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Anemia is common in cancer patients and impacts on quality of life and prognosis.

It is typically multifactorial, often involving different pathophysiological

mechanisms, making treatment a difficult task. In patients undergoing active

anticancer treatments like chemotherapy, decreased red blood cell (RBC)

production due to myelosuppression generally predominates, but absolute or

functional iron deficiency frequently coexists. Current treatments for

chemotherapy-related anemia include blood transfusions, erythropoiesis-

stimulating agents, and iron supplementation. Each option has limitations, and

there is an urgent need for novel approaches. After decades of relative immobilism,

several promising anti-anemic drugs are now entering the clinical scenario.

Emerging novel classes of anti-anemic drugs recently introduced or in

development for other types of anemia include activin receptor ligand traps,

hypoxia-inducible factor-prolyl hydroxylase inhibitors, and hepcidin antagonists.

Here, we discuss their possible role in the treatment of anemia observed in patients

receiving anticancer therapies.
KEYWORDS

anemia, activin receptor ligand traps, cancer, chemotherapy, hepcidin, iron, therapy,
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Introduction

Anemia represents a common problem in cancer patients, affecting nearly 30-49% of

those with solid tumors at diagnosis, further increasing to nearly 70% or more among those

undergoing anticancer treatments or those with advanced disease (1–4). It is typically

multifactorial, often involving different pathophysiological mechanisms in the same

individual (5, 6). This makes treatment a difficult task (4), leaving a substantial fraction

of patients sub-optimally or even untreated (1, 6). Although blood loss (e.g., in

gastrointestinal tumors, or iatrogenic due to frequent blood sampling) and reduced red
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blood cell (RBC) survival can occur, decreased RBC production

predominates in most patients. In turn, reduced erythropoiesis can

be due to different mechanisms, which include: 1) direct bone

marrow toxicity by anticancer drugs; 2) absolute deficiency of

essential micronutrients (mainly, but not only, iron); 3)

functional iron deficiency due to hepcidin-induced iron

sequestration into macrophages; 4) impaired bone marrow

response to erythropoietin (EPO) due to tumor-associated

systemic inflammation; and bone marrow substitution by

metastatic cancer cells (7, 8). This review focuses on anemia

mainly related to anticancer treatments. For a comprehensive

review of the pathophysiology of anemia in cancer patients, the

readers are referred elsewhere (4).

The term Cancer-Chemotherapy Related Anemia (CCRA)

underlines what it is often the major driver of anemia in cancer

patients but cannot be viewed as an absolute entity. Rather, the

coexistence of other mechanism(s) is often the rule, with important

implications for the treatment of this condition (see below).

Moreover, it has to be taken into account that CCRA is not a

peculiarity of traditional chemotherapy agents, but can also occur as

off-target effect with a number of newer antineoplastic agents (4, 9),

including tyrosine kinase inhibitors (10), monoclonal antibodies

(11), and immunomodulatory agents (12). Drug-induced kidney

dysfunction can also contribute to hypoproliferative anemia

through inadequate EPO production. Rarely immunotherapeutic

agents known as checkpoint inhibitors (e.g., nivolumab,

ipilimumab, and pembrolizumab) can induce antibody-mediated

hemolytic anemia due to immune dysregulation (13). Overall,

anemia remains one of the most frequent adverse effects of

anticancer therapies, with a prevalence exceeding 90 percent for

patients receiving certain treatments (3). The ECAS (European

Cancer Anemia Survey) study, involving more than 15,000

patients, found an increasing prevalence of anemia from 32

percent in those newly diagnosed before receiving any treatment,

to 44-51 percent in those receiving concomitant chemotherapy/

radiotherapy or chemotherapy alone, respectively (1). Another

survey in the U.S. estimated a prevalence of anemia of 61 percent

in patients receiving chemotherapy, but only 25 percent of them

received any anemia treatment (14). Very recently, the CARENFER

study enrolling 1,221 patients with different types of solid

malignancies, most of them (75.4 percent) treated with

chemotherapy, found a high prevalence of iron deficiency (57.9

percent) with or without anemia (15), pointing out the need of

better detection of this micronutrient deficiency in cancer patients.

Prevalence and severity of anemia vary depending on the extent of

the disease, the type, schedule, and intensity of treatment, and

whether the patient has received prior radiotherapy and/or

chemotherapy (16).

CCRA is associated with decreased functional capacity and a

diminished quality of life (QOL) (16, 17), particularly because of its

contribution to fatigue, which is commonly recognized as the most

debilitating symptom (18). The degree of anemia in patients

receiving active anticancer treatment is classified according to the

National Cancer Institute (NCI) Common Terminology Criteria for

Adverse Effects (CTCAE) (available at https://ctep.cancer.gov/
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ctcae_v5_quick_reference_5x7.pdf), ranging from grade 1 or mild

(Hb levels < 120/130 g/L in females/males but ≥100 g/L) to grade 4

(Hb levels < 80 g/L and symptoms suggesting a life-threatening

condition) (for the detailed classification, see (4). Anemia can

represent a dose-limiting toxicity that prevents patients from

being treated with the full dose of chemotherapy. In patients with

both solid and liquid malignancies, the development of severe

anemia during the first cycle of chemotherapy is associated with

an increased risk of dose delay and/or dose reduction in the

subsequent chemotherapy cycle. Finally, evidence suggests that

anemia may be an independent prognostic factor associated with

reduced survival (19). For example, Waters and colleagues reported

that 86 percent of 906 patients treated with chemotherapy for lung

cancer at a single institution in the United States between 1999 and

2001 developed anemia during treatment (or within 1 month after

completing) (20). The median survival rates of patients whose Hb

levels were maintained above 12.0 g/dl were significantly (p < 0.001)

higher than those of patients with lower Hb levels (20). However,

because of the concurrence of multiple confounders, including

transfusions, a direct causal relationship between anemia and

survival in cancer patients has not yet been established (21).
Therapeutic options for cancer-
chemotherapy-related anemia

As for every type of anemia, elucidating the cause(s) is the

cornerstone of an effective therapeutic approach. However, this is

especially challenging in cancer patients. In its simplest form,

CCRA can be the result of bone marrow toxicity in patients with

early-stage cancer who were not anemic before starting

chemotherapy. On the other hand, in patients with advanced

disease, systemic inflammation, and micronutrient deficiencies

(generally of iron, rarely of folate or B12 with the possible

exception of low-middle income countries (22)) are often in the

background, and chemotherapy merely unravels or exacerbates a

pre-existing condition. In such cases the management should

involve a multi-modal approach accounting for the severity of

anemia, the associated inflammatory state, the impairment in iron

metabolism, and the overall nutritional status.

Currently available treatments for anemia in patients receiving

anticancer treatments include blood transfusions, iron

supplementation, and erythropoiesis-stimulating agents (ESAs),

like recombinant EPO (rhEPO) and darbepoetin-a. Each option

has limitations, and guidelines restrict their use to specific settings

(21, 23). Thereby, anemia in cancer patients is often poorly treated.

At present, we are witnessing an unprecedented development of

novel anti-anemic drugs (24–26), many of them acting by ameliorating

erythropoiesis. For this reason, since anemia in patients receiving

anticancer treatments is essentially hypoproliferative due to bone

marrow suppression, they could be theoretically of benefit also in

this setting.

Below we review the current and future options for anemia in

patients receiving active anticancer treatments (Figure 1).
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RBC transfusions

Until the advent of ESAs in the 1990s, RBC transfusions—which

were usually administered empirically when hemoglobin

concentrations declined <100 g/L —were the only/primary treatment

of cancer-related anemia. While transfusions are effective in providing

an immediate increase in Hb, benefits are transient and risks are far

from negligible, including anaphylactic reactions, transfusion-related

acute lung injury (TRALI), circulatory overload, pathogens

transmission, and increased susceptibility to infections possibly due

to immunosuppressive modulation (27, 28). Of note, RBC transfusions

have been independently associated with an increased risk for adverse

outcomes in cancer patients undergoing surgery in terms of increased

mortality, hospital length of stay, and tumor recurrence (29–31).

Regarding CCRA, the Hb threshold for transfusion is not as clear as

in other settings (32). The use of a liberal transfusion regimen (e.g., Hb

threshold of 90 to 100 g/L) has not proven advantageous in terms of

risk/benefit (33–35). A systematic review showed that restrictive

transfusion regimens (e.g., Hb thresholds set at 70 to 80 g/L) in

oncologic patients decrease blood utilization without increasing

mortality and morbidity (36). The most recent guidelines issued by

the Association for the Advancement of Blood and Biotherapies

(AABB) in 2023 recommend a restrictive transfusion strategy in

hemodynamically stable hospitalized adult patients with hematologic

and oncologic disorders considering transfusion when the hemoglobin

concentration is less than 70 g/L (37). However, the Authors recognize

that the level of certainty evidence is low due to the few numbers of

trials and patients enrolled. Thus, whether a rigorous restrictive
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debated. Ad hoc studies investigating the optimal patient blood

management strategy in CCRA are warranted. For the moment,

especially in outpatients, an individualized approach putting first a

comprehensive clinical judgment rather than mere laboratory

abnormalities remains the best option (4).

Iron supplementation

As mentioned above, iron deficiency (ID) in cancer patients is

common andmultifactorial (15, 38). For a comprehensive review of the

numerous mechanisms possibly leading to ID in cancer patients,

readers are referred elsewhere (6). Briefly, absolute ID (AID)

corresponds to depletion of iron stores, which can be due, for

example to bleeding in gastrointestinal cancer, malnutrition in

patients with advanced disease, and malabsorption in patients

submitted to wide bowel resections. Even more common in cancer

patients is iron-restricted erythropoiesis, also sometimes referred to as

functional ID (FID), which corresponds to insufficient iron availability

despite theoretically adequate iron stores. Iron sequestration typically

takes place in macrophages due to the upregulation of hepcidin (see

below) by proinflammatory cytokines (8). Generally speaking, anemia

in cancer patients can be reminiscent of the anemia of inflammation

(39) when all other causes of anemia have been excluded. Finally, a

particular type of FID can occur in CCRA patients treated with ESAs,

where expanded erythropoiesis not infrequently outpaces iron delivery

from stores, ultimately leading to ESAs unresponsiveness unless

supplemental iron is given (40).
FIGURE 1

CCRA is essentially a hypoproliferative anemia mainly caused by toxic effects of anticancer drugs on rapidly proliferating RBC precursors in the bone
marrow (major red lightning). However, the pathophysiology is often more complex, including drug-induced kidney damage with reduced
production of endogenous EPO (minor red lightning), and low iron availability for erythropoiesis (dotted blue arrow). The latter can be due to either
absolute or functional iron deficiency (FID, see main text). FID, in turn, is mainly determined by inflammatory-related increased hepcidin levels,
leading to iron se-questration into macrophages. The general mechanisms of action of the innovative anti-anemic drug classes discussed in text are
depicted. All the three classes inhibit path-way/molecule that modulate erythropoiesis, ultimately increasing RBCs production. Hypoxia Inducible
Factor – Prolyl Hydroxylase inhibitors (HIF-PHIs) stabilize HIF leading to increased production of endogenous EPO. They represent an important
alternative to the traditional administration of exogenous (recombinant) EPO. Moreover, they also have some favorable effects on iron metabolism
(see main text). Activin Receptor (ACVR) ligand traps bind several members of the Transforming Growth Factor – beta (TGF-b) superfamily, thus
reducing a key signaling pathway which negatively modulates late-stage erythropoiesis. Hepcidin antagonists increase iron availability
for erythropoiesis.
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Indeed, numerous studies have proven the efficacy of

intravenous (IV) iron in combination with ESAs in CCRA (41–

43). An earlier systematic review and meta-analysis (performed in

2013) of randomized controlled trials comparing IV iron with no

iron or oral iron in CCRA confirmed the efficacy of IV iron in

combination with ESAs (44). The same meta-analysis also reported

the efficacy of IV iron alone, while only a few smaller trials were

available at that time (44). Indeed, with the recent advent of modern

third-generation IV iron preparations (45), evidence is

accumulating on the efficacy of iron monotherapy in CCRA (46–

49). CCRA patients with concomitant AID are the most suitable

candidates for this approach, but diagnosing AID in cancer patients

using traditional iron biomarkers is challenging (6), due, for

example, to ferritin upregulation by tumor necrosis factor-alpha

(TNF-a) and pro-inflammatory cytokines (50, 51). To identify

patients that could benefit from iron supplementation, different

ferritin cut-offs have been proposed, ranging from 100 (21) to up to

800 (52) mg/L, also depending on the presence or absence of

concomitant low transferrin saturation (TSAT <20%). However, a

consensus is still lacking, and there is an urgent need for better

biomarkers (8). The most promising one in this sense is hepcidin,

which has the potential to distinguish absolute iron deficiency even

in inflammatory conditions (53). Indeed, at least three independent

studies have shown its usefulness in predicting AID (and hence the

response to IV iron) in CCRA (48, 54, 55). Nevertheless, due to the

lack of harmonization between different valuable assays (56, 57), a

universal cutoff is not yet available. On the other hand, there is

substantial agreement on the little usefulness of oral iron in the

majority of CCRA patients due to several caveats, including side

effects (e.g., gastrointestinal discomfort), poor compliance, especially

in patients on polypharmacy, and inflammation-induced

malabsorption through increased hepcidin (4–6, 9). Iron

administration in CCRA should be prescribed to patients within

the framework of currently available guidelines (21, 52).
Erythropoiesis stimulating agents

Since their appearance in the 1990s, erythropoiesis-stimulating

agents (ESAs) substantially changed the scenario of CCRA treatment.

The efficacy of either rhEPO (epoetin) or the analog darbepoetin in

reducing transfusions and improving QoL has been documented by

several studies and meta-analyses (58–60). Biosimilars are available,

showing acceptable interchangeability (61). However, ESAs in cancer

patients have raised major concerns, including increased risk of

thrombosis (62) and decreased survival possibly due to tumor

progression (63). The latter could be due to off-target ESAs binding

to ephrin-B4 receptors, which in turn increase angiogenesis and tumor

neovascularization (64). This has led to consistent restriction of ESAs

use for treating anemia in cancer patients. According to recent

guidelines jointly issued by the American Society of Hematology and

the American Society of Clinical Oncology (for a comprehensive

review, see (23), these drugs should be reserved for CCRA patients

receiving chemotherapy with palliative intent and who are expected to
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used in patients with low-risk myelodysplastic (MDS) syndromes.
Novel anti-anemic drugs with a potential
use for CCRA

Activin type II receptor (ACVR) ligand traps
This novel class includes two drugs, luspatercept and

sotatercept. They are recombinant fusion proteins that act by

inhibiting negative regulators of late-stage erythropoiesis, like

activin B and other transforming growth factor beta (TGF b)
superfamily ligands (65–70). Thus, they can be viewed as

molecular traps that facilitate erythropoiesis by removing

biological brakes to the process (24, 26, 71). At variance with

EPO, which stimulates the proliferation of RBC progenitors

during the early stages of erythropoiesis, ACVR ligand traps

distinctly favor late-stage erythropoiesis. Their effect, also through

modulation of marrow stromal cells (66), is prevalent in

differentiation rather than proliferation of RBC progenitors. This

explains why these compounds work particularly well in conditions

of pathologically expanded but ineffective erythropoiesis, like

thalassemic syndromes and low-risk MDS (see below).

Of note, sotatercept was initially developed to increase bone

mineral density in malignant bone disease and in osteoporosis (72,

73), with the unexpected observation of an erythroid response (73, 74).

Later, the same effect was observed with the analog luspatercept (75).

Improvement of ineffective erythropoiesis was subsequently confirmed

in murine models of b-thalassemia (69). This recently translated into

one of the major achievements in the treatment of patients with beta-

thalassemic syndromes, where luspatercept has been proven to increase

Hb and substantially decrease transfusion needs (76). Indeed,

luspatercept has been preferentially developed in clinical studies

because of a higher specificity activin B (rather than for activin A) as

compared to sotatercept, with a lower probability of determining off-

target effects (77). The sustained effect on erythropoiesis has also

prompted the use of luspatercept for anemia associated with

hematologic malignancies (77, 78). Low-risk MDS have been selected

because of the need for alternative strategies to frequent RBC

transfusions in anemic patients with prolonged anticipated survival.

The MEDALIST trial enrolled 229 transfusion-dependent patients

affected by MDS with ringed sideroblasts, who were either refractory

or not candidates for ESAs because of high baseline EPO level (79).

Transfusion independence for ≥8 weeks was observed in 38 percent of

the patients in the luspatercept group, as compared with 13 percent in

the placebo group (P<0.001). Such positive results have been recently

confirmed by the COMMANDS trial, which enrolled 356 patients

randomized to receive either luspatercept or epoetin alfa and showed a

higher rate of transfusion independence in the luspatercept group (80).

Luspatercept shows a favorable safety profile (79), and is now approved

for low-risk MDS by both FDA and EMA. A post-hoc analysis of the

MEDALIST study provided support for the efficacy of Luspatercept

also in a subgroup of patients affected by myelodysplastic syndromes/

myeloproliferative neoplasm with ring sideroblasts and thrombocytosis
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(MDS/MPN-RT-T) (81); Luspatercept is currently under active

investigation for other types of anemia in hematological

malignancies, like myeloproliferative neoplasm-associated

myelofibrosis (NCT03194542). Preliminary results of the latter study

have been recently presented showing that transfusion-independency

was reached in nearly one-third of patients on ruxolitinib that were

initially transfusion dependent (82). Such promises and successes in

anemia associated with hematological malignancies make ACVR

ligand traps an attractive option also for anemia in other

malignancies. To date, only limited/incomplete data are available for

sotatercept in CCRA. Two Phase II placebo-controlled studies

evaluated this anti-anemic drug in patients with metastatic breast

cancer receiving myelosuppressive chemotherapy or with advanced/

metastatic solid tumors receiving platinum-based chemotherapy (83).

Unfortunately, both studies were terminated early due to slow patient

accrual. Nevertheless, preliminary results indicated that mean

hemoglobin levels increased ≥10 g/L in up to 66.7 percent of patients

receiving sotatercept, as compared to 0 percent in placebo groups (83).

In both studies, the safety profile was comparable to that of placebo

groups. While caution is needed in interpretation due to the small

populations studied, both studies point out the potential benefit of

ACVR ligand traps for CCRA.

Hepcidin antagonists
As mentioned above, hepcidin overexpression plays a major

role in the anemia of inflammation (39, 84) and often contributes to

anemia in cancer patients by reducing iron availability for

erythropoiesis because of iron sequestration in cells, mainly in

macrophages (39). This condition of FID can be, in principle,

reversed by counteracting hepcidin activity (85). However,

inhibiting hepcidin is not as simple as it could be theoretically

anticipated. This hormone, which represents the master regulator of

iron homeostasis (53), is continuously produced by the liver in

discrete amounts (nM concentration). Direct hepcidin binders have

been developed (85, 86), including a fully humanized monoclonal

antibody (LY2787106), and a structured mirror-image RNA

oligonucleotide (NOX-H94) (87), both with high affinity for

human hepcidin. A phase 1 multicenter trial evaluated

LY2787106 in 33 patients with different malignancies and anemia,

19 of whom received chemotherapy (88). LY2787106 was well-

tolerated and induced initially dose-dependent increases in serum

iron and transferrin saturation in patients with high hepcidin

concentration. However, iron parameters quickly returned to

baseline (within 1 week), and the primary efficacy endpoint

(increased Hb level) was not reached (88). No further

development of the drug has appeared in the literature.

NOX-H94 was initially evaluated in human volunteers

subjected to experimental endotoxemia by lipopolysaccharide

administration, with an observed increase of serum iron

consistent with hepcidin inhibition (89). The drug was further

shown to effectively inhibit hepcidin in a dose-dependent manner

and was apparently well-tolerated (90). In 2014, a phase-II pilot

study on 12 patients with anemia and hematological malignancies

reported increased hemoglobin levels in 5 (91). However, again, no
Frontiers in Oncology 05
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that makes hepcidin antagonization far from simple is represented

by the substantial complexity of molecular regulation of hepcidin

production (92, 93). Many strategies alternative to direct hepcidin

neutralization have been reported, including antagonists of the bone

morphogenetic protein 6 (BMP6) pathway with heparin derivatives

(94–97), anti-BMP6 antibodies (98), dorsomorphin (99), and

ferroportin stabilizers (100, 101). Further drugs that modulate the

hepcidin-ferroportin axis include anti-hemojuvelin (HJV)

antibodies (currently under evaluation in two clinical trials

NCT05745883 and NCT05320198), and momelotinib. This latter

drug is a promising and potent inhibitor of the ACVR1/ALK2

receptor, which has been developed for the treatment of anemia in

patients with myelofibrosis (102–104). In a broad sense, numerous

other drug classes indirectly regulate hepcidin (for a recent review,

see (105)). Among them are interleukin 6 (IL-6) and interleukin-1

beta (IL-1b) inhibitors, signal transducer and activator of

transcription 3 (STAT3) inhibitors, and Hypoxia-inducible

factor–prolyl hydroxylase inhibitors (HIF-PHIs) (see below).

While several clinical trials are underway (90), no data are

available for patients with CCRA.

Hypoxia-inducible factor-prolyl
hydroxylase inhibitors

Hypoxia-inducible factors (HIFs) are transcription factors that

mediate the cellular response to hypoxic conditions via the

upregulation of several genes that are key to erythropoiesis,

including those for EPO, the EPO receptor, and even for some

critical proteins involved in iron metabolism (25, 106, 107). HIFs

are heterodimers consisting of a constitutively expressed HIF-1b
subunit and an O2-regulated HIF-a subunit. Under normoxic

conditions, HIF is degraded by the hydroxylation of prolyl

residues of the HIF-a subunit by HIF prolyl hydroxylases (PH).

By preventing HIF degradation, HIF-PHIs stimulate endogenous

EPO and promote erythropoiesis (25). Several HIF prolyl

hydroxylase inhibitors have been developed and successfully used

to treat anemia in chronic kidney disease (CKD) patients (108).

HIF-PHIs induce endogenous EPO at a concentration near the

physiological range, representing a substantial difference with peaks

determined by rhEPO administration and may explain the lower

rate of cardiovascular adverse events. Other advantages over

traditional ESAs include oral administration, lower costs, and

lower immunogenicity. As mentioned above, it is worth noting

that HIF-PHIs have pleiotropic favorable action on erythropoiesis

beyond EPO stimulation (25). Indeed, critical players in iron

metabolism like the Transferrin Receptor, Divalent Metal

Transporter 1, and Ferroportin (the cell membrane receptor of

hepcidin) are controlled by HIF through binding to their hypoxia-

responsive elements, resulting in potent transcriptional activation

(109–111). In this way, HIF-PHIs improve iron absorption from the

gut and iron uptake and utilization by erythroid precursors through

upregulation of transferrin receptor, ultimately leading to decreased

levels of hepcidin, ferritin, and transferrin saturation (112).

Roxadustat, one of the main HIF-PHIs already approved for
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anemia in CKD (113, 114), is currently being investigated in

oncologic patients with anemia. MATTERHORN (NCT03263091)

is a phase 3, randomized, double-blind, placebo-controlled study to

assess the efficacy and safety of roxadustat in anemia of lower risk-

MDS. In the dose-selection stage, Roxadustat was well-tolerated,

and 37.5% of pts (9/24) with LR-MDS and low RBC transfusion

burden achieved transfusion independence (TI) (115). In the

MATTERHORN double-blind stage, a more significant

percentage of pts in the Roxadustat arm compared with the

placebo arm were TI responders (47.5% vs. 33.3%). However, this

difference did not reach statistical significance (p=0.22) (116). A

recent phase 2 open-label trial has investigated the efficacy and

safety of Roxadustat for CCRA in various non-myeloid

malignancies, including pancreas, breast, lung, and ovarian

cancer, who have planned concurrent myelosuppressive therapies

(117). Subgroup analyses demonstrated the efficacy of Roxadustat

in correcting Hb regardless of tumor type and chemotherapy

received. Adverse events were consistent with observations in

patients with advanced-stage malignancies.

Despite their undoubtful benefit in the short-term correction of

anemia, concerns have been raised about the possible off-target

effects of HIF-PHIs during long-term use. Indeed, HIFs are

ubiquitously expressed and regulate a broad spectrum of cell

functions beyond erythropoiesis. Theoretically, HIF-PHIs may

foster latent cancers since HIF activation in a hypoxic

environment could promote cell proliferation and angiogenesis.

This calls for caution, especially in older people. Nevertheless, no

data thus far have revealed any effect of HIF-PHIs on tumor

progression. On the other hand, chronic hypoxia caused by prolyl

hydroxylase inhibition may inactivate cancer-associated fibroblasts,

leading to decreased tumor metastatic spread. Ideally, future
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compounds able to selectively stimulate HIF2 could reduce

undesirable off-target effects.

Conclusions and perspectives

Anemia in cancer represents a significant unmet clinical need

because of its high prevalence, the impact on QoL, and the likely

implications on survival. Currently available treatments,

particularly RBC transfusions and ESAs, have significant

limitations. This results in a substantial proportion of patients left

untreated or treated inadequately (4, 21).

The first step of the treatment of anemia in these patients is

disentangling the causes, particularly those that can be readily

treated, like iron deficiency, which is highly prevalent in cancer

patients (3, 14) and relatively simple to correct with the newer

intravenous iron preparations.

Nowadays, the therapeutic armamentarium of anti-anemic

drugs is rapidly expanding, with remarkable successes in

conditions like CKD, thalassemic syndromes, and certain MDS.

For the moment, only a minority of the agents belonging to the

most promising classes shown in Table 1 are being specifically

investigated in CCRA. Each of them shows promise and caveats.

Nevertheless, the multifactorial pathogenesis of anemia in

cancer, which can also change during the evolution of the disease,

makes it unlikely that a single drug will be successful in the

heterogeneous population of anemic cancer patients. Rather, an

individualized holistic approach, including a thorough evaluation of

nutritional status and, possibly, the combined use of more than one

drug/supplement targeting different steps of erythropoiesis, should

be implemented to provide an effective treatment that improves

survival and quality of life of anemic cancer patients.
TABLE 1 Novel anti-anemic drugs that could be used for Cancer Chemotherapy-Related Anemia.

Class General anti-
anemic
mechanism

Molecular mechanism Examples Comments

Hepcidin antagonists Increased iron
availability to BM
erythroid precursors

Inhibition of hepcidin by direct
binding or by interfering with
its action

LY2787106
NOX-H94
Heparin
derivatives
Anti-BMP6
agents
Ferroportin
stabilizers

Promising, but only in pre-clinical models for
the moment

Hypoxia Inducible Factors-
Prolyl Hydroxylase inhibitors
(HIF) stabilizers

↑ endogenous EPO
↑ iron utilization

Inhibition of HIF prolyl-
hydroxylase.
↑ expression of key iron-
related genes

Roxadustat
Vadadustat
Daprodustat
Molidustat

Oral administration; possible better CV risk profile
compared to ESAs; concerns about off-target effects
during long term use

Activin receptor IIA
ligand traps

Stimulation
of erythropoiesis

Molecular trapping of TGF-b
superfamily inhibitors of late-
stage erythropoiesis

Luspatercept
Sotatercept

Already approved for anemia in certain hematologic
malignancies (e.g., low-risk MDS) s.c. administration
every 3-4 weeks
BM, bone marrow; EPO, erythropoietin; CV, cardiovascular; ESAs, erythropoiesis stimulating agents; MDS, myelodysplastic syndrome; CCRA, Cancer-Chemotherapy Related Anemia.
↑, increased.
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