

Clinical
utility
(0/2)

Cost
(0/1)

Open
science
(0/1/2/
3/4)

RQS
(total)
(-8~36)

RQS (%)
(0~100%)

2 2 0 0 1 12 33.3

2 2 2 0 0 17 47.2

2 2 0 0 1 13 36.1

2 2 0 0 1 12 33.3

4 2 0 0 1 15 41.7

-5 2 0 0 1 4 11.1

-5 2 0 0 0 6 16.7

2 2 0 0 0 13 36.1

2 2 0 0 1 14 38.9

-5 2 0 0 0 3 8.3

2 2 0 0 0 11 30.6

2 2 2 0 0 17 47.2

2 2 2 0 0 17 47.2

-5 2 0 0 0 6 16.7

2 2 0 0 0 11 30.6

2 2 0 0 0 13 36.1

2 2 2 0 0 19 52.8

2 2 2 0 0 16 44.4

-5 2 0 0 0 0 0

2 2 2 0 0 17 47.2
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StudyID
Image

protocol
(0/1/2)

Multiple seg-
mentations

(0/1)

Inter-
scanner

differences
(0/1)

Imaging
multiple
times
(0/1)

Feature
reduction
(-3/3)

Non-
radiomic
feature
(0/1)

Biological
correlates

(0/1)

Cut-
offs
(0/1)

Discrimination
(0/1/2)

Calibration
(0/1/2)

Prospective
(0/7)

Marentakis
2021 (39)

1 1 0 0 3 0 0 0 2 0 0

Chen
2022 (40)

1 0 1 0 3 1 1 0 2 2 0

Tang 2022
(1) (41)

1 1 1 0 3 0 0 0 2 0 0

Chen
2023 (42)

1 1 0 0 3 0 0 0 2 0 0

Song
2023 (43)

1 1 0 0 3 0 1 0 2 0 0

Ha 2014 (44) 1 0 1 0 3 0 1 0 0 0 0

Ma 2018 (45) 1 0 0 0 3 1 1 1 2 0 0

Hyun
2019 (46)

1 0 1 0 3 1 1 0 2 0 0

Sha 2019 (47) 1 1 1 0 3 1 0 0 2 0 0

Ayyildiz
2020 (48)

0 0 1 0 3 0 0 0 2 0 0

Han
2021 (49)

1 0 1 0 3 0 0 0 2 0 0

Ji 2021 (50) 1 0 1 0 3 1 1 0 2 2 0

Ren
2021 (51)

1 1 1 0 3 1 1 0 2 1 0

Shen
2021 (52)

1 0 1 0 3 1 1 0 2 0 0

Zhou
2021 (53)

1 0 1 0 3 0 0 0 2 0 0

Zhao
2022 (54)

1 1 1 0 3 1 0 0 2 0 0

Tang
2020 (55)

1 1 1 0 3 1 1 1 2 2 0

Yang
2023 (56)

1 1 0 0 3 1 1 0 2 1 0

Bebas
2021 (57)

0 0 0 0 3 0 0 0 0 0 0

Tang 2022
(2) (58)

1 1 1 0 3 1 1 0 2 1 0
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Sensitivity analysis

The sensitivity analysis showed two studies had impact on the

pooled results of radiomics studies utilizing CT images (Figure 7).

After removing the two studies (20, 36), the combined sensitivity,

specificity, and SROC-AUC were 0.81(95%CI: 0.75~0.85), 0.87(95%

CI: 0.78~0.93), and 0.87(95%CI: 0.84~0.90), correspondingly

(Table 3, Supplementary Figure S3).

The sensitivity analysis detected one outlier study (45) with the

highest diagnostic performance (sensitivity of 0.99 and specificity of

0.96) among the included studies based on PET-CT images

(Figure 8). By omitting the study, the combined sensitivity,

specificity, and SROC-AUC were 0.82(95%CI: 0.78~0.85), 0.86

(95%CI: 0.79~0.91) and 0.86(95%CI: 0.83~0.89), respectively

(Table 3, Supplementary Figure S4). The study also influenced the

heterogeneity. When it was removed, the heterogeneity indicator I2

of sensitivity, and specificity, decreased from 84.7% to 21.2%, 77.6%

to 46.1%, respectively.

The sensitivity analysis of pooled analysis based on PET images

(Supplementary Figure S5) and MRI images (Supplementary Figure

S6) did not find any studies impacting the pooled results.
Publication bias

Figure 9 displays Deeks’ funnel plot and the result of Deeks’

asymmetry test, which showcases the publication bias of the studies

that developed radiomics classification models based on CT images.

The figure did not exhibit evident asymmetry with P value of 0.83.

The assessment of publication bias was not conducted for other

subgroups due to the limited number of studies, which could result

in an inconclusive funnel plot (59).
Discussion

Radiomics has the potential to offer noninvasive diagnostic data

on lesions using medical images enhancing the early identification

of lung cancer histological subtype in certain patients who are

ineligible for biopsy or surgical procedures. The meta-analysis

findings indicated that the radiomics approach proved to be

effective in the classification of LUAD and LUSC.

Radiomics has been used for more than a decade, but the

clinical application suffers from numerous limitations. RQS was

proposed to establish a standardized guideline for radiomics in

2017. The overall quality of studies included in this systematic

review was undesirable. All but only one study was retrospectively

designed which limited the generalizability of the classification

model. The lack of code and data hindered the ability to replicate

findings in future studies. Discrimination and calibration are the

most commonly used metrics when evaluating the predictive

models. Nevertheless, the calibration metric was disregarded in

85% the studies that were included. The percentage of RQS of 17

studies was lower than 30%, mainly due to the lack of model

validation, whether internally or externally. Cost-effectiveness is a

vital factor in incorporating a technique into everyday clinical
T
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TABLE 3 The meta-analysis results.

Imaging modality No. of study Sensitivity (95%CI) Specificity (95%CI) SROC-AUC (95%CI)

CT 11 0.78(0.71~0.83) 0.85(0.73~0.92) 0.86(0.82~0.89)

5 (With non-radiomics features) 0.82(0.73~0.88) 0.95(0.67~0.99) 0.89(0.86~0.91)

6 (Without non-radiomics features) 0.76(0.66~0.84) 0.77(0.66~0.85) 0.83(0.80~0.86)

9(Two outlier studies excluded) 0.81(0.75~0.85) 0.87(0.78~0.93) 0.87(0.84~0.90)

PET 5 0.80(0.61~0.91) 0.77(0.60~0.88) 0.85(0.82~0.88)

PET/CT 6 0.87(0.72~0.94) 0.88(0.80~0.93) 0.93(0.91~0.95)

5(One outlier study excluded) 0.82(0.78~0.85) 0.86(0.79~0.91) 0.86(0.83~0.89)

MRI 4 0.73(0.61~0.82) 0.80(0.65~0.90) 0.79(0.75~0.82)

PET/MRI 1 0.80 0.67
F
rontiers in Oncology
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FIGURE 3

Forest plot of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve for radiomics model based on CT images in distinguishing between lung
adenocarcinoma and lung squamous cell carcinoma.
FIGURE 4

Forest plot of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve for radiomics model based on PET images in distinguishing between lung
adenocarcinoma and lung squamous cell carcinoma.
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practice (60), but the cost-effectiveness analyses were missed in all

included studies.

The results of quality assessment according to improved

QUADAS-2 showed that the high risk of bias was found in

patient selection and index test, while the unclear risk of bias was

found in flow and timing. For instance, some studies (29, 38, 40)

excluded the small lesions for texture analysis, leading to the high

risk of bias in the domain of patient selection. As a result of the

growing utilization of lung cancer screenings, there is a higher

probability of early detection for small lesions. Sixteen studies were

deemed to have a low risk of bias in the four domain and low

concerns regarding applicability. These studies also exhibited the

percentage of RQS exceeding 30%. The agreement analysis findings

for RQS and QUADAS-2 demonstrated the dependability of the

quality assessment outcomes of the included studies.

CT is the most commonly used examination of the chest. In the

present study, 65% (26/40) radiomics studies were based on CT

images and 27.5% (11/40) with sufficient data were included in the
Frontiers in Oncology 14
meta-analysis. The results of the sensitivity analysis indicated the

robustness of the diagnostic performance of radiomics model based

on CT images, with sensitivity ranging from 0.81 to 0.78, specificity

from 0.87 to 0.85, and SROC-AUC from 0.87 to 0.86, after the

removal of two outlier studies. In subgroup analysis, the radiomics

models incorporating non-radiomics features exhibited superior

performance compared to those that did not include them. Non-

radiomics features such as clinical, genetic and metabolic data can

assist the histological classification of the lesions. However, the

heterogeneity remained significant. Non-radiomics features could

not explain the heterogeneity.

The pooled diagnostic effect sizes of radiomics models were the

best based on PET-CT images. That PET-CT modality provided the

anatomical and metabolic information of the tumors might be the

reason. When the outlier study was omitted, the SROC-AUC of

models based on PET-CT images was decreased from 0.93 to 0.86,

which was equivalent to that of CT. Meanwhile, the heterogeneity

among studies decreased significantly, which indicated the omitted
FIGURE 5

Forest plot of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve for radiomics model based on PET-CT images in distinguishing between
lung adenocarcinoma and lung squamous cell carcinoma.
FIGURE 6

Forest plot of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve for radiomics model based on MRI images in distinguishing between lung
adenocarcinoma and lung squamous cell carcinoma.
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FIGURE 7

Sensitivity analysis of the included studies developing radiomics models in distinguishing between lung adenocarcinoma and lung squamous cell
carcinoma utilizing CT images: (A) goodness of fit, (B) bivariate normality, (C) influence analysis, (D) outlier detection.
FIGURE 8

Sensitivity analysis of the included studies developing radiomics models in distinguishing between lung adenocarcinoma and lung squamous cell
carcinoma utilizing PET-CT images: (A) goodness of fit, (B) bivariate normality, (C) influence analysis, (D) outlier detection.
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study might be one of the sources of heterogeneity. The model in

the omitted study with the highest sensitivity and specificity

included radiomics features and color features. While the

classification model of other studies in this meta-analysis did not

incorporate color features, previous studies indicated that color

features, in addition to texture, could be a valuable image

characteristic (61, 62).

The models relying on MRI images exhibited lower

classification performance compared to other models, achieving

an SROC-AUC of 0.79. MRI is not a routine examination for lung

cancer. Compared with CT, MRI has poorer spatial resolution,

requires longer examination time and is more expensive.

Nevertheless, MRI outperforms CT in cases where the lesion is

located at the center or at the base/apex of the lung (56).

Despite being the initial endeavor to examine the classification

performance of radiomics in distinguishing LUAD and LUSC

through a systematic review of previous studies, there are still some

limitations. Firstly, insufficient studies based on PET images, PET-CT

images, and MRI images were included in the meta-analysis, which

hindered the exploration of heterogeneity through meta-regression

and subgroup analysis. In the radiomics studies based on CT images,

the subgroup analysis was conducted. However, the grouped sample

size might be insufficient to perform additional subgroup analyses,

such as modeling method and segmentation method. Second, the

heterogeneity of studies incorporated in the quantitative synthesis

could arise from several aspects, including the types of scanner

machines, segmentation techniques, radiomics feature extraction

methods, and modeling methods. The presence of heterogeneity

might decrease the dependability of our findings. As the number of

studies increase, scientific data aggregation will be possible in the

future. Third, other tools such as Checklist for Artificial intelligence

inMedical Imaging (CLAIM) (63) and Prediction model Risk Of Bias

ASsessment Tool (PROBAST) (64) can also be utilized to investigate

the methodologic quality of the studies included. RQS and
Frontiers in Oncology 16
QUADAS-2 have limitations. Still, they are more suitable for the

methodologic assessment of radiomics studies. In turn, the quality of

radiomics studies can be improved if these methodological

assessment tools are taken into account at the stage of study design.

To sum up, radiomics models hold potential for distinguishing

between LUAD and LUSC. Nevertheless, it is crucial to conduct

well-designed and powered prospective radiomics studies in order

to establish their credibility in clinical application.
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SUPPLEMENTARY FIGURE 1

Forest plots of the pooled (A) sensitivity, (B) specificity, and (c) SROC curve for
CT-based radiomics with non-radiomics features in model in distinguishing

between lung adenocarcinoma and lung squamous cell carcinoma.

SUPPLEMENTARY FIGURE 2

Forest plots of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve
for CT-based radiomics without non-radiomics features in model in

distinguishing between lung adenocarcinoma and lung squamous
cell carcinoma.

SUPPLEMENTARY FIGURE 3

Forest plots of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve

for CT-based radiomics models in distinguishing between lung
adenocarcinoma and lung squamous cell carcinoma excluding two

outlier studies.

SUPPLEMENTARY FIGURE 4

Forest plots of the pooled (A) sensitivity, (B) specificity, and (C) SROC curve
for PET-CT-based radiomics models in distinguishing between lung

adenocarcinoma and lung squamous cell carcinoma excluding one
outlier study.

SUPPLEMENTARY FIGURE 5

Sensitivity analysis of the included studies developing radiomics models in

distinguishing between lung adenocarcinoma and lung squamous cell
carcinoma utilizing PET images: (A) goodness of fit, (B) bivariate normality,

(C) influence analysis, and (D) outlier detection.

SUPPLEMENTARY FIGURE 6

Sensitivity analysis of the included studies developing radiomics models in

distinguishing between lung adenocarcinoma and lung squamous cell

carcinoma utilizing MRI images: (A) goodness of fit, (B) bivariate normality,
(C) influence analysis, and (D) outlier detection.
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