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Glioma is the most common type of primary malignant tumor of the central

nervous system (CNS), and is characterized by high malignancy, high recurrence

rate and poor survival. Conventional imaging techniques only provide

information regarding the anatomical location, morphological characteristics,

and enhancement patterns. In contrast, advanced imaging techniques such as

dynamic contrast-enhanced (DCE) MRI or DCE CT can reflect tissue

microcirculation, including tumor vascular hyperplasia and vessel permeability.

Although several studies have used DCE imaging to evaluate gliomas, the results

of data analysis using conventional tracer kinetic models (TKMs) such as Tofts or

extended-Tofts model (ETM) have been ambiguous. More advanced models

such as Brix’s conventional two-compartment model (Brix), tissue homogeneity

model (TH) and distributed parameter (DP) model have been developed, but their

application in clinical trials has been limited. This review attempts to appraise

issues on glioma studies using conventional TKMs, such as Tofts or ETM model,

highlight advancement of DCE imaging techniques and provides insights on the

clinical value of glioma management using more advanced TKMs.
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1 Introduction

Glioma originates from the neurostromal cells and is the most

common primary tumor of the central nervous system (CNS) (1). It

is characterized by wide-spread invasion and angiogenesis, with

short median survival duration and high recurrence rate (2). First-

line therapy for gliomas consists of radiotherapy, surgery,

concomitant chemoradiotherapy and adjuvant chemotherapy with

temozolomide (3), while immunotherapies are currently in the pre-

clinical and clinical stages of testing (4). The treatment response of

glioma is primarily evaluated on the basis of contrast enhanced T1-

weighted magnetic resonance imaging (MRI). However, the

correlation between changes in enhancement and the treatment

response is often confounded by the presence of radiation necrosis,

pseudoprogression or pseudoresponse (5–7) (Figures 1 and 2 for

example), thereby warranting more advanced imaging techniques

for accurate assessment.

Dynamic contrast enhancement (DCE) imaging is a non-

invasive approach that can provide in vivo physiological and

metabolic information of tissues, and assess microvascular

features such as the degree of vascularity and disruption of

vascular wall permeability (8–11). DCE imaging data can be

analyzed in terms of both semi-quantitative and quantitative

parameters. The former includes time-intensity curve (TIC)

parameters, such as initial area under the curve (IAUC) and time

to peak, which are easy to derive (12) but challenging to reproduce

across studies due to differences in data acquisition and subject

conditions. DCE imaging data can be quantitatively analyzed using

a tracer kinetic model (TKM), a mathematical description of tracer

molecular transport within the tissue microenvironment that

derives quantitative values of various model parameters

pertaining to the tissue status. Several clinical studies have tested

DCE imaging for various applications, including glioma assessment

(13–17). Most of these studies used Tofts or extended-Tofts model

(ETM), which represents early development in DCE imaging. More

advanced TKMs have been developed (18, 19), but have received

less attention in clinical studies.

In this review, the evaluation of glioma using conventional

TKMs, advances in DCE imaging techniques, and the clinical
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potential of advanced TKMs in glioma management have

been discussed.
2 Materials and methods

2.1 Literature search and selection strategy

We searched for candidate articles describing the different

TKMs for gliomas in PubMed and Science Direct databases

published between January 1950 and May 2024. The search

strategy of key terms used was “((tracer kinetic model OR

pharmacokinetic model) OR (Tofts OR generalized kinetic

model) OR extended Tofts model OR (two-compartment model

OR two-compartment exchange model) OR tissue homogeneity

model OR distributed parameter model)) AND (glioma OR

glioblastoma) AND (dynamic contrast-enhanced OR DCE)”. The

studies were included based on the following inclusion criteria: (1)

clinical studies that employed DCE data in patients with gliomas, or

experimental animal studies that refer to pathophysiological

mechanism of microenvironment; (2) original research published

in English with the full text available; and (3) the theoretical basis of

tracer kinetic model and its application in glioma diagnosis and

evaluation after treatment. The following types of studies were

excluded: (1) unrelated or irrelevant studies, such as those that did

not employ DCE techniques to investigated gliomas; and (2) studies

focusing on other topics that are irrelevant to our research purpose.

After a detailed evaluation and screening,105 studies that met our

criteria were included and reviewed. The article selection process is

shown as a flowchart in Figure 3.
2.2 Fundamental concepts and primary
tracer kinetic models

Tracer kinetic models describe the transport of tracer molecular

within the tissue microenvironment. The physical space of the

movement of tracer molecules in the tissue is termed as

compartment. Typically, there are two well-defined compartments
A B C

FIGURE 1

A 59-year-old female with glioma of the left parieto-occipital lobe, treated with surgery and radiation therapy. (A) MR image before surgery; (B) 10
months after surgery and completion of radiation therapy showed enhancing lesion; (C) follow-up MR showed resolution of the lesion.
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in the field, namely, the compartment of intravascular plasma space

(IVPS), and the compartment of extravascular extracellular space

(EES). Furthermore, based on the distribution of the tracer, a

compartment in TKMs can be categorized as homogeneous or non-

homogeneous. For a homogeneous compartment, diffusive resistances

are assumed to be zero and the tracer is assumed to move fast and

distribute instantaneously and evenly upon arrival in the

compartment, which is also termed as a well-mixed compartment.

Since the distribution of the tracer is uniform in a well-mixed or

homogeneous compartment, the tracer concentration is constant in

space and only changes with time (18). TKMs with assumptions on

homogeneous or well-mixed compartment are often named as

lumped parameter models. In contrast, the tracer concentration

varies in a non-homogeneous compartment, and is therefore a

function of both space and time. In general, a homogeneous or

well-mixed compartment would simplify the modeling process and

computation. Thus, the early TKMs were developed based on this

assumption. However, the uniform distribution of a tracer in the

compartment would depend on rapid movement of tracer molecules

or sufficiently long measurement time, neither of which is viable in

clinical practice. Therefore, subsequent TKMs introduced a
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concentration gradient in space to account for the variation in

tracer distribution, leading to the assumption of non-homogeneous

compartment. Nevertheless, tracer concentration in these models is

homogeneous in the radial direction and variable in the axial direction.

The meaning of these terms has been summarized in Table 1.

Primary tracer kinetic models, including Tofts, ETM, Brix’s

conventional two-compartment model (Brix), tissue homogeneity

model (TH), and distributed parameter model (DP), have been

listed in Table 2. It is worth pointing out that the notation of a TKM

could be different in different studies, and what is introduced here

follows largely the notations in earlier review papers on technical

aspects of tracer kinetic modeling (18, 19). Tofts model was also

named as generalized kinetic (GK) model in (18). The model

developed by Brix and coauthors (24, 25) has been denoted as

two-compartment exchange model (2CXM) in some literature (19,

35, 36). However, this notation reflects also the fundamental

features of other models such as TH and DP, likely leading to

confusion in understanding the connection and the difference

among these TKMs. To emphasize that the exchange between

two-compartments is the common feature of these models, the

notation of the model proposed by Brix and coauthors is denoted as
A B C D E F

FIGURE 2

A 67-year-old male with WHO grade 2 glioma of the left basal ganglia and posterior horn of lateral ventricle, treated with surgery, radiotherapy plus
concomitant and adjuvant temozolomide. (A) MR image before surgery; (B) MR image after surgery; (C) 1 month after surgery; (D) 10 months after
surgery; (E) 13 months after surgery; (F) 15 months after surgery. Follow-up examinations demonstrated the presence of enhancing lesion in 10
months after surgery, which expanded in 13 months and reduced in 15 months.
FIGURE 3

Flowchart of the literature screening process.
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conventional two-compartment model (CC or CC2) in (18, 37), or

as Brix model in (38). Since ETM is also of two-compartment by

nature, confusion could be arisen between CC and ETM. For clarity

and simplicity, this presentation adopts the notation of Brix model.

For completeness, the equations of the models are given

as follows:

Tofts model

Ctiss(t) = AIF⊗Ktransexp −
Ktrans

ve
t

� �

where ⊗ denotes the convolution operator.

Extended-Tofts model (ETM)

Ctiss(t) = AIF⊗ Ktransexp −
Ktrans

ve
t

� �
+ vp

� �

Brix’s conventional two-compartment (Brix)model, Equations 1a–1c

Ctiss(t) =  AIF ⊗  Fp½A   exp(a t) + (1 − A)exp(b t)� (1a)
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Distributed parameter (DP) model, Equation 2
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where u(t) denotes the Heaviside unit-step function and I1 is the

modified Bessel function.

Tissue homogeneity (TH) model, Equation 3

Ctiss(t) = AIF ⊗

   Fp 1 − exp − PS
Fp

� �h i
exp −

Fp
ve

1 − exp − PS
Fp

� �h i
t −

Fp
vp

� �n on o (3)

Tofts assumes that IVPS is significantly smaller than EES, and

thus only involves EES. All other models are two-compartment

models. The movement of tracer molecules in tissue generally

involves intravascular transport and exchange between

intravascular and interstitial space. The former reflects blood flow

(CBF) and the latter indicates permeability of endothelial wall (PS).

Tofts and ETM utilize one parameter (Ktrans) to describe both

movements, whereas Brix, TH and DP differentiate between the two

and model them separately (24). Tofts, ETM and Brix models

assume the compartment to be well-mixed. In the TH model, EES is

well-mixed but IVPS is non-homogenous. On the other hand, both

compartments are non-homogenous in the DP model. The
TABLE 1 The concept and clinical significance of several terms.

Concept Meaning

compartment physical distribution space of tracer in the tissue

well-mixed compartment tracer distributes evenly throughout compartment

not well-
mixed compartment

tracer concentration changes with time and space
in compartment

IVPS intravascular compartment (intravascular
plasma space)

EES interstitial compartment (extravascular
extracellular space)

AIF arterial input function

VIF vascular input function

relative or
normalized parameter

parameter is normalized with respect to
contralateral healthy tissue
TABLE 2 Summary of primary tracer kinetic models.

Model References Compartment Transport
rate
parameter

Well-
mixed
assumption

Independent
parameters

Derived
parameters

Tofts [Kety et al. (20),Tofts et al. (21)] EES Ktrans well-mixed Ktrans, Ve Kep

ETM [Tofts et al. (22)] EES, IVPS Ktrans well-mixed Ktrans, Ve, Vp Kep

Brix [Hayton et al. (23), Brix et al. (24),
Brix et al. (25), Larsson et al. (26)]

EES, IVPS CBF, PS well-mixed CBF, PS, Ve, Vp MTT, E

TH [Johnson (27)], Lawrence et al.
(28), Lawrence et al. (29), Lee
et al. (30)]

EES, IVPS CBF, PS well-mixed EES, not
well-mixed IVPS

CBF, PS, Ve, Vp MTT, E

DP [Bassingthwaighte et al. (31),
Larson et al. (32), Koh et al. (33),
Koh et al. (34)]

EES, IVPS CBF, PS not well-mixed in
both compartments

CBF, PS, Ve, Vp MTT, E
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parameters derived from these models are listed in Table 2. The

technical details pertaining to these models have been

comprehensively discussed in previous reviews (18, 19). The

kinetic parameters were graphically presented in Figure 4.
2.3 Comparison between DCE MRI and
DCE CT

As a well-established imaging technique, DCE can be

performed by data acquisition on either MRI or CT scanners,

followed by image analysis using TKMs (39). Each imaging

modality has its merits and demerits. CT is fast in scanning and

allows acquisition of images with high resolution in both spatial and

temporal space, but at cost of X-ray radiation. MRI is advantageous

in better contrast in soft tissue and radiation-free. To reduce

radiation in DCE CT, non-uniform acquisition strategy can be

adopted to decrease the number of X-ray exposure in the design of

DCE CT protocol, with frequent scans during artery phase and less

frequent scans during delayed phase. A key difference in terms of

DCE language between two modalities lies in the calculation of

contrast concentration. Contrast concentration in DCE CT follows

simply a linear relationship with CT image signal, whereas the

relationship between contrast concentration in DCE MRI with MRI

signal is much more complicated, which relates to changes in T1

values of tissue before and after contrast injection. A practical

approach to estimating T1 value of tissue is the method of variable

flip angles and the computation involves several MR scanning

factors such as time of repetition (TR), time of echo (TE), flip

angle, homogeneity of B1 field. After deriving contrast

concentration from either CT or MR image signals, the analytical

process of concentration-time curve will be exactly the same

between DCE CT and DCE MRI. For a good appraisal on DCE

CT and DCE MRI, interested readers can refer to the review paper

(39), where it was shown that data acquisition and analysis were

well comparable despite inherent differences in signal production

and mechanism of tissue contrast enhancement.
Frontiers in Oncology 05
3 Application of conventional tracer
kinetic models in glioma evaluation

3.1 Application in glioma grading

Various studies have analyzed the relationship between DCE

imaging parameters and glioma grading (40–49). Santarosa et al.

(50) used ETM of DCE MRI in a cohort of 26 glioma patients and

demonstrated that Vp and Ktrans differed significantly between low-

grade and high-grade gliomas. Using the same model, Zhang et al.

(51) found that Ktrans and Ve values calculated in 28 glioma patients

based on DCE MRI increased with advanced tumor grade, and

significant differences were observed between the low (I and II) and

high (III and IV) grade gliomas, as well as between grades II and III.

Awasthi et al. (52) applied Tofts model of DCE MRI to 76 glioma

patients and showed that Kep and Ve could differentiate low-grade

from high-grade tumors, although there was no significant

correlation between Ktrans and the expression of MMP-9, which

plays a key role in the disruption of the blood-brain barrier (BBB)

by degrading extracellular matrix in order to facilitate tumor cell

infiltration and metastasis. In contrast, other studies (53, 54) based

on DCE MRI have shown that Ktrans is the most effective parameter

for differentiating between glioma grades. These contradictory

findings can be attributed to the differences in the extent of BBB

disruption among different tumor grades, as well as the different

mechanisms underlying BBB disruption in infectious and

neoplastic pathologies.
3.2 Correlation with
immunohistochemical markers

Since the 2021 World Health Organization (WHO) guidelines

on the histological classification of central nervous system tumors

were published (55), molecular markers have been instrumental in

the diagnosis of gliomas. For instance, IDH mutation, 1p/19q co-

deletion, TERT promoter mutation, and EGFR gene amplification

are key biomarkers used for the classification of diffuse gliomas in
FIGURE 4

The graphic illustration of various kinetic parameters in tracer kinetic models. IVPS, intravascular compartment (intravascular plasma space); EES,
interstitial compartment (extravascular extracellular space); Ktrans, transfer constant; Kep, washout rate; CBF, tumor blood flow; Ve, interstitial volume;
Vp, blood volume; PS, permeability–surface area product.
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adults, and DCE TKMs have been used for evaluating the status of

these markers in glioma patients (52, 56–63).

IDH mutation is associated with a survival benefit in glioma

patients (64). Wang et al. (65) retrospectively studied the IDH

mutation status of 30 patients with low grade gliomas (LGGs) using

ETM of DCE MRI, and showed that Ktrans, Ve and Vp were higher

values in the IDH wild-type compared to the IDH mutant LGGs. In

contrast, Brendle et al. (66) reported that DCE MRI kinetic

parameters derived using the same model did not distinguish

between IDH mutant and wild-type astrocytomas. Ahn et al. (67)

retrospectively studied the molecular markers in 132 LGG patients

using ETM of DCE MRI, and found no significant difference in the

DCE kinetic parameters between the IDH mutant and wild-

type gliomas.

MGMT promoter methylation predicts favorable prognosis

after alkylating drug-based chemotherapy in patients with IDH-

wild-type glioblastomas (68). Several studies have evaluated the

correlation between MGMT promoter methylation and DCE

kinetic parameters in gliomas (69–71). Ahn et al. (67) showed

that Ktrans, Ve and Vp values derived using ETM of DCE MRI were

significantly lower in MGMT methylated LGGs than in the

unmethylated counterparts. Another study (70) using the Tofts

model of DCE MRI showed that Ktrans values were significantly

higher in the MGMT methylated tumors, while Kep and Ve showed

no significant difference between gliomas with methylated and

unmethylated MGMT. Hilario et al. (69) analyzed 49 glioma

patients using ETM of DCE MRI, and did not detect any

significant differences in the DCE kinetic parameters of the

MGMT methylated and non-methylated tumors. Zhang et al. (71)

further showed that gliomas with non-methylated MGMT had

higher Ve and Ktrans values with ETM of DCE MRI than those

with methylated MGMT.
3.3 Differential diagnosis of glioma, PCNSL,
and metastasis

Due to differences in clinical treatment and prognosis, it is

critical to distinguish between primary central nervous system

lymphoma (PCNSL), high-grade gliomas (HGGs), and metastatic

glioma (72–79). Xi et al. (80) used Tofts model of DCE MRI to

retrospectively analyze 8 cases of PCNSL, 21 cases of HGGs and 6

cases of metastasis, and detected significantly higher Ktrans and Ve in

the PCNSL tumors compared to HGGs and metastatic tumors.

However, Kickingereder et al. (81) did not observe any significant

difference in the Ve values of PCNSL and GBM using ETM of DCE

MRI. Lin et al. (82) showed that PCNSL had higher values of Ktrans

using ETM of DCEMRI compared to GBM, although the difference

was not statistically significant. Jin et al. (83) used ETM of DCE

MRI to show that Ktrans had the highest specificity and sensitivity in

differentiating between GBM, PCNSL, and metastasis. Kang et al.

(84) calculated the Vp in glioblastomas and PCNSL through ETM of

DCEMRI, and found that the values were significantly higher in the

former. In contrast, Abe et al. (43) used ETM of DCE MRI to

analyze 29 lesions (including glioma, metastatic tumor and
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lymphoma) and found that Vp was not helpful in differentiating

PCNSL from GBM.
3.4 Evaluation of treatment response

All patients with glioblastoma eventually relapse. It is

challenging to differentiate relapsed tumor from other treatment-

related changes during the follow-up of glioma patients (85–92).

Thomas et al. (93) found that Vp and Ktrans measurements were

lower in glioblastoma patients with pseudoprogression compared to

those with relapsed lesions using ETM of DCE MRI. Yun et al. (94)

also applied ETM of DCE MRI to differentiate false progression

from true progression, and found that Ktrans and Ve were

significantly higher in the latter, whereas Vp value was similar for

both types of lesions. Jing et al. (95) applied the Tofts model

of DCE MRI to a retrospective analysis of 51 patients with

new enhancement lesions after standard radiotherapy and

chemotherapy after surgical resection, and found no significant

difference in Ve and Kep between the pseudoprogression group and

the recurrence group.
4 Assessment of gliomas using
advanced tracer kinetic models

4.1 Glioma grading

Jain et al. (96, 97) investigated glioma grading using perfusion

CT (PCT) with the TH model (27) to estimate permeability and

blood volume. While the rCBV increased more than the PS in

LGGs, grade 3 and especially grade 4 gliomas showed a greater

increase in PS compared to rCBV. The rate of change in the rCBV/

PS ratio may correlate to changes occurring at the tumor

microvasculature level. Both PS and CBV were higher in the

HGGs compared to the LGGs. Furthermore, PS can also be used

to differentiate WHO grade 3 glioma from grade 4 glioma. Tietze

et al. (35) presented a Bayesian framework for parameter

optimization of tracer kinetic modeling and compared the Brix

model and ETM in the grading of 42 untreated glioma patients.

Brix-derived Vp showed the best diagnostic performance with AUC

of 0.97, followed by ETM-derived Ktrans with an AUC of 0.92.

However, the diagnostic performance of permeability parameter

was low, with AUC of 0.57.
4.2 Monitoring of treatment response

4.2.1 In vivo human studies
Jensen et al. (98) correlated parameters derived from a gamma

capillary transit time model of DCE MRI, which is based on the

distributed capillary approximated TH model (99, 100), with

molecular markers of hypoxia, vascularity, proliferation, and

progression-free and overall survival (OS) in a cohort of 18

glioma patients. The derived parameters included tumor blood
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flow (CBF), extraction fraction (E), permeability–surface area

product (PS), transfer constant (Ktrans), washout rate (Kep),

interstitial volume (Ve), blood volume (Vp), capillary transit time

(tc), and capillary heterogeneity (a−1). The study showed that a−1,

tc, Kep, and Vp were correlated with HIF-1a and VEGF expression,

whereas Ve and a−1 were correlated with OS. The other imaging

markers were not helpful in predicting OS. In particular, none of the

blood flow and permeability parameters (Ktrans, CBF, E, PS) showed

any correlation with patient outcome.

Lundemann et al. (101) explored the feasibility of predicting

tumor recurrence using multi-modal imaging based on DCEMRI at

the pre-radiotherapy stage in a cohort of 16 glioblastoma patients

using Brix-derived DCE parameters. The median MTT, Vp, Ve and

PS derived from scans prior to chemoradiotherapy showed

differences between recurring and non-recurring voxels.

Henriksen et al. (102) investigated the diagnostic value of Brix-

derived parameters of DCE MRI for short-term disease progression

in 60 anaplastic astrocytoma and glioblastoma patients with

suspected recurrence and evaluable outcome within 6 months of

follow-up as determined by histopathology, MRI findings or clinical

decision. The blood volume and vascular permeability were

significantly higher in the progressive lesions compared to the

non-progressive lesions. ROC analysis showed that blood flow

and blood volume had AUC values of 0.76 and 0.78 respectively,

which were higher than that of vascular permeability (0.68).

Larsen et al. (103) utilized Brix of DCE MRI to differentiate tumor

recurrence from radiation necrosis in 19 glioma patients following

surgery and radiation therapy, and demonstrated that an empirical

threshold of 2 ml/100 g for blood volume allowed detection of

regressing lesions with sensitivity and specificity of 100% each. In

comparison, neither blood flow nor permeability parameter could

discriminate between regressing and progressing lesions.

4.2.2 Ex vivo animal studies
Kiser et al. (36) applied the Brix model of DCE MRI to evaluate

test-retest repeatability and tumor response of a murine

glioblastoma model at 7 T to a combination therapy of

bevacizumab and fluorouracil . Test-retest experiments

demonstrated that there was no significant difference between the

scans in terms of the median values of parameters, except for Ktrans.

The compartmental volume fractions (Ve and Vp) remained more

consistent between scans while the vascular functional parameters

(CBF and PS) showed noticeable increase in values, likely due to

physiological changes in the tumor between scans. The tumor

volume in the control and treated groups did not differ

significantly at any time point, which corresponded to similar

tracer kinetic parameters in both groups.

Yeung et al. (104) investigated the efficacy of CT perfusion

imaging as an early biomarker of the response to stereotactic

radiosurgery in a rat glioma model using the TH model (27). Rats

with orthotopic C6 glioma tumors received either mock irradiation

or stereotactic radiosurgery delivered by Helical Tomotherapy. The
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responders to stereotactic radiosurgery showed lower relative CBV,

and PS on day 7 post-stereotactic radiosurgery when compared to

controls and non-responders. Relative CBV and PS on day 7 were

correlated with the OS, and predicted survival with 92% accuracy.
4.3 Correlation to
immunohistochemical markers

Li et al. (105) applied the DP model of DCE MRI to a dataset

consisting of 55 glioma patients to assess glioma isocitrate

dehydrogenase (IDH) mutation. The IDH-mutant gliomas

showed significantly lower CBF, PS, Vp, E and Ve compared to

the IDH-wildtype gliomas. Vp exhibited the best performance in

differentiating between IDH-mutant and IDH-wildtype gliomas

(AUC=0.92), followed by PS (AUC=0.82) and E (AUC=0.8).

Furthermore, the Tofts parameters Ktrans and Ve were lower for

the IDH-mutant gliomas, and no significant difference was

observed in Kep. The AUCs of K
trans, Ve, and Kep were 0.69, 0.79,

and 0.55 respectively. These findings suggested that IDH-mutant

gliomas have lower vascularity, vessel permeability and blood flow

compared to IDH-wildtype gliomas, which may explain the better

outcomes in patients with IDH-mutated versus IDH-

wildtype gliomas.
5 Discussion

5.1 Advantage of advanced TKMs over
conventional ones

The fifth edition of the WHO Classification of CNS Tumors

(WHO CNS5), published in 2021, builds on the fourth edition

updated in 2016 and the work of the Consortium to Inform

Molecular and Practical Approaches to CNS Tumor Taxonomy,

further advancing the role of molecular diagnostics in the

classification of CNS tumors, but remains rooted in other

established methods for assessing tumor characteristics, including

histology and immunohistochemistry (55). Besides, the existing

evaluation of glioma features is still based on pathological biopsy as

the gold standard. Due to the high heterogeneity of gliomas and the

influence of non-uniform sampling error of tumors, the diagnostic

accuracy is limited by the subjective judgment of pathologists. In

2021 WHO CNS5, EGFR amplification is commonly seen in IDH

wild-type gliomas. EGFR is a tyrosine kinase receptor regulating cell

proliferation and differentiation by interacting with epidermal

growth factor (EGF) and tumor growth factor-a (TGF-a), and
can reflect microvascular proliferation in tumors (106). With the

development of MRI technologies, more abundant characteristics of

tumor microenvironment have been provided for the non-invasive

diagnosis of gliomas. DCE MRI is sensitive to the destruction of the

blood-brain barrier (BBB) and is closely related to microvascular
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proliferation and vascular wall permeability, which can effectively

evaluate tumor angiogenesis and obtain various kinetic parameters

reflecting tissue microcirculation function (9).

The focus of this review was to reveal the characteristics of the

immune microenvironment of gliomas based on the conventional

and advanced TKMs of DCE imaging, and to provide a non-

invasive method for the diagnosis and treatment response

evaluation of gliomas. Most studies on glioma assessment with

DCE imaging have used Tofts or ETM for image postprocessing and

data analysis, and the results show considerable variability. For

instance, some studies (50, 107) have reported that ETM-derived Vp

is a useful imaging parameter that can discriminate between LGG

and HGG, whereas one study (51) showed that Ve and not Vp

differed significantly between LGG and HGG. Likewise, Arevalo-

Perez et al. (42) showed that Vp had the best discriminatory power

in glioma grading, whereas Jung et al. (44) reported that Ktrans was

the most significant pharmacokinetic parameter. ETM-derived

parameters can also distinguish IDH-mutant gliomas from IDH

wildtype gliomas (65), although some studies (66, 67) have reported

contradictory findings. While ETM_Vp was reported to be

significantly higher for glioblastomas compared to PCNSL in one

study (84), another study (43) showed that it could not differentiate

between the two lesions. Furthermore, Ktrans derived from the Tofts

model was demonstrated to be a promising discriminatory

biomarker for LGG relative to HGG (41, 108), although Awasthi

et al. (52) found that Ktrans was not significantly different between

LGG and HGG. The variations in the results across the different

studies using Tofts or ETM, and the inconsistent performance of

Ktrans in particular, have been reported in earlier reviews (13, 14).

Quantitative imaging biomarkers alliance (QIBA) has

recommended ETM for analyzing brain tumors through DCE

imaging (109). Both imaging hardware and DCE tracer kinetic

modeling have undergone significant advances over the years,

thereby allowing acquisition of DCE images with higher temporal

resolution, better signal-to-noise ratio, wider brain coverage and

increased spatial resolution, and enabling separate quantification of

CBF and PS. The advantages of a DP model over the Tofts model

have been demonstrated in the assessment of the IDH mutation

status in glioma (105). Recent test-retest experiments using Brix

(36) showed that only the median Ktrans was significantly different

between scans, which might justify the separate modeling of

intravascular transport and exchange between intra- and extra-

vascular space in Brix, instead of mixed modeling using one

transport rate parameter (Ktrans). HIF-1a expression is

significantly associated with HGGs (110) and is an excellent

biomarker for glioma grading (111). Furthermore, gliomas are

typically characterized by a marked increase in the formation of

blood vessels with abnormal blood flow and increased vessel

permeability. In fact, blood volume is a promising imaging

biomarker for glioma grading (42, 50, 107). As expected, Vp

derived using a DP model showed good correlation with HIF-1a
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expression (r= 0.747, P=0.043) (108). However, low correlation was

observed between HIF-1a expression and ETM-derived Vp

(r= 0.149, P=0.219) in another study (111).

Physiological interpretation of Ktrans has been ambiguous in

clinical trials using Tofts or ETM, and is generally described as a

volume transfer constant that reflects vessel wall permeability (13,

14). Several theoretical descriptions have been provided to interpret

Ktrans as a combination of blood flow and vessel wall permeability

(112, 113). Separate measurement of CBF and PS has been well

addressed in nuclear medicine (114), which is crucial to the

understanding of tissue hemodynamics, and has spurned the

development of more advanced DCE TKMs. In Figure 5, the

parametric maps of ETM and DP for a glioblastoma (GBM)

patient after surgery have been compared. The follow-up MR

images in Row 1 demonstrated the evolution of enhancing lesion.

DP-derived parameters in Row 2 showed that the enhancing lesion

was characterized by reduced blood flow, increase in PS and

marginal increase in Ve compared to the contralateral tissue.

ETM-derived parameters in Row 2 manifested as reduced Ktrans,

marginal increase in Vp, and increase in Ve. As previously reported

(24), Ve in the brain tumor reflects the transfer of tracer molecules

between intravascular and interstitial space due to insufficient

leakage from the intravascular space and attainment of steady

levels in the interstitial space during the insufficient scanning

period. Hence, ETM and DP illustrated similar pattern in vessel

wall permeability in this case. Nonetheless, the lower value of Ktrans,

which is generally explained as reduced vessel wall permeability,

may be indicative of reduced blood flow for this case.

The MR images of WHO grade 4 glioma at the right frontal lobe

treated with surgery and chemoradiotherapy are shown in Figure 6.

Small enhancing lesions appeared in the 31th month of follow-up

after surgery and continued to grow. DCE scan was performed in

the 37th month of follow-up, and analyzed using the distributed

parameter model. The parametric maps are shown in the second

row, which indicate reduced blood flow and increased vessel

permeability in the lesion compared to the contralateral tissue.

The patient underwent a second surgery, and histopathological

analysis revealed necrotic foci with no evidence of recurrent tumor.

In the traditional WHO classification of tumors, each tumor

type has a unique WHO grading, such as anaplastic astrocytoma,

which is automatically assigned to WHO grade III. The latest 2021

WHO Classification of CNS Tumors emphasizes the combination

of histological grades and molecular markers, such as Glioblastoma,

IDH-wild type; Astrocytoma, IDH-mutant; or Oligodendroglioma,

IDH-mutant & 1p/19q codeleted. IDH mutant astrocytoma

expands from the CNS in WHO grade 2–4. However, most of the

current studies are based on the 2016 WHO Classification, lacking

specific tumor pathological classification diagnosis (Table 3).

Therefore, future studies need to use more advanced MRI

technologies for further comprehensive diagnosis and stratified

reporting of gliomas.
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5.2 Standardization of DCE data acquisition
and postprocessing

Despite limited research on advanced DCE imaging TKMs for

glioma, the differences across studies are obvious. Brix-derived

blood volume has shown high discriminatory ability for

regressing lesions, whereas blood flow and permeability

parameters showed fairly low discriminating power in the

differential diagnosis of tumor recurrence (103). In contrast, a

recent study (102) demonstrated similar ability of blood flow and

blood volume in differentiating progressive lesions from non-

progressive lesions, and significantly higher permeability in the

former. Multiple factors can contribute to these discrepancies,

such as DCE imaging protocols, data post-processing, scanners,

operators in data processing, sample size and patient characteristics,
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etc. QIBA has made the following recommendations to standardize

DCE MR imaging protocol (115): (1) 3D T1-weighted GRE

sequence, (2) variable flip angle (VFA) method to estimate T1

map and contrast agent concentration, (3) same sequence for pre-

contrast VFA scan and post-contrast dynamic scan, (4) temporal

resolution not lower than 4 s in most cases, (5) sufficiently long

scanning duration of about 6 min for permeability measurement.

The DCE protocols used in earlier studies often deviated from

QIBA recommendations, whereas the more recent studies (102)

have protocols closer to QIBA guidelines. DCE imaging data is

largely analyzed using commercial software programs that differ in

algorithm implementation, which may result in significant

differences in the estimated DCE parameters (116). When

analyzing DCE images, it is critical to accurately determine the

contrast concentration from image intensities. The relationship
FIGURE 5

59-year-old male with glioblastoma of the left temporal lobe. Row 1: follow-up MR examinations after surgery showed the evolution of enhancing
lesion. Row 2: parametric maps of blood flow CBF, vessel permeability PS and fractional volume of interstitial space Ve as derived using DP.
Parametric maps of volume transfer constant Ktrans, Vp and Ve as derived using ETM.
A B C D E F

FIGURE 6

35-year-old female with WHO grade 4 glioma of the right frontal lobe. Postoperative pathology confirmed the enhanced lesion as radiation necrosis
(RN). Row 1: follow-up MR examinations after surgery showed the presence and evolution of enhancing lesion. (A) MR image after the first surgery;
(B) 30 months after surgery; (C)31 months after surgery; (D)33 months after surgery; (E)35 months after surgery; (F)37 months after surgery. Row 2:
parametric maps of blood flow CBF, mean transit time MTT, fractional volume of intravascular space CBV, fractional volume of interstitial space Ve,
vessel permeability PS, and extraction ratio E as derived using DP model.
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between image intensity and concentration can be non-linear,

particular for MRI. In some software programs, linear assumption

between change in signal intensity and gadolinium concentration is

used to directly derive the contrast concentration-time curve from

signal intensity-time curve (42). The choice of vascular input

function (VIF) also affects the estimated values of DCE

parameters. It would be ideal to select VIF from DCE images for

each patient. Some software programs use population VIF or

empirical VIF, as summarized in the QIBA profile (109).

Standardization of imaging protocol and postprocessing

procedure is crucial in making DCE reproducible and bringing

forward the technology into clinical practice.
5.3 Cross-validation in DCE studies

ROC curve analysis is a useful tool for characterizing the

differential diagnostic ability of potential biomarkers, which can be

quantified by calculating the area under the ROC curve (AUC), or by

finding an optimal threshold from the ROC curve and determining the

associated sensitivity, specificity and accuracy. Most studies on DCE

imaging-based glioma assessment directly applied the ROC curve

method to the total data, and reported the performance of DCE

parameters. In clinical practice, however, the imaging data is

invariably subjected to different sources of perturbations. Therefore,

the resulting diagnostic metrics could be biased towards best matching

pattern in the current data, and their performance could be

significantly different when applied to new data. This phenomenon is

called overfitting in machine learning (117) and is particularly acute

when the sample size is small, which is often the case in glioma studies.

This issue is commonly resolved by cross-validation, which is typically

performed by dividing data into the training set and validation set, and

applying the information derived from the former to the latter. K-fold

cross-validation is the most frequently used cross-validation method in

machine learning. However, the leave-one-out cross-validation method
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is recommended for glioma studies since the cohort size is usually

small. Shao et al. (38) used this method to assess the parameters of DCE

imaging in a small cohort of cervical cancer patients. The following

steps were used: (1) one data was left out, and the remaining data was

used as the training set to build a model and make prediction on the

excluded data, (2) the previous step was repeated for each data, and (3)

the differential diagnostic ability was quantified by summarizing all

predicted values. In the current DCE glioma studies, performance

quantification without cross-validation has resulted in variation

between the results of different research groups.
6 Conclusion

DCE imaging is effective in glioma grading and therapeutic

effect monitoring, and its parameters are potential imaging markers

for glioma diagnosis. However, the discrepancies between the

findings in different studies warrant further improvement and

validation of this technique with standardization of protocol

design, and data post-processing in multi-center and large

cohorts. Advanced DCE imaging techniques that allow separate

modeling of blood flow and vessel permeability have advantages

over conventional counterparts, although more studies are needed

to ascertain the clinical value.
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