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Radiomic biomarkers of
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prognostic insights from oral
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preoperative CT scans
Xiao Ling1, Gregory S. Alexander2, Jason Molitoris1,
Jinhyuk Choi3, Lisa Schumaker4, Phuoc Tran1, Ranee Mehra4,
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States, 2Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States,
3Department of Breast Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea, 4Marlene and
Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine,
Baltimore, MD, United States, 5Institute for Genome Sciences, University of Maryland School of
Medicine, Baltimore, MD, United States, 6Department of Otorhinolaryngology-Head and Neck Surgery,
Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical
Center, Baltimore, MD, United States, 7Department of Oncology, Sidney Kimmel Comprehensive Cancer
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Introduction: This study aimed to identify CT-based imaging biomarkers for

locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients.

Methods: Computed tomography scans were collected from 78 patients with

OSCC who underwent surgical treatment at a single medical center. We

extracted 1,092 radiomic features from gross tumor volume in each patient’s

pre-treatment CT. Clinical characteristics were also obtained, including race, sex,

age, tobacco and alcohol use, tumor staging, and treatment modality. A feature

selection algorithm was used to eliminate the most redundant features, followed

by a selection of the best subset of the Logistic regression model (LRM). The best

LRM model was determined based on the best prediction accuracy in terms of

the area under Receiver operating characteristic curve. Finally, significant

radiomic features in the final LRM model were identified as imaging biomarkers.

Results and discussion: Two radiomics biomarkers, Large Dependence

Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run

Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian

of Gaussian (LoG s=3), have demonstrated the capability to preoperatively

distinguish patients with and without LR, exhibiting exceptional testing

specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-

year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with
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LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared

to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our

understanding of using radiomics to predict OSCC progression, enabling

personalized treatment plans to enhance patient survival.
KEYWORDS

oral cavity squamous cell carcinoma, outcome prediction, biomarker, recurrence,
classification, logistic regression, CT, radiomics
1 Introduction

Oral Cavity Squamous Cell Carcinoma (OSCC) is the most

common malignancy in the head and neck region and is

characterized by a poor prognosis (1). Surgery is the primary

treatment of OSCC, followed by cisplatin-based chemotherapy and/

or radiotherapy depending on pathologic features and individualized

risk of recurrence. Regional recurrence is the most common cause of

failure after treatment of oral carcinoma (2, 3). Despite advancements

in surgical techniques and adjuvant therapies, the 5-year overall

survival rate hovers between 45-50%, contingent upon the stage

and metastasis status of the disease (4, 5). Locoregional recurrence

(LR), as indicated by prior studies (6, 7), represents a significant

clinical challenge, with some patients cohorts demonstrating

extremely high rates of LR even following surgery and appropriate

adjuvant therapy (8). Given that disease recurrence is devastating for

patients, and adjuvant therapies are associated with significant

economic and quality of life detriment, identification of patients at

higher risk of LR who would benefit most from adjuvant treatment is

paramount. It is, therefore, relevant to identify patients who are at a

higher risk of locoregional recurrence before their primary surgery to

guide treatment plans and increase the therapeutic window. By

utilizing noninvasive imaging information and cutting-edge

machine learning algorithms, post-treatment failure can be better

screened, enabling medical professionals to tailor treatment

plans accordingly.

Histopathologic factors are used for OSCC diagnosis and

prognosis staging evaluation (9). Studies (10–15) reported that

tumor size, depth of invasion (DOI), stromal, vascular, and nerve

invasion are significantly different between the groups with and

without metastasis. The dysregulation of specific miRNAs in OSCC,

such as miRNA-184 (16), miR-31 (17), and miR-27b (18), are

implicated in malignant transformation and disease progression.

Other proteins and peptides, such as Leukotriene A4 hydrolase

(LTA4H) and its peptide, Pep8_LTA4H, among other proteins and

peptides, may distinguish individuals with metastasis (N+) from

individuals metastasis-free (N0) (19). Studies (20–22) implicated

that the amplification of CCND1 and overexpression of cyclin D1

are significantly correlated with OSCC metastasis. Soluble factors,

such as IL- 1b ,TNF- a , and MIP- 1b , that can be detected in saliva,
02
may also play a significant role in detecting metastasis (23). The

other study (24) reveals an association between primary site

recurrence and a high ratio of ITGA3/CD9. Elevated levels of

squamous cell carcinoma antigen (SCC-Ag) in serum are

significantly associated with tumor progression (25). While these

parameters evaluated in pre-clinical settings hold promise in

enhancing disease detection, prognosis, and personalized

treatment, those findings need to be confirmed by larger and

more rigorous studies. One of the limitations of histopathologic

biopsy is that it may not capture the full heterogeneity of the tumor

due to sampling bias (26). Furthermore, factors such as DOI are

only available on the resection specimen. The extraction and

analysis of biomarkers, such as H&E staining, tissue microarray,

and sequencing, can be technically complex and expensive,

requiring specialized resources, which may restrict their

practicality in specific circumstances. Additionally, challenges

with reproducibility and standardization across laboratories and

the potential for false positives and negatives further complicate

their practicality (27, 28). Furthermore, validating a biomolecule-

based assay, from its initial discovery to clinical implementation, is

often arduous and lengthy. A significant number of potential

markers prove to be ineffective across various populations (29).

Additionally, it is crucial to reduce the overall processing time to

avoid LR in patients who require adjuvant therapy. Also, while

some biomarkers may indicate the presence of a disease, they might

not offer actionable information for treatment plans, thereby

restricting their practical clinical use (30, 31). Lastly, employing

genetic and other biomolecular markers raises ethical, legal, and

societal concerns (32). This is a primary reason these biomarkers

have not been introduced in clinical settings and lack

FDA approval.

Imaging-based biomarkers have been investigated for different

modalities, such as Computed Tomography (CT), Positron

Emission Tomography (PET), and Magnetic Resonance Imaging

(MRI), by extracting quantitative imaging features known as

radiomics features. In contrast to biomolecule-based assays,

imaging techniques are non-invasive. The imaging information is

readily available from routine diagnostic scans without incurring

additional costs. Moreover, imaging provides unique 3D

information about neoplasm. These radiomics features can be
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leveraged to develop predictive models for survival and treatment

failure (33–42). The rationale behind this approach is that these

images capture crucial information about the neoplasm phenotype

and microenvironment (43). In fact, the American College of

Radiology has developed a standardized Neck Imaging Reporting

and Data System (NI-RADS) (44) to manage and surveil the

posttreatment course. Studies (45, 46) demonstrated a strong

association between NI-RADS category and treatment failure in

HNSCC patients. Over recent decades, imaging factors have

demonstrated their capacity to furnish accurate prognostic

information for posttreatment recurrence screening. A study (47)

found a significant association between PET/CT radiomic features

and Head and Neck locoregional recurrence. Our pilot study (48)

demonstrated two potential Radiomic overall survival biomarkers.

However, the identification of non-invasive factors for 2-year

locoregional recurrence after primary surgery in OSCC patients

remains lacking. The distinction between our study and similar

research lies in the emphasis on the susceptibility/risk associated

with the biomarker, specifically an increased likelihood of

developing locoregional recurrence (LR) within 2 years post-

surgery. Consequently, we focus more on specificity and

sensitivity to minimize the incidence of false positives and

false negatives.

This study aimed to identify CT-based imaging risk factors for

locoregional recurrence in patients with OSCC at an academic

health network serving a diverse population, which enabled the

development of machine learning classifiers that could accurately

distinguish patients with locoregional recurrence from those

without prior to treatment. A retrospective study design was used,

with high-dimensional radiomics, pathological, and clinical

information collected from this diverse cohort of OSCC cases.

The primary endpoint was 2-year locoregional recurrence

(defined as locoregional recurrence occurring within 2 years of

surgery). The findings of this study lay the foundation for the

implementation of pre-treatment screening for LR and risk
Frontiers in Oncology 03
assessment using non-invasive risk factors in this diverse patient

population, which could ultimately impact the management of

high-risk OSCC patients by helping physicians customize

treatment planning and reduce the chance of distant metastasis.
2 Materials and methods

2.1 Data preparation and overall workflow

The workflow outlining our approach is illustrated in Figure 1.

In this workflow, the neoplasm volume serves as the region of

interest (ROI) from which all radiomics features are computed. The

contouring of the ROI was performed manually by experienced

Radiation Oncologists, not directly involved in the study, using the

Varian Medical System Eclipse software environment. These

features underwent a selection process to minimize redundancy

and were combined with clinical data. A logistic regression model,

optimized via five-repeated 10-fold cross-validation, was then

applied. The model’s predictive performance was evaluated using

the Area Under the ROC Curve (AUC). All statistical analyses were

performed using R programming language, with a significance level

(alpha) set at 0.05 for all tests.
2.2 Radiomic feature acquisition
and extraction

Uniformity in voxel sizes is essential for precise and dependable

feature calculations in radiomics (49). Given the original CT scan

resolutions varied significantly, from 0.3×0.3×0.5 mm to 1.3×1.3×5

mm, we resampled the voxel values to a uniform resolution of

1×1×1mm using interpolation. For this purpose, we employed the

Bspline algorithm (50), suitable for smoothly adjusting voxel values.

Concurrently, to maintain the binary nature of the tumor masks, we
FIGURE 1

Schematic flowchart illustrating the steps from CT image acquisition and radiomics feature extraction, through the process of machine learning
techniques to risk factors.
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applied the nearest neighbor interpolation algorithm (51, 52), which

assigns the mask label of the closest voxel in the original grid to each

voxel in the interpolation grid. Another critical step employed was

normalization, computed by x−m
s , where x represents voxel intensity,

m is the average intensity, and s is the standard deviation of

intensity. As demonstrated in a previous study (49), this

normalization minimizes variance and boosts feature robustness

of radiomic features, especially against different discretization levels,

ensured normalized intensities generally spanned from [-3, 3] after

outlier exclusion (53, 54). These intensities were then scaled to a

range of approximately [-300, 300]. Moreover, to capture detailed

textural information, we discretized the intensities within the ROI

using a uniform bin width of 5, starting from a normalized

minimum HU value of 0. We chose a bin width of 5 to ensure an

adequate number of bins (between 1 and 400), allowing for the

capture of more detailed textural information (55). This

discretization assigns new values to each voxel according to the

formula: floor((original intensity)/5) + 1. This method not only

suppresses noise but also enhances the robustness of radiomic

features by smoothing out minor variations.

Medical images provide insights into the phenotypic traits of

neoplasms. These images typically contain data from tens of

thousands of voxel intensities per neoplasm, leading to a

scenario where the number of features (p) greatly exceeds the

sample size (n). In our study, we extracted features from each

image set using the PyRadiomics library in Python. According to

the Imaging Biomarker Standardization Initiative (IBSI) (56), we

extracted features across six categories: shape, first-order

statistics, gray level co-occurrence matrix (GLCM), gray level

run length matrix (GLRLM) (57), grey level size zone matrix

(GLSZM) (58), gray level dependence matrix (GLDM) (59), and

neighborhood grey tone difference matrix (NGTDM) (60).

Additional calculations were performed on images processed

with wavelet, Laplacian of Gaussian (LoG), square, square root,

logarithm, exponential, and gradient filters, culminating in

1,092 features.
2.3 Feature selection and modeling

Logistic Regression Models (LRM) were used in assessing the

features of discriminative power. Algorithms are available in the R

stats, glmulti package. A logistic model can be mathematically

described as follows: log p(x)
1−p(x) = bx, where p(x) is the probability

of recurrence, and b the coefficient vector for the independent

variables x (61). The guidelines outlined in (62) recommend that

the number of predictors used in fitting LRM should not exceed

10% of the events in the sample. In our cohort, with 10% of events

in the training sample, the optimal number of predictors for model

fitting should be 2 to 3, as 10% of the total recurrence equals 2.1.

Thus, we aimed to limit the final Logistic Regression Model (LRM)

to a maximum of 3 degrees of freedom. We used the Best Subset

Selection (BSS) Modeling strategy to identify the most effective
Frontiers in Oncology 04
LRM based on validation performance to achieve this. BSS, known

for its efficiency in finding the most parsimonious model,

outperforms methods like stepwise selection and Lasso, although

its high computational demand is a limitation. For instance, fitting

LRMs with 2, 3, or 4 degrees of freedom using 17 radiomics and six

clinical features requires BSS to estimate a minimum of 41,262

coefficients, making exhaustive evaluation impractical. Therefore,

we reduced the number of input variables before employing BSS.

Radiomics data often faces the chal lenge of high

multicollinearity, where variables are highly correlated, affecting

the significance of individual variables in the model. For example,

sphericity, minor axis length, and elongation show strong

multicollinearity. Multicollinearity can lead to the phenomenon

where a variable is not deemed significant when correlated features

are also present in the model. Figure 2 uses a color scheme where

white represents no correlation, blue represents a perfect negative

correlation, and red represents a perfect positive correlation. The

heatmap illustrates the correlation coefficients prior to the feature

selection process, revealing the initial relationships between

features. The heatmap revealed numerous red and blue shades,

indicating strong positive and negative correlations, respectively,

among the data. There is now a substantial body of research on

mitigating multicollinearity, such as Principal Component Analysis

(PCA), Sparse PCA (63), and Kernel PCA (KPCA) (64). We

employed Recursive Feature Elimination (RFE) (65), an iterative

procedure to refine the input data for BSS LRM. Using RFE with

repeated 10-fold cross-validation (Table 1), we narrowed down

from 1,092 radiomic features to a subset of eight active features

(Figure 3). We then fitted degree-2 LRMs, considering all

combinations of these eight features across 5,000 data shuffles.

The models were trained on 63 samples (80% of the cohort) using

10-fold cross-validation and evaluated based on AUC. The

remaining 15 samples (20% of the cohort) were used for

prognostic validation. We also used the ROC to visualize the

classifiers’ performance. Figure 4 shows that the 3,480 models out

of 5,000 data shufflings unveiled the most distinctive factor among

the extensive array of 1,092 radiomic features: specifically, Large

Dependence Emphasis (LDE) of the Gray Level Dependence Matrix

(GLDM) and Long Run Emphasis (LRE) of the Gray Level Run

Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG s=3)

filtered ROIs (Figures 5, 6). Statistical evidence was quantified by

the p-value of the hypotheses’ tests. If the p-value is less than

a = 0.05, then the null hypothesis will be rejected in favor of the

alternative hypothesis.
2.4 Assessment of the prognosis

We stratified the cohort into high and low LRE and LDE

subgroups according to the threshold selected by using respective

median. Kaplan-Meier curve analyses were conducted to assess the

impacts of the biomarkers on RFS. RFS was defined as the time from

surgery to locoregional recurrence.
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2.5 Constructing nomogram

The primary end-point of the analysis was the time to peritoneal

locoregional recurrence. The follow-up duration to peritoneal LR

was calculated from the date of surgery to the date when peritoneal
Frontiers in Oncology 05
LR was diagnosed or to the last follow-up, and information about

the survival status and recurrence type was also documented.

Finally, a radiomic nomogram was constructed. A model

containing both radiomic and clinical factors was also constructed

for comparison.
TABLE 1 Recursive feature selection: 10 fold cross-validated repeated 5 times.

Variables ROC Sens Spec ROCSD SensSD SpecSD Selected

1 0.792 0.507 0.802 0.228 0.360 0.169

2 0.819 0.597 0.845 0.177 0.347 0.148

3 0.843 0.620 0.888 0.170 0.332 0.130

4 0.817 0.623 0.875 0.179 0.331 0.135

5 0.827 0.573 0.867 0.169 0.339 0.139

6 0.831 0.570 0.872 0.171 0.375 0.131

7 0.842 0.543 0.878 0.166 0.392 0.136

8 0.844 0.543 0.868 0.169 0.379 0.152 *

142 0.809 0.417 0.891 0.196 0.327 0.149

1092 0.758 0.293 0.929 0.207 0.291 0.120
ROCSD, standard deviation of ROC; SenSD, standard deviation of Sensitivity; SpecSD, Standard deviation of Specificity.
FIGURE 2

Correlation coefficient heatmaps: The diagonal heatmap illustrates the pairwise correlations among radiomics features before pruning. The color scale
represents the strength of the correlation, with blue indicating negative correlation, red indicating positive correlation, and white representing no correlation.
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FIGURE 5

Axial contrast-enhanced CT image of the oral cavity with a red region of interest (ROI) indicating the squamous cell carcinoma. The images were
filtered by Laplacian of Gaussian (LoG) and analyzed to extract LDE and LRE features.
FIGURE 3

Recursive Feature Elimination (RFE) curve from five repeated 10-fold cross-validation. The plot showcases a notable increase in AUC at the retention
of eight informative features, followed by a decline in performance as non-informative features are incorporated. Left panel provides a
comprehensive view of the AUC achieved across varying numbers of variables. Right panel offers a closer examination of the AUC within the range
of 0 to 200 features.
FIGURE 4

This frequency bar plot visualizes the counts of various degree-2 logistic models derived from the best-subset of eight radiomics features previously
identified. These models were generated through 5000 iterations of data shuffling. Distribution of models during the selection of the final optimal
set of risk radiomics features. These models comprise the risk radiomics features selected by the Best Subset Logistic Regression procedure from
among the 8 RFE-selected features. Out of 5000 different partitions, 3480 models are based on two features,
log.sigma.3.0.mm.3D_glrlm_LongRunEmphasis and log.sigma.3.0.mm.3D_gldm_LargeDependenceEmphasis.
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2.6 Code availability

The code used in this study is available at https://doi.org/10.

5281/zenodo.10460030.

3 Results

3.1 Oral cavity squamous cell carcinoma
cohort features

This retrospective biomarker analysis examines a group of oral

cavity squamous cell carcinoma (OSCC) patients who underwent

surgical/curative/elective neck/selective neck resection at the

institution between 2006 and 2017. The study involved 78 patients,

with 21 experiencing locoregional recurrence (LR), while 57 remained

disease-free within a 2-year period after the end of the initial treatment

course. Demographic and clinicopathological features of patients are

detailed in Table 2. Themean age at the initial surgery was 60, ranging

from 30 to 98 years. The median follow-up time for recurrence-free

survival (RFS)was56.2months.A locoregional recurrencewasdefined

as a positive biopsy in the primary site or the cervical lymphatic region

after treatment. We collected six clinical characteristics of interest,

including age, gender, tobacco usage, alcohol consumption, T-stage,

N-stage, and race. All patientswere in thefirst 2 years offollow-up after

surgery. Patients were categorized into four T stages (1, 2, 3, and 4)

based on the size and extent of the primary tumor. Smoking and

alcohol status were self-reported and coded as 1 for Yes and 2 for No.

Themissingvalues for smokingandalcohol statuswerehardcodedas3

due to their substantial representation within the dataset. Smoking

status revealed that 60% of the total cohort were smokers, with this
Frontiers in Oncology 07
number rising to 72% in the LR subgroup. For alcohol consumption,

40%of the total group reported alcohol use, compared to48% in theLR

subgroup. All patients underwent surgery treatment as primary

treatment, along with chemoradiotherapy (CRT) or radiotherapy

(RT). The endpoint in this study was 2-year LR status, defined as

whether an LRhappenedwithin 2 years after curative treatment. Here,
TABLE 2 Frequency and significance of demographic and
clinicopathological characteristics.

Total (%) LR (%)

Gender

Male 45 (58%) 14 (67%)

Female 33 (42%) 7 (33%)

Race

EA 69 (88%) 17 (81%)

AA 9 (12%) 4 (19%)

Smoking

Yes 47 (60%) 15 (72%)

No 22 (28%) 3 (14%)

Unknown 9 (12%) 3 (14%)

Alcohol

Yes 31 (40%) 10 (48%)

No 33 (42%) 9 (43%)

Unknown 14 (18%) 2 (9%)

T stage

T1 26 (33%) 4 (19%)

T2 21 (27%) 4 (19%)

T3 13 (17%) 6 (29%)

T4 18 (23%) 7 (33%)

N stage

N0 49 (63%) 11 (52%)

N1 10 (13%) 3 (14%)

N2 19 (24%) 7 (34%)

Treatment

Sx 45 (58%) 8 (38%)

Sx + RT 18 (23%) 5 (24%)

Sx + CRT 15 (19%) 8 (38%)

Registry Sites

Buccal Mucosa 11 (14%) 1 (5%)

Floor of Mouth 6 (8%) 2 (10%)

Gingiva 13 (17%) 2 (10%)

Retromolar trigone 1 (1%) 0 (0%)

Tongue 47 (60%) 16 (75%)
fron
Total, the entire cohort; LR, the locoregional recurrent cohort.
FIGURE 6

This density plot illustrates the distribution of two radiomic factors
across two groups: recurrence and non-recurrence.
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the proportion increased in the LR subgroup (17% in the total group,

29% in LR), indicating a higher prevalence of this intermediate stage in

the LR subgroup. T3 tumors constituted 17% of the cases. The

proportion of T3 tumors increases to 29% in the LR subgroup. T4

tumors, which represent the most advanced stage of tumor size and

extent, accounted for 23% of the total cohort. The representation of T4

tumors isnotablyhigher in theLRsubgroup, constituting 33%. In total,

T3 and T4 stages comprise only 31% of the entire group, in contrast to

62% in the LR subgroup.
3.2 Radiomic factors selection
and validation

A preliminary feature selection algorithm identified 8 radiomic

factors of discriminative power in LR depicted in Figure 7. To

ascertain the independence of these two radiomic factors from

clinical factors and their potential as clinical alternatives, we

investigated their interaction with clinical factors, smoking,

alcohol I(ETOH), N stage, and T stage. Logistic regression

modeling then incorporated the radiomic features with

demographic and clinicopathological characteristics to define the

final radiomic risk factors. In this comparative analysis of five

logistic regression models in Table 3, denoted as Models 1

through 5, we have assessed their performance based on a range

of statistical metrics. The Akaike Information Criterion (AIC) is

employed as a model selection criterion. At the same time, accuracy

(ACC), area under the receiver operating characteristic curve

(AUC), sensitivities (Sens), and specificities (Spec) are utilized to

evaluate the models’ predictive capabilities. It is evident that the 2nd

model (clinical-only) exhibits the highest AIC of 80, suggesting a

worse fit to the training data (80%) compared to the other models.

When considering the training measurements, the model

demonstrates the lowest accuracy (0.75) and AUC values (0.46).
Frontiers in Oncology 08
In regard to the testing measurements on the held-out 20% data, the

2nd model shows the lowest accuracy (0.6) and AUC (0.67) among

all models, showcasing its deficiency in generalization. Moreover,

the model consistently maintains an unbalanced sensitivity (0.45)

and specificity (1), highlighting its inability to make accurate

predictions while minimizing false positives and false negatives.

These findings collectively underscore the suboptimal performance

of the 2nd model and establish it as the least favorable choice when

contrasted with the other models in this analysis.

Numerous studies have identified smoking and drinking as risk

factors for OSCC patients. Further analysis indicated that including

clinical factors didn’t significantly enhance the model’s explanatory

power (based on deviance analysis in Table 4 via chi-square test,

P=0.43). Table 4 presents the Analysis of Deviance results for eight

pairs of nested model comparisons, testing the null hypothesis that

additional factors have no effects on outcome. Our analysis yielded

robust evidence (via c2-test, p-values< 0.0001) supporting the

significance of adding radiomic factors in each pair. Augmenting

radiomics to include Smoke, ETOH, and T (the first pair) decreased

the deviance by 27.68, indicating a significantly better fit of the larger

model to the data. The larger model’s AUC showed a noteworthy

improvement over the smaller model, as depicted in Figure 8.
3.3 Risk stratification and prognostic ability

Patients were stratified into high- and low-end groups for

recurrence-free survival based on the median value of two factors

(Figure 9). The Kaplan-Meier curves provide compelling evidence

of a significant difference in RFS between the high- and low-end

groups (Log-rank p< 0.05). Furthermore, the AUCs of logistic

regression, incorporating radiomic factors (0.93), corroborate the

significant enhancement in discriminative power when compared

to clinical factors-only models (Figure 8). Nomograms were
FIGURE 7

This set of box plots presents a comparative analysis of eight distinct radiomics features. The selection process involved repeated 5x10-fold cross-
validation RFE.
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TABLE 3 Logistic regression models with different factor inclusions.

Training Testing

Factor Est. se z
p-

value
AIC ACC AUC

Sens Spec ACC AUC Sens Spec

1

Intercept 2.646 0.796 3.324 0.001

57 0.79 0.83 0.57 0.87 0.87 0.84 0.82 1.00LRE 1.323 0.429 3.086 0.002

LDE -0.051 0.015 -3.486 0.000

2

Intercept 0.679 0.481 1.411 0.158

80 0.75 0.46 0.23 0.93 0.60 0.67 0.45 1.00

Non-
Smoke

0.160 0.718 0.223 0.823

Non-
ETOH

0.234 0.666 0.351 0.726

T2 -0.856 0.604 -1.418 0.156

T3 0.446 0.634 0.704 0.482

T4 0.976 0.648 1.505 0.132

3

Intercept 2.360 0.869 2.715 0.007

58 0.80 0.86 0.57 0.87 0.87 0.86 0.82 0.87

LRE 1.404 0.465 3.020 0.003

LDE -0.053 0.016 -3.404 0.001

Non-
Smoke

0.586 0.758 0.773 0.439

4

Intercept 2.048 0.911 2.248 0.025

58 0.80 0.85 0.53 0.90 0.87 0.89 0.82 0.87

LRE 1.600 0.532 3.008 0.003

LDE -0.060 0.018 -3.357 0.001

Non-
Smoke

0.191 0.825 0.232 0.817

Non-
ETOH

1.125 0.851 1.323 0.186

5

Intercept 2.076 1.008 2.060 0.039

63 0.76 0.83 0.45 0.87 0.87 0.89 0.82 0.87

LRE 1.696 0.579 2.931 0.003

LDE -0.063 0.019 -3.308 0.001

Non-
Smoke

0.247 0.861 0.287 0.774

Non-
ETOH

1.140 0.888 1.283 0.199

T2 0.355 0.765 0.464 0.643

T3 -0.161 0.833 -0.193 0.847

T4 0.897 0.793 1.131 0.258
F
rontiers in Oncology 09
 frontie
ACC measures overall correctness, AUC assesses discrimination ability, Sen measures the ability of the model to correctly identify positive, Spec measures the ability of the model to correctly
identify negative, and AIC indicates how close fitted values to expected values. In this case, the 1st model (AIC=57) is considered more efficient in explaining the observed variation in the data
than 2nd model.
TABLE 4 Analysis of deviance for various logistic regression models.

Model Comparison Res.Df. Res.Dev. Df. Dev. p-value

Radiomics + Smoke + ETOH + T 70 56.74

Smoke + ETOH + T 72 84.42 -2 -27.68 <0.0001

Radiomics + Smoke 74 60.47

(Continued)
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constructed with radiomic and clinical factors respectively in

Figure 10. Notably, the addition of clinical features in the full

model demonstrates minimal influence on the predicted RFS

probability when compared to the radiomic feature-only model.
3.4 Radiomic features uncover hidden
textural patterns

Tumor heterogeneity is widely acknowledged as a significant

factor associated with tumor progression. The quantification of

tumor heterogeneity has assumed a pivotal role in pathological

assessments. Radiomic texture analysis presents distinct advantages,

such as non-invasiveness and cost-effectiveness, compared to

conventional pathological evaluations. Multiple studies (66–69)

have underscored the prognostic potential of GLDM (Gray Level

Dependence Matrix) and GLRLM (Gray Level Run Length Matrix)

features in the evaluation of tumor progression. These features,

GLDM and GLRLM, quantify the degree of local variation within an

image (70). LRE (Long Run Emphasis) serves as a metric for

assessing the distribution of long run lengths, with higher values

indicative of longer run lengths and coarser structural textures.

Conversely, LDE (Long Dependence Emphasis) quantifies the

distribution of large dependencies, with elevated values denoting

larger dependencies and more homogeneous textures. In light of the

findings presented in Table 5, it is noteworthy that, when

maintaining LDE at a constant value, each unit increment in LRE

corresponds to a 79% (1-0.21) decrease in the odds of recurrence as

opposed to non-recurrence. Conversely, when keeping LRE at a

fixed value, every unit increasing in LDE results in a 5.8% increase

in the odds of recurrence. It is essential to recognize that the
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estimate for the intercept represents the log odds of a patient with

hypothetical zero values for LRE and LDE experiencing recurrence,

which is calculated to be 0.095. This observation underscores a

robust association between these two radiomic factors and the risk

of locoregional recurrence.

Figure 11 compares two sets of images processed using the

Laplacian of Gaussian (LoG) filter. The first three rows depict LoG-

filtered results on an Oral Squamous Cell Carcinoma (OSCC)

occurring in the tongue area, with varying sigma (s) values. The
last three rows display results for a non-OSCC area of the tongue.

Lower sigma values highlight finer structures, while higher sigma

values accentuate larger clusters in the tissue (71). We observed a

pattern in the OSCC images: with increasing sigma, there is a

reduction in highlights (white regions) in the filtered images,

contrary to the non-OSCC images, which maintain a consistent

level of highlights. This suggests that squamous cells in OSCC may

be more homogeneous than normal cells. Furthermore, we observed

circular artifacts in the OSCC images when filtered with larger

sigma (s > 0.4mm), whereas the normal set presents relatively

random structures. to normal tissues. These findings support a

fundamental histopathological principle: tumor tissues typically

exhibit a more anaplastic and infiltrative pattern than normal

tissues (72). This occurs because tumor cells grow unregulated

and clonally, leading to the loss of normal differentiation and

organization characteristic of healthy tissues.
4 Discussion

Several studies (57, 73, 74) have demonstrated the statistical

significance of the discriminating ability of radiomic features. The
TABLE 4 Continued

Model Comparison Res.Df. Res.Dev. Df. Dev. p-value

Smoke 76 89.33 -2 -28.86 <0.0001

Radiomics + ETOH 74 59.34

ETOH 76 90.13 -2 -30.79 <0.0001

Radiomics + T 72 59.24

T 74 84.78 -2 -25.53 <0.0001

Radiomics + ETOH + Smoke 73 58.99

ETOH + Smoke 75 89.10 -2 -30.11 <0.0001

Radiomics + T + Smoke 71 58.60

T + Smoke 73 84.65 -2 -26.04 <0.0001

Radiomics + T + ETOH 71 56.88

T + ETOH 73 84.45 -2 -27.57 <0.0001

Radiomics + Smoke + ETOH + T 70 56.74

Radiomics 75 61.55 -5 -4.81 0.4398
Comparisons assess the impact of radiomics inclusion. The first tests the superiority of the full model (radiomics and clinical) over the clinical model alone, while the rest evaluates the model with
or without radiomics. Significant p-values favor the full model in all comparisons. The table details degrees of freedom (Res.Df.), residual deviance (Res.Dev.), changes in degrees of freedom (Df.),
changes in deviance (Dev.), and associated p-values.
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Laplacian of an image highlights regions of rapid intensity change

(75). LDE and LRE measure the distribution of low gray-level

values, with a higher value indicating a greater concentration of

low gray-level values in the tumor CT scan. SRLGLE measures the

joint distribution of shorter run lengths with lower gray-level

values despite the universal adoption of CT modality in OSCC

diagnosis, automatic imaging prognostic evaluation is lacking and
Frontiers in Oncology 11
subjective. We present a fully automated prognostic evaluation

tool to preoperatively detect locoregional failure in oral cavity

cancer. The present study aimed to assess the prognostic

capabilities of radiomic features in OSCC locoregional

recurrence. Our findings demonstrate that analyzing radiomics

from pre-treatment CT scans offers valuable insights into risk

factors for locoregional failure and serves as prognostic
FIGURE 8

These plots illustrate the logistic ROC, delineating comparisons between the full model, which incorporates previously identified radiomic and
clinical features, and alternative combinations. The numbers next to each model in the legend give the AUC.
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biomarkers in this patient population. Non-invasive risk factors

play a crucial role in personalizing treatment planning,

particularly in OSCC, due to the involvement of critical neck

surgeries. It is well-known that neck surgeries potentially

significantly impact the quality of a patient’s life. Thoughtful

treatment planning has the potential to mitigate the side effects

of unnecessary neck surgery. Key findings of our study include two

significant radiomic risk factors: Large Dependence Emphasis

(LDE) of the Gray Level Dependence Matrix (GLDM) and Long
Frontiers in Oncology 12
Run Emphasis (LRE) of the Gray Level Run Length Matrix

(GLRLM) of the 3D Laplacian of Gaussian (LoG s=3)
filtered ROIs.

The AUC showed a stable and approximate value of 0.8 with a

sensitivity 0.8 and specificity of 0.8 at the optimal threshold,

indicating good prognosis accuracy of the classifier. These results

highlight the potential of radiomic features, as a biomarker

indicator for treatment failure prognosis. Our study standardized

voxel spacing in CT images across patients for precise feature
FIGURE 9

The Kaplan-Meier survival curves demonstrate a significant contrast (p = 1e-04) in recurrence-free survival (RFS) between high/low-end radiomic
risk groups.
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calculation and applied gray-level normalization to enhance feature

comparability. These steps are crucial for consistent radiomics

analysis. Combining Correlation Analysis, Recursive Feature

Selection, and Logistic Regression Best Subset Selection, our

feature selection process effectively reduced feature space

dimensionality while retaining critical prognostic information.

This approach he lps mit iga te b ias , overfi t t ing , and

multicollinearity in high-throughput data analysis.

The cost of missing a positive diagnosis (Type 2 error) is often

higher than false alarms. On the contrary, since neck dissection

significantly decreases the quality of life, reducing the false positive

rate (Type 1 error) shall be necessary. In fact, study (76) demonstrate

that ROC plots in the context of imbalanced datasets can be

deceptive. Therefore, our modeling emphasis was placed on

increasing sensitivity and specificity with due consideration to

AUC. The threshold for positive event classification plays a pivotal

role in predictive accuracy. While a threshold of 0.5 is commonly

employed in default, this value is often suboptimal for practical

applications in real-world studies, particularly in clinical settings

where the distribution of positive cases may have an inherent

prevalence, thereby elevating the risks of Type I and Type II errors.

Both types of errors are of concern in the study since both

overtreatment and undertreatment may lead to escalating

healthcare costs and potential harm to patients. To mitigate these

risks, we propose adopting a threshold that aligns with the natural

prevalence of our cohort, specifically a value of 0.28 for this cohort,

for final classification. This calibrated threshold aims to optimize two

key metrics: high sensitivity, crucial for minimizing Type II errors
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and thereby maximizing the identification of LR, and high precision,

vital for minimizing Type I errors to reduce false alarms. A number of

studies (77, 78) have shown that the chance of an OSCC

postoperative locoregional disease being diagnosed positive

(Sensitivity) after surgery is only 29%. Our approach demonstrated

a noteworthy testing AUC of 0.84, prioritizing both high sensitivity

(0.82) and specificity (1). This significantly reduces Type I and Type

II errors in post-treatment disease screening tests, effectively

minimizing overtreatment and undertreatment.

Our study underscores radiomics’ promise in OSCC

classification, yet it’s crucial to consider its limitations. The small

sample size and the classification study’s nature might influence our

model’s radiomics feature stability. For a low-biased, variance

classification model with two effects, at least 20 events per

training set are advisable, necessitating 27 events for a training set

comprising 75% of the sample. This requirement could limit our

model’s flexibility, potentially impacting the diagnostic capability of

the radiomics. Moreover, our analysis only involved radiomics

features from CT imaging. Future research should explore

features from various imaging techniques, like CT and MRI, to

heighten prediction precision. Notably, the observed correlation

between certain radiomics features and overall survival hints that

these features may mirror the tumors’ molecular traits. Upcoming

studies should integrate genetic data, such as TP53 (13) mutations

and P16 overexpression (28), with radiomics to more

comprehensively characterize head and neck squamous cell

carcinoma and offer a non-invasive, multimodal approach to

OSCC outcome prediction. It is important to acknowledge the
FIGURE 10

Side-by-side comparison of nomograms illustrating RFS probability predictions for the cohort. On the left, the “Full Model” includes both radiomic
and clinical factors, while on the right, the “radiomics-Only Model” consists of two identified radiomic risk factors exclusively.
TABLE 5 Summary of effects in model with entire cohort.

Coef. Estimate 95% CI OR 95% OR CI p-value

Intercept -2.355 -3.759 -0.952 0.095 0.019 0.331 0.001

LRE -1.557 -2.404 -0.709 0.211 0.076 0.433 0.000

LDE 0.056 0.028 0.084 1.058 1.032 1.093 0.000
fro
SE, standard error; z, z-value; CI, Confidence Interval.
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challenges posed by the sensitivity of the data involved. To our

knowledge, there is no public dataset available that could be directly

applied to our validation needs. As a result, we are actively seeking

to collaborate with multiple institutions to gather data for validation

purposes, aiming to mitigate the limitation and ensure the

robustness of findings.

In conclusion, our study demonstrated the potential of

radiomics as an effective tool to predict treatment response in

OSCC patients. Incorporating radiomics analysis into clinical
Frontiers in Oncology 14
practice could improve decision support and enhance patient

stratification, reducing both over-treatment and under-

treatment to improve outcomes. Moreover, processing the ROI

at the level of small tiles provides an additional non-invasive

avenue for assessing the spatial heterogeneity within the tumor.

The findings from the study pave the way for future

investigations through a larger clinical trial to further evaluate

the clinical efficacy of radiomics biomarkers for overall survival

prediction for OSCC patients.
FIGURE 11

The figure displays two sets of LoG filtered images. The first three rows show OSCC images in the tongue region at varying sigma values, illustrating
changes in the primary ROI. The last three rows depict normal tissue in the same region, also filtered at corresponding sigma values, to highlight
contrasts between OSCC and normal textures.
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