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Background: Genome instability plays a crucial role in promoting tumor

development. Germline mutations in genes responsible for DNA repair are

often associated with familial cancer syndromes. A noticeable exception is the

CHEK1 gene. Despite its well-established role in homologous recombination,

germline mutations in CHEK1 are rarely reported.

Case presentation: In this report, we present a patient diagnosed with ovarian

clear cell carcinoma who has a family history of cancer. Her relatives include a

grandfather with esophageal cancer, a father with gastric cancer, and an uncle

with a brain tumor. The patient carried a typical genomic profile of clear cell

carcinoma including mutations in KRAS, PPP2R1A, and PIK3R1. Importantly, her

paired peripheral blood cells harbored a germline CHEK1 mutation, CHEK1 exon

6 c.613 + 2T>C, which was also found in her father. Unfortunately, the CHEK1

status of her grandfather and uncle remains unknown due to the unavailability of

their specimens. Further evaluation via RT-PCR confirmed a splicing error in the

CHEK1 gene, resulting in truncation at the kinase domain region, indicative of a

loss-of-function mutation.

Conclusion: This case highlights a rare germline CHEK1 mutation within a family

with a history of cancer. The confirmed splicing error at the mRNA level

underscores the functional consequences of this mutation. Documenting such

cases is vital for future evaluation of inheritance patterns, clinical penetrance of

the mutation, and its association with specific cancer types.
KEYWORDS

CHEK1, germline mutation, splicing error, ovarian cancer, inherited cancer
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1380093/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1380093/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1380093/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1380093/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1380093&domain=pdf&date_stamp=2024-04-15
mailto:fyyzjh@suda.edu.cn
mailto:sxiao@partners.org
https://doi.org/10.3389/fonc.2024.1380093
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1380093
https://www.frontiersin.org/journals/oncology


Qian et al. 10.3389/fonc.2024.1380093
1 Introduction

DNA repair involves complex mechanisms and intricate

pathways. Both checkpoint kinase 1 and 2 (CHEK1, CHEK2) play

crucial roles in DNA repair and safeguarding genomic stability

during the cell cycle (1). They serve as vital checkpoints that, when

activated, temporarily halt the cell cycle, allowing time for DNA

repair or triggering apoptosis when DNA damage becomes

irreparable. Specifically, CHEK1 is activated by the DNA damage

sensor known as the ataxia telangiectasia and Rad3-related protein

(ATR) in response to single-strand DNA breaks during the S phase

of the cell cycle. Subsequently, CHEK1 phosphorylates CDC25A

and CDC25C, leading to the inhibition of cyclin-dependent kinases

(CDKs) and cell cycle arrest (2, 3). CHEK2 is activated when

double-strand DNA damage is detected by Ataxia-telangiectasia

mutated (ATM) during the G1 phase of the cell cycle (4). The

activated CHEK2 kinase phosphorylates and stabilizes p53 (ATM-

CHEK2-P53 axis), leading to p21 expression (5–7). p21 is a potent

CDK inhibitor that blocks the cell cycle progress (8).

Germline mutations in genes involved in DNA repair pathways

are associated with genome instability and an increased risk of

cancer development. For example, individuals with Li-Fraumeni

syndrome are predisposed to various cancers, including leukemia,

sarcomas, brain tumors, adrenocortical carcinoma, and other solid

tumors, often manifesting at a young age (9). While TP53 germline

mutations are frequently associated with Li-Fraumeni syndrome,

some individuals with TP53-negative Li-Fraumeni syndrome

harbor germline mutations in CHEK2 (10, 11). Germline

mutation of CHEK1, however, is rarely documented in inherited

cancers. This report presents the discovery of a novel CHEK1

splicing mutation within a family with multiple cancer patients.

This mutation results in a splicing error and a frameshift coding

sequence alteration, confirming its inactivation nature.
2 Case presentation

During her annual physical examination, a 57-year-old female

presented with pelvic effusion and a cystic mass measuring 119 ×

126 × 100 mm, which exhibited nodular protrusions into the cavity

as revealed by gynecological B-ultrasound. A benign ovarian tumor

was suspected at the time. However, two months later, an MRI

evaluation indicated a progressive enlargement of the mass

(Figure 1A). Further serum examination showed elevated levels of

tumor biomarkers: CA125 at 49.80 U/mL (normal range 0.1 ~35 U/

ml) and HE4 at 3250 pmol/L (normal range <70 pmol/L for

premenopause women and <140 pmol/L for post-menopause

women). The patient underwent a transabdominal total

hysterectomy, bilateral salpingo-oophorectomy, omentectomy,

and pelvic and paraaortic lymphadenectomy. Hematoxylin and

eosin (H&E) staining of formalin-fixed paraffin-embedded (FFPE)

sections from the right ovarian appendage revealed a clear cell

carcinoma with papillary and focal solid growth patterns

(Figure 1B). Tumor cells contained clear cytoplasm, uniform

nuclear atypia, prominent nucleoli, and occasional mitosis.

Immunohistochemistry of the tumor cells was positive for ER
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(90% +), HNF1-b, PAX-8, p53(diffuse +), p16 (partial +), Ki-67

(30% +), and negative for PR, Vimentin, WT1, and Napsin A. Based

on these findings, a diagnosis of ovarian clear cell carcinoma

(OCCC) was established.

Targeted DNA NGS analysis of 638 cancer-related genes,

combined with whole-genome single-nucleotide polymorphism

(SNP) examination, was performed on both tumor and paired

blood specimens. This analysis revealed somatic mutations,

including KRAS exon 2 c.35G>T p.G12V (26.7%), PPP2R1A exon

5 c.547C>T p.R183W (18.1%), and PIK3R1 exon 13 c.1721_1727del

p.K575Efs*5 (21%) (Figure 1C). These somatic mutations align with

the characteristic profile of ovarian clear cell carcinoma.

Additionally, a CHEK1 exon 6 c.613 + 2T>C mutation was

identified in both the tumor and normal blood cells, confirming

its germline origin. The timeline summarized the major clinical

events of the patient (Figure 1D).

The patient reported a family history of cancer, spanning

esophageal cancer in her grandfather, gastric cancer in her father,

a brain tumor in her uncle, and renal cell carcinoma in her mother.

Her grandfather (I-1) and uncle (II-3) were diagnosed with

esophageal cancer and a brain tumor, respectively, based on

imaging without biopsy, and both succumbed to the disease

without undergoing surgery. Her father (II-1) had stage 2A

gastric adenocarcinoma in 1995, which was successfully treated

with surgery. The patient’s mother (II-2) underwent left-sided renal

cancer surgery in 2007, with a postoperative histopathologic

diagnosis of clear cell carcinoma. As of genetic counseling in

February 2023, her other siblings had no reported history of

cancer. To assess the presence of the CHEK1 mutation in family

members, a PCR reaction was performed to amplify the DNA

fragment containing the mutation site using gene-specific primers

(CHEK1_DNA_F: GCTCCAGAACTTCTGAAGAGAAG;

CHEK1_DNA_R: GCTGCAGTGAGCTATAACAGC). The PCR

product was subjected to direct Sanger sequencing. These studies

detected the same CHEK1 mutation in her father, who was

diagnosed with gastric cancer at the age of 64, and two siblings,

both of whom remained tumor-free at the ages of 60 and 68,

respectively. Unfortunately, no specimens were available to evaluate

the mutation status of her deceased grandfather, who was diagnosed

with esophageal cancer at the age of 80, and her uncle, who was

diagnosed with a brain tumor at the age of 72 (Figure 2).

The CHEK1 exon 6 c.613 + 2T>C mutation was not

documented in any cancer databases or in gnomAD. To

determine whether this mutation impacts RNA splicing, an RT-

PCR analysis was performed using peripheral blood from the

proband. This assay amplified a fragment encompassing the

splicing sites of exons 6 and 7 (CHEK1_RNA_F: 5 ’-

GCTCCAGAACTTCTGAAGAGAAG; CHEK1_RNA_R: 5’-

CTTGCTGATGGATTCTCAACT). Sanger sequencing of this

PCR product confirmed that the CHEK1 c.613 + 2T>G mutation

disrupted the donor splice site of exon 6, leading to the utilization of

an alternative splice site located 20 bp downstream of exon 6

(Figure 3A). A similar aberrant CHEK1 transcript was confirmed

by a RNAseq analysis (Figure 3B). This resulted in a reading frame

shift after amino acid residue 204 of CHEK1 and the presence of a

premature translational stop codon at 41 amino acid residues
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downstream of the mutated nucleotide (truncated CHEK1 p.

E205Gfs*41) (Figure 3C).
3 Discussion

CHEK1 is a serine/threonine kinase composed of an N-terminal

kinase domain (amino acid residues 8-265) and a C-terminal

regulatory domain (residues 317-476). The C-terminal regulatory

domain of CHEK1 is self-inhibitory, interacting with the N-
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terminal to block the kinase activity of CHEK1 (12, 13). Upon

encountering DNA damage or replication stress signals, the ATR

kinase becomes activated, phosphorylating multiple serine/

glutamine residues within the C-terminal of CHEK1, especially

Ser317 and Ser345 residues. This phosphorylation event leads to the

dissociation of the N- and C-terminal structural domains, activating

CHEK1 (13–16). It has been demonstrated that the catalytic activity

of the N-terminal kinase domain alone is significantly higher than

that of the full-length CHEK1 protein in vitro (17). However, the

integrity of the C-terminal regulatory domain is crucial for the
FIGURE 1

MRI revealed a pelvic cystic mass (A); histological examination of the tumor demonstrated a clear cell morphology with papillary and focal solid
growth patterns, consistent with the diagnosis of ovarian clear cell carcinoma (OCCC) (B); Genomic profiling of the tumor exhibited a somatic
mutation pattern consistent with the OCCC. Germline mutations, including CHEK1, were detected in the peripheral blood specimen (highlighted in
yellow) (C); and a timeline summarizing the key clinical events of the proband (D).
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proper in vivo functioning of the CHEK1 protein. In a study

conducted by Ning et al. (12), the effects of various CHEK1

truncating variants on cell cycle regulation were investigated. The

CD368 variant (residues 368-476 truncation) exhibited higher

catalytic activity compared to full-length CHEK1, while CD288
(residues 288-476 truncation) had nearly lost its entire catalytic

activity. Therefore, the C-terminal regulatory domain of CHEK1

contains not only inhibitory elements but also essential positive

regulatory elements for catalytic activity (13–16). The CHEK1

c.613 + 2T>G splice variant reported in this study was predicted

to generate a truncating protein p.E205Gfs*41, resulting in a partial

loss of the N-terminal kinase domain (residues 205-265) and the

complete deletion of the C-terminal, thus predicting a loss-of-

function mutation.

The role of CHEK1 in DNA repair through homologous

recombination is well-established. For instance, knocking down

CHEK1 has been shown to result in deficient homologous

recombination repair, confirming its function as a BRCA-like

tumor suppressor (18). In addition, CHEK1 heterozygous deletion

has been observed to accelerate tumorigenesis in WNT1 transgenic

oncogenic mice compared to wild-type mice (19), as well as in

chemically induced skin papilloma formation (20). During the early

stages of tumorigenesis, partial deletion of CHEK1 has been linked to

genomic instability, which in turn accelerates tumor development

(19, 21, 22). However, the status of CHEK1 as a bona fide tumor

suppressor remains controversial. CHEK1 is generally overexpressed

in various cancers, including ovarian, breast (23), cervical cancer, and

brain cancers (24), where tumor cells gain a survival advantage by

enhancing checkpoints to facilitate DNA damage repair (25, 26).

Elevated CHEK1 levels (both protein and mRNA) have been

associated with chemoresistance (27–29), and many clinical trials

are evaluating CHEK1 inhibitors in combination with chemotherapy

(3, 26). On the other hand, loss-of-function variants have only been

identified in a few cancers, such as gastric (30), colorectal (31, 32),
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and endometrial cancers (31, 33) with MSI-H features. Therefore,

while germline CHEK1 mutations with loss-of-function potential

may contribute to genome instability, cell cycle deregulation, and

tumor development, somatic tumor cells with functional CHEK1 or

gain-of-function CHEK1 alterations may assist in tumor cell survival

by promoting lethal DNA damage repair.

Epithelial ovarian cancer is categorized into “Type I” and “Type

II” subtypes (34). Our proband was diagnosed with OCCC, which is

a Type I ovarian cancer and typically follows a relatively indolent

course, often progressing through multiple steps from atypical

hyperplasia, precancerous lesions, and borderline tumors (34, 35).

Hereditary ovarian cancer associated with BRCA1/2 mutations

usually manifests as Type II tumors, characterized by rapid

disease progression and high aggressiveness (35–38). However,

OCCC is rarely linked to germline BRCA1/2 mutations (39, 40).

OCCC is hypothesized to arise from benign ectopic endometrial

tissue on the ovary (41, 42), with approximately 50% to 74% of

OCCC cases associated with endometriosis. It is suggested that the

inflammatory and oxidative stress responses induced by

endometriosis contribute to DNA damage and the development of

malignancy (42). The most frequent genomic alterations in OCCC

involve somatic mutations in ARID1A and PIK3CA, with loss of

ARID1A function considered one of the earliest events, occurring in

atypical endometriosis (43–45), and contributing to genomic

instability. However, ARID1A loss alone is insufficient for tumor

formation, typically occurring concomitantly with activation of the

PI3K/AKT/mTOR pathway. ARID1A and PIK3CA alterations

coexist in 20% to 56% of OCCC cases (46). Mouse models

harboring both ARID1A and PIK3CA mutations develop tumors

that phenotypically and molecularly resemble human OCCC (47),

confirming the pivotal role of these pathways in OCCC

pathogenesis. Our proband had no history of endometriosis or

ARID1Amutation. We hypothesize that germline haploinsufficiency

of CHEK1, as an alternative early genomic instability event,
FIGURE 2

The family pedigree showed multiple members with cancer, including the proband with ovarian cancer at 57, the father with gastric cancer at 64, an
uncle with a brain tumor at 72, the grandfather with esophageal cancer at 80, and the mother with renal cell carcinoma at 75. The CHEK1
c.613 + 2T>C mutation was confirmed in the proband, the father, and two siblings. Note that the mutation in the father was validated using NGS
instead of Sanger sequencing due to poor sequencing results from the PCR product, likely attributed to low DNA quality from the very old
tumor block.
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contributed to OCCC oncogenesis by cooperating with PI3K

pathway activation. Notably, in the DNA damage response

signaling, ARID1A interacts with ATR and is recruited to double-

strand breaks to sustain DNA damage signaling (48). Defective

ARID1A may impair DNA damage-induced ATR activation and its

downstream signaling, particularly involving CHEK1 (48). Thus,
Frontiers in Oncology 05
functional defects of the CHEK1 may partially overlap with

ARID1A in initiating events within this pathway.

While the CHEK1 gene is included in some commercial NGS

panels designed for assessing hereditary cancer risk (49), the available

data regarding germline CHEK1mutations and cancer risk are limited.

In a study involving 48 women with inherited ovarian cancer lacking
A

B

C

FIGURE 3

RT-PCR analysis of peripheral blood from the proband revealed that the CHEK1 c.613 + 2T>C mutation caused a splicing error, resulting in the
inclusion of a 20 bp intronic sequence in the CHEK1 transcript (A); an RNA NGS assay demonstrated a similar aberrant CHEK1 transcript due to the
mutation at the splicing site (arrow) (B); and an ideogram illustrated the wild-type splicing donor and acceptor sites of CHEK1 intron 6, along with
the alternative splicing donor and acceptor sites from the mutated allele. This alternative splicing event leads to the formation of a premature stop
codon (C).
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BRCA1 or BRCA2 mutations, a CHEK1 exon 7 c.1564-1565insA

frameshift mutation was identified (50). Additionally, in a group of

246 prostate cancer patients with a cancer history recommended for

germline mutation testing by NCCN guidelines, a germline CHEK1

“stop-gain” mutation was detected (51). However, neither study

provided comprehensive mutation tracking within family members.

The rarity of germline CHEK1 mutations may underscore its

significance in embryonic and organizational development. In mouse

models, homozygous deletion of CHEK1 resulted in embryonic death

(19, 52), whereas mice with heterozygous loss of CHEK1 were viable

but exhibited haploinsufficiency, showing increased accumulation of

DNA damage, cell cycle dysregulation, increased spontaneous cell

death, and defects in tissue development (19, 53, 54). Moreover,

CHEK1 plays a crucial role in maintaining functional hematopoiesis,

as CHEK1 haploinsufficiency leads to anemia and abnormal

erythropoiesis in mice (55). Chemical inhibition of CHEK1 induced

hematopoietic stem cell and progenitor cell death in both mice and

humans (56). Recent studies have reported several germline

heterozygous mutations occurring in the C-terminal regulatory

domain of CHEK1, including three missense variants (R379Q,

R420K, and R442Q) and a truncating variant (F441fs*). These

mutations were demonstrated to be gain-of-function, with increased

kinase activity of CHEK1 causing arrested fertilized ovum division and

resulting in infertility in human females (57–59).

In summary, we report a rare germline inactivation mutation of

CHEK1 in a family with a history of cancer, and we confirmed that

this mutation led to splicing errors at the mRNA level. Although data

on the prevalence of CHEK1 germline mutations in inherited cancer

is limited, along with their clinical penetrance and association with

specific cancer types, documenting these mutations holds significant

value for future assessments and conclusions.
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