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An insight to PDAC tumor
heterogeneity across pancreatic
subregions using computed
tomography images
Sehrish Javed*, Touseef Ahmad Qureshi*, Lixia Wang,
Linda Azab, Srinivas Gaddam, Stephen J. Pandol and Debiao Li*

Cedars Sinai Medical Center, Los Angeles, CA, United States
Pancreatic Ductal Adenocarcinoma (PDAC) is an exceptionally deadly form of

pancreatic cancer with an extremely low survival rate. From diagnosis to

treatment, PDAC is highly challenging to manage. Studies have demonstrated

that PDAC tumors in distinct regions of the pancreas exhibit unique

characteristics, influencing symptoms, treatment responses, and survival rates.

Gaining insight into the heterogeneity of PDAC tumors based on their location in

the pancreas can significantly enhance overall management of PDAC. Previous

studies have explored PDAC tumor heterogeneity across pancreatic subregions

based on their genetic and molecular profiles through biopsy-based histologic

assessment. However, biopsy examinations are highly invasive and impractical

for large populations. Abdominal imaging, such as Computed Tomography (CT)

offers a completely non-invasive means to evaluate PDAC tumor heterogeneity

across pancreatic subregions and an opportunity to correlate image feature of

tumors with treatment outcome and monitoring. In this study, we explored the

inter-tumor heterogeneity in PDAC tumors across three primary pancreatic

subregions: the head, body, and tail. Utilizing contrast-enhanced abdominal

CT scans and a thorough radiomic analysis of PDAC tumors, several

morphological and textural tumor features were identified to be notably

different between tumors in the head and those in the body and tail regions.

To validate the significance of the identified features, a machine learning ML

model was trained to automatically classify PDAC tumors into their respective

regions i.e. head or body/tail subregion using their CT features. The study

involved 200 CT abdominal scans, with 100 used for radiomic analysis and

model training, and the remaining 100 for model testing. The MLmodel achieved

an average classification accuracy, sensitivity, and specificity of 87%, 86%, and

88% on the testing scans respectively. Evaluating the heterogeneity of PDAC

tumors across pancreatic subregions provides valuable insights into tumor

composition and has the potential to enhance diagnosis and personalize

treatment based on tumor characteristics and location.
KEYWORDS

pancreatic ductal adenocarcinoma (PDAC), tumor heterogeneity, pancreatic
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1 Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease,

constituting over majority of pancreatic cancer cases (1). It

currently ranks fourth among cancer-related causes of death and

is expected to elevate to second by 2030 (2). A critical obstacle in

managing PDAC lies in the limited understanding of PDAC tumor

heterogeneity, including the histopathological, genetical, molecular,

and spatial diversity within the pancreas (3). Ongoing research

emphasizes the potential advantages of understanding such

variations, offering opportunities for improved early detection,

treatment effectiveness, and overall outcomes (4). Insight to

PDAC tumor heterogeneity can potentially assist in reducing the

risk of overlooking subtle tumors, misinterpreting suspicious

lesions, unnecessary invasive procedures, and assisting in tailoring

therapies aligned with tumor characteristics and location (4–6).

Research indicates that PDAC tumors exhibit variations across

pancreatic subregions (head, body, and tail), including differences

in histology, genomics, aggressiveness, symptoms, and treatment

responsiveness (7, 8). For instance, head tumors display less

aggressiveness, manifest weight loss, and respond better to

Gemcitabine, while body/tail tumors cause abdominal pain and

favor Fluorouracil (9–11). These studies also propose PDAC

characterization, leading to the identification of distinct tumor

subtypes. These subtypes with variable overall survival, tumor

growth, therapy response, and patient prognosis have been

associated with the location of tumors in the pancreas. These

distinctions lead to varying incidence rates (71%, 13%, 16%),

metastasis (42%, 68%, 84%), 2-year survival (44%, 27%, 27%),

and resection rates (17%, 4%, 7%) for head, body, and tail

respectively (12, 13).

Considering these facts, research strongly indicates that

characterizing tumor heterogeneity can significantly enhance

precision medicine methods and improve the overall management

of PDAC. Histologic assessment allows for a precise analysis of

PDAC tumor heterogeneity using tissue samples obtained through

biopsy. However, PDAC biopsy examinations are highly invasive,

impractical for large populations, and cannot be conducted

frequently. Moreover, in the event of sampling errors, PDAC

biopsy fails to comprehensively comprehend the spatial condition

of the tumor, thereby limiting the ability to fully capture the tumor’s

complexity (14, 15).

Noninvasive techniques, such as imaging, have demonstrated to

be a secure and effective means of understanding the tumor

microenvironment. Imaging provides excellent spatial resolution

and the capacity to evaluate the overall heterogeneity of the tumor.

Furthermore, it is minimally invasive or noninvasive, enabling

repeated examinations and coverage of multiple tumor sites.

Imaging has played a vital role in identifying unique tumor

patterns associated with their genomic composition and specific

positions within organs (16). Numerous studies have investigated

the spatial heterogeneity of tumors in various organs, including

esophageal, lung, colorectal, liver, breast, head and neck (17–21),

irrespective of their underlying association with genetic and

molecular profiling, using computed tomography (CT) scans.

These studies have linked distinct tumor patterns to predict
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tumor response, treatment outcome, staging, recurrence, and

overall survival. Unfortunately, no study has explored the

heterogeneity of PDAC tumors concerning their location in

imaging, leaving a significant research question unexplored that

holds high clinical value.

This exploratory pilot study provides insights into the inter-

tumor heterogeneity of PDAC across different pancreatic

subregions using contrast-enhanced abdominal CT scans. The

investigation involves a comprehensive radiomic analysis,

focusing on morphological and textural features of tumors

identified in distinct pancreas subregions. The results demonstrate

significant differences in various CT features between tumors

located in the pancreatic head and those in the body and tail

regions. These findings support previous research highlighting

genomic disparities among pancreatic head tumors and those in

other regions, paving the way for further noninvasive studies

linking subregional PDAC tumor heterogeneity to various clinical

outcomes. Additionally, a machine learning (ML) model was

trained to autonomously categorize PDAC tumors into their

respective subregions (head or body/tail) based on their distinct

CT features. External validation of the model yielded highly

satisfactory results, reinforcing the potential of this study’s

findings and suggesting further validation on larger datasets. Such

a model holds promise for applications including precise detection

of PDAC tumors in CT images.The clinical endpoint of this study is

to investigate if there are image features of pancreas tumors that are

distinctive in head vs body/tumors. This research study deduced a

proof of concept that image-based differences exist in these tumors.

However, correlating the image-based differences in head vs body/

tail tumors with the differences identified by the histology and

molecular profile was not explored in this study, and this is the

future research plan.
2 Materials and methods

In the context of PDAC management, particularly for screening

purposes, abdominal CT plays a pivotal role (22). Abdominal CT is

the established standard protocol and the primary, widely accepted

initial radiologic modality for evaluating patients with PDAC (23).

Examining CT for evaluating PDAC tumor heterogeneity provides

an additional dimension to existing CT-based imaging biomarkers.

Traditionally, these biomarkers have primarily focused on

quantifying tumor size, attenuation, and perfusion. By extending

the application of CT to assess tumor heterogeneity across

pancreatic subregions, the study gains insights into previously

unexplored aspects of PDAC. Hence, examining CT scans in this

research is strongly justified, as it aligns with the well-established

role of abdominal CT in PDAC management and offers valuable

insights into tumor heterogeneity, complementing the existing

array of imaging biomarkers.

A large dataset comprising of the 200 contrast-enhanced

abdominal CT scans was obtained from the host institution. Each

scan originates from an individual with a confirmed PDAC

diagnosis, verified through biopsy procedures and displaying

evident tumor presence in the scan. These tumors are situated in
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various subregions within the pancreas, consisting of 116 and 84

tumors located in the head and body/tail regions respectively. The

precise localization was verified through a thorough examination of

the subjects’ pathological reports and by manually labeling the

tumors, as elaborated upon later. Also, the PDAC cases included in

the dataset span different cancer stages from T1-T4. Furthermore,

all scans selected for analysis were obtained during the venous phase

of CT imaging, chosen for its superior tumor margin visibility

compared to other phases. Each scan is characterized by a 16-bit

depth and a slice resolution of 512 by 512 along the x- and y-axes,

with variable resolution along the z-axis.

Moreover, the 200 cases were evenly distributed into two

subsets, namely D1 (for preliminary analysis and model training)

and D2 (model validation). These subsets comprised of randomly

selected scans, with head tumor in 58 scans for each of D1 and D2,

and body/tail tumors in 42 scans for D1 and D2. The demographics

information of 200 cases is provided in Table 1.

In adherence to rigorous privacy protocols, all scans were

anonymized prior to transferring to the host institute and

performing analysis. As all the data obtained for this study is

retrospective, informed consent was not a requirement for

inclusion within the study cohort.
2.1 Data labeling and preprocessing

Precisely delineating pancreatic tumors necessitates a detailed

understanding of the pancreas, its intricate subregions, and the

tumors themselves. Given the complexity of pancreatic anatomy,

manual delineation is a challenging process (24). To ensure the

utmost accuracy and consistency, a detailed multistage labeling

procedure was performed for each of these structures.

The pancreas, situated transversely in the posterior region of the

abdomen, is visible in the axial view of abdominal CT scans.

Initially, an automated technique (25) specifically designed for

pancreas segmentation in CT images was employed to establish

the initial boundaries of the pancreas across all scans in D1 and D2.

Subsequently, these labels underwent thorough evaluation and, if

necessary, correction by two research associates. Finally, the

accuracy of these labels was validated with consensus by two

highly experienced radiologists, each possessing several years of

expertise at the host institute.

The pancreatic head region exhibits a slightly flattened

morphology, occupying a central position along the duodenum’s
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curvature. The pancreas neck is approximately 2 cm long and is

commonly included as part of the head. Previous studies focusing

on segmentation of pancreatic subregions have considered

pancreatic neck as part of pancreatic head (26). Adjacent to this

region is the body subregion, which gradually tapers into the tail

subregion. In terms of size, the pancreas typically possesses

anteroposterior diameters ranging from 1 to 3 centimeters and

lengths ranging from 12 to 15 centimeters. These dimensions

correspond to the head, body, and tail regions, constituting

approximately 40%, 33%, and 26% of the total pancreas,

respectively. Utilizing the segmented pancreas images, these three

subregions across all scans in D1 and D2 were delineated using an

existing automated technique (27). To ensure accuracy and labeling

consistency, the same two validation steps were implemented,

mirroring the process employed for pancreas segmentation.

Finally, the tumors within all scans from both D1 and D2 were

segmented manually by our research associates. We aimed to

minimize any potential inter-reader variability which yielded 86%

consistency in labeling outcomes. Subsequently, the initial labels

underwent independent validation by our two experienced

radiologists at the host institute. To further enhance precision,

both radiologists reviewed each other’s delineations, resulting in a

notable 98% overlap in labeling outcomes. The remaining 2% of

labeling discrepancies were effectively addressed through

collaborative discussions between the two radiologists, ultimately

achieving a harmonious consensus. The mean volume of tumors

were calculated by the radiologists during the manual labelling

process. The mean volume of the head tumors ranged between

2.4cm to 3.1cm, while for body/tail tumors ranged between 5.6cm to

6.1cm. A representative delineation of these three structures is

provided in Figure 1.

Furthermore, no preprocessing methods were employed on the

scans, except for signal intensity normalization, which was scaled to

the range of 0 to 1.
3 Results

3.1 PDAC tumor heterogeneity across
pancreatic subregions

A comprehensive investigation into the heterogeneity of PDAC

tumors across different pancreatic subregions using radiomics was

conducted. This approach involved analyzing both the morphological

and textural characteristics of the identified tumors in CT images.

Notably, the tumors in the body and tail together were grouped as a

single category for clinical relevance (28). The study hypothesis was

that PDAC tumors in the head would display distinct patterns in

terms of shape, size, and signal intensity compared to those in the

body and tail. Once the significant features were identified, an ML

classifier to automate the categorization of PDAC tumors into their

respective groups was developed. The subsequent sections provide a

detailed explanation of the radiomic analysis and model

development. Figure 2 shows an overview of the entire study

including major steps in radiomic analysis and ML modelling.
TABLE 1 Patients data summary.

Demographics Patients

Gender Male (146) Female(54)

Mean Age 40-50 years (29) 50-75 years (171)

Tumor site Head tumors (116) Body/tail tumors (84)

Tumor stage TNM stage I-II (47) TNM stage III-IV (153)
Table shows gender, ages, tumor sites, tumor stages for patients.
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3.2 Radiomic Analysis of PDAC Tumors

A comprehensive array of radiomic features from every tumor

instance within all 100 CT scans found in dataset D1 was

extracted. This yielded two distinct feature sets, with each set

specifically designed for its respective class. Each individual

feature served as a unique, quantifiable descriptor of the tumor,

providing valuable insights into the spatial correlations among

adjacent voxels within predefined proximities. To assign

numerical values to these features, an evaluation of signal
Frontiers in Oncology 04
intensities across all voxels within the tumor region was

conducted, spanning all slices within a given scan.

An important aspect of radiomic analysis involves the rigorous

examination of feature variations, which are contingent on the

interplay of three key radiomic parameters: bin size, kernel size, and

angle (29). The bin size was instrumental in discretizing continuous

voxel values within CT images into equivalent bins. This approach was

employed to avoid unwarranted differentiation of pixels with closely

clustered signal intensities. For instance, a minimal value difference of

0.01 between two adjacent voxels within the tumor region likely results
FIGURE 2

Overview of the study.
FIGURE 1

Sample CT images with cancerous pancreas. Top row 1 (a–c) shows original raw images, Bottom row 2 (a–c) shows segmented pancreas and
subregions (head in red, body in blue, tail in green).
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from noise and does not convey meaningful information about spatial

heterogeneity. The kernel, represented as a square convolution matrix,

is defined as a specific area A surrounding a voxel x. Within this

defined region, comprehensive calculations of spatial relationships

with neighboring voxels were conducted. The angle parameter played

a significant role in determining directions during the assessment of

associations between voxel x and its neighboring voxels within the area

A. Throughout the feature extraction process, the bin size ranged from

21 to 28, the kernel window size varied from 1 to 5, and the angle was

considered in all four quadrants.

Each radiomic feature represented a fundamental tumor

characteristic, incorporating dimensions such as shape, size,

texture, and signal intensity. These attributes were quantified as

individual numerical values using predefined mathematical

formulas. In this comprehensive collection of features, the entire

tumor was treated as a unified ‘region of interest.’ For example, to

measure signal intensity within the tumor, the mean grey level

values of all voxels enclosed by the tumor boundary across all slices

of a three-dimensional CT scan were computed. A variety of

radiomic features used in the analysis are detailed in Table 2.

With all conceivable combinations of the three parameters for

each of the different types of features, the process yielded over 4000

radiomic features for each of 58 head tumors and 42 body/tail

tumors using all images in D1. All features were extracted utilizing a

custom-built radiomic feature extraction application.

Prior to conducting the analysis, all the extracted features

underwent a filtering process to eliminate values that were

unusable or infinite. Subsequently, a pairwise comparison of these

features was performed to identify those that displayed significant

differences between head tumors and body/tail tumors. Specifically,

the features extracted from all head tumors in dataset D1 were

systematically compared to those from all body/tail tumors in the

same dataset using the statistical t-test. This comparison revealed

that approximately 6% of the extracted features exhibited statistical

significance at a p-value of 0.05, indicating their potential to

distinguish between head and body/tail tumors. A Manhattan

plot, provides p-values for all the features subjected to the

significance test. To visually depict the differences in features

across subregions, a limited selection of up to 5 randomly chosen

significant features was integrated. These findings support the
Frontiers in Oncology 05
fundamental hypothesis concerning the distinct characteristics of

tumors in various pancreatic subregions.

The significant features identified in the analysis primarily

pertained to the textural characteristics of the tumor, which can

be largely attributed to variations in the cellular arrangement within

the tumor. Another notable difference between head and body/tail

tumors was their size, with head tumors being significantly smaller

than those in the body/tail. This discrepancy may be due to the

inherently aggressive nature and faster growth of body/tail tumors,

as observed in previous studies (30). Additionally, the mean

signal intensities of head tumors were comparatively higher,

resulting in a ‘hyperintense’ appearance, as depicted in Figure 3.

One plausible explanation for this observation is that head tumors

often exert pressure on adjacent structures, such as the pancreatic

duct and bile duct, leading to disruptions in fluid flow and altered

contrast levels (resulting in high intensity) on CT scans (30). A

similar pattern was also observed in the body, which exhibited

slightly higher CT signals compared to those in the tail.

Furthermore, the shape of tumors across the three subregions was

found to be insignificantly different. These findings from the

analysis are promising and have spurred further validation efforts
TABLE 2 List of types of radiomic features with example features for
each type.

Feature Type Feature Examples Total
Features

First Order Statistics Kurtosis, Percentiles, Range 15

Grey-level Co-
occurrence Matrix

Cluster shade,
Contrast, Autocorrelation

20

Grey Level Run
Length Matrix

Run percentage, Run entropy 15

Grey Level Size
Zone Matrix

Zone percentage, Zone variance 14

Grey Level
Dependence Matrix

Small dependence emphasis 12

Shape-based Features 2D
and 3D

Volume, Surface
area, Sphericity

20

Additional features Complexity, Busyness 5
FIGURE 3

Left: PDAC tumor in the head appears hyperintense or bright. Right: PDAC tumor in the body appears less intense or dark with visible contrast
between tumor and non-tumor area.
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using ML algorithms to automate tumor characterization based on

their detected region.
3.3 Classification of PDAC Tumors

The significant features identified in the radiomic analysis were

subsequently utilized to train an automated binary classification

system for PDAC tumors, categorizing them into two distinct

classes: head tumors and body/tail tumors. Multiple ML methods

were employed to train the classifier for binary tumor classification

using the CT scans. Any instance in which the classifier erroneously

categorizes a head tumor as a body/tail tumor or vice versa is

documented as a misclassification.

Seven widely used ML classifiers, including Naïve Bayes, K-

Nearest Neighbor, K-Means, Support Vector Machine, Linear

Regression, Ensembled Bagged Trees, and Linear Discriminant

were trained for binary classification tasks, accompanied by the

Recursive Feature Elimination (RFE) technique (31). RFE was

integrated into each classifier, systematically eliminating less

crucial features by exploring various combinations of the

identified predictors. The primary aim was to enhance training

accuracy while adhering to the predefined classification criteria.

Additionally, the RFE process was intricately fine-tuned to identify

and retain a subset of a maximum of five features for each of the

classifiers. This does not imply that each classifier must utilize the

same set of features.

Rather, this strategic adjustment was made to prevent the risk of

potential overfitting in any of the classifiers.

All seven classifiers were trained using dataset D1 and tested or

validated using external dataset D2. Out of all these classifiers, the

Naïve Bayes model achieved the highest testing accuracy of 86%,

surpassing the other six classifiers. It effectively identified five

standout features: Long-run low grey-level emphasis, Gaussian

left polar, Inverse Gaussian left polar, Inverse cluster shade, and

Inverse cluster tendency. These features were regarded as the most

influential predictors, as their collective contribution led to the

highest classification accuracy during validation.

The confusion matrix for Naïve Bayes model derived during

validation process, showing the true positive vs predicted head and

body/tail tumors is presented in Table 3.

Figure 4 present ROC curve illustrating the classification

performance of the Naïve Bayes classifier in the validation sets.

The obtained results from the automated classification are

encouraging and substantiate the proof of concept regarding the
Frontiers in Oncology 06
effectiveness of utilizing CT imaging features for the efficient

characterization of PDAC tumor heterogeneity across various

pancreatic subregions. In most misclassification cases, it has been

noticed that tumors located at the boundary between the head and

body tend to be a common factor, suggesting that these cases might

lead to model deviations.
4 Discussion

Tumor heterogeneity across
pancreatic subregions

Pancreatic Ductal Adenocarcinoma (PDAC) is a genetically

complex and heterogeneous disease. The presence of heterogeneity

in PDAC tumors is associated with various factors, such as

differences in genomic subtypes, the expression of growth and

angiogenic factors, and the characteristics of the tumor

microenvironment (7–9). Additionally, studies have highlighted

that this heterogeneity is closely linked to the distinct pancreatic

subregion where the tumor is located. Moreover, variations in

PDAC tumors across different subregions have been observed to

manifest in significant differences in symptoms, metastasis patterns,

and responses to treatment (10). Therefore, exploring and

characterizing the heterogeneity of PDAC tumors based on their

location holds significant clinical relevance.

Existing literature acknowledges numerous studies indicating that

PDAC tumors located in different pancreatic subregions exhibit

significantly distinct genetic and molecular profiles (7–9). Several

models have been proposed to characterize the spatial heterogeneity

of PDAC tumors based on genetic and molecular features. For

instance, Collisson et al. (8) identified three tumor subtypes

(classical, quasi-mesenchymal, exocrine-like), Moffitt et al. (9)
TABLE 3 Confusion matrix for Naïve Bayes model showing the true and
predicted head tumors and body/tail tumors.

True
Head Tumors

True Body/
Tail Tumors

Predicted
Head Tumors

50 5

Predicted Body/
Tail Tumors

8 37
Green for correct classification. Red for wrong classification.
FIGURE 4

ROC for Naïve Bayes classifier showing classification performance
with AUC=0.93.
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distinguished two stroma subtypes (normal, activated) and two tumor

subtypes (classical, basal-like), and Bailey et al. (7) categorized PDAC

into four subtypes (squamous, pancreatic progenitor, immunogenic,

aberrantly differentiated endocrine exocrine). These subtypes impact

overall survival, tumor growth, therapy response, and patient

prognosis, and are associated with the tumor’s location.
Evaluating PDAC tumor heterogeneity via
CT imaging

Histologic methods can be employed to assess PDAC

heterogeneity across pancreatic subregions, providing precise

evaluation and high spatial resolution of biopsy tissue samples.

However, biopsies are invasive, challenging to obtain in some cases,

prone to sampling errors due to the complex location of the

pancreas in the abdomen, and can only sample a small and

random portion of the entire tumor. Moreover, determining

intratumor heterogeneity from a single biopsy has limitations,

making it incomplete or potentially misleading. As an alternative,

abdominal CT imaging offers an opportunity for a comprehensive

evaluation of tumor heterogeneity in the pancreas. It provides

excellent spatial resolution, is non-invasive, can be repeated, and

covers multiple tumor sites. However, the assessment of PDAC

tumor heterogeneity using CT imaging has been predominantly

qualitative and lacks a standardized quantitative methodology.

While other imaging techniques like Magnetic Resonance

Imaging (MRI) may offer superior tissue contrast for PDAC

tumors and provide deeper insights into tumor heterogeneity, CT

is preferred due to its widespread use in screening for PDAC,

especially in its early stages (23).

Also, the CT imaging has been extensively utilized in numerous

studies investigating the spatial heterogeneity of tumors in various

organs, including the lungs, head and neck (21), and breast (20).

Findings obtained on tumor heterogeneity in different organs through

radiomics analysis of CT images have been further correlated and

verified with the histological findings, efficiently assisting in clinical

decision during treatment planning and disease management (32).

Furthermore, CT-based tumor heterogeneity has been used as a basis

in many clinically relevant studies such as predicting treatment

response in esophageal carcinoma (17), forecasting distant

metastasis in lung adenocarcinomas (21), and differentiating

between aggressive and nonaggressive malignant tumors (33).
Study Findings

This first study aimed to investigate the morphological and

textural heterogeneity of PDAC tumors in different pancreatic

subregions using CT images and identify features specifically

associated with tumors in distinct subregions. Based on an

extensive radiomic analysis of PDAC tumors, the study

demonstrated a significant statistical difference in CT texture

between PDAC tumors located in the head and those in the

body/tail, consistent with findings from previous non-imaging

studies on PDAC tumor heterogeneity. To assess the
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discriminative utility of the identified features, various traditional

machine learning algorithms were trained to automatically

categorize PDAC tumors in CT images into their regional class

(head, body/tail). The analysis and model development were

performed on a large dataset of 200 contrast-enhanced venous-

phase CT scans. Both the analysis findings and the model results

were stable and satisfactory.
Scope of the study

Examining PDAC tumors across various pancreatic subregions

through radiomic analysis of abdominal CT provide insights into

the heterogeneity of these tumors, assist in leading to targeted

therapies and improved treatment strategies for patients with

tumors in specific subregions. Although various techniques exist

for quantifying tumor heterogeneity in CT imaging analysis, some

of these derive features from histograms, such as percentile values,

standard deviation (SD), and enhancing fraction. These metrics

might not account for the spatial distribution of intensity values.

Conversely, radiomics, as proposed in this study, take spatial

information into consideration, and offer supplementary

information, including average signal intensity, beyond what

histogram-derived measures provide. Radiologists may visually

perceive some features, while others are more abstract.

The current study carries substantial clinical importance, with

potential applications including the advancement of a more

sophisticated PDAC tumor detection model in CT images. This

model could adaptively choose morphological and textural features

based on the specific subregion, addressing the existing issue of mis-

detecting small tumors in the early stage. Additionally,

comprehending PDAC tumor heterogeneity has the potential to

refine the assessment of suspected pancreatic lesions, reducing

misinterpretations caused by PDAC mimics or other conditions

like IPMNs (Intraductal Papillary Mucinous Neoplasms) (34),

which currently pose challenges to accurate detection.

Furthermore, exploring PDAC tumor heterogeneity concerning

its location could contribute to predicting PDAC survival

outcomes, in contrast to current studies that either overlook the

spatial heterogeneity of tumors (35) or focus solely on limited

regions (such as the head region) (36).
Study limitations and future work

The study is confined to observing the spatial distribution

heterogeneity of tumors across pancreatic subregions on CT

imaging and does not correlate it with the underlying biological

factors influencing this variation. The primary goal of the study was

only to demonstrate the quantifiability of PDAC tumor

heterogeneity across subregions on CT images through extensive

radiomic analysis. Nevertheless, the study lays the groundwork for

potential future research to explore correlations between this

heterogeneity and genomic sequences and molecular profiles,

offering deeper insights. Additionally, the study does not account

for the clinical stage of PDAC when assessing tumor heterogeneity,
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which can significantly impact various tumor characteristics such as

size, shape, and texture, reflecting clonal evolution over time.

Furthermore, the study exclusively focuses on inter-tumor

heterogeneity across different subregions within tumors and does

not investigate intra-tumor variations within a specific subregion.

The primary aim of this study is to provide a proof the concept

and encourage researchers to further investigate and validate the

heterogeneity of PDAC tumors on large diverse datasets of CT

images. In future investigations, we plan to consider the stage of

PDAC and intra-tumor variations within each subregion to gain a

more comprehensive understanding of PDAC tumor heterogeneity.
5 Conclusion

This first study aimed to explore potential heterogeneity among

Pancreatic Ductal Adenocarcinoma (PDAC) tumors based on their

locations within the pancreas as observed in Computed

Tomography (CT) scans. A comprehensive radiomics analysis of

PDAC tumors in pancreatic subregions (head, body, tail) revealed

several statistically significant features distinguishing head tumors

from those in the body and tail. Following this, a machine learning

model was trained for binary classification, effectively

distinguishing between head and body/tail tumors. The model

exhibited satisfactory performance on a completely independent

dataset, prompting further investigations on larger datasets. The

quantification of tumor heterogeneity across pancreatic subregions

through CT imaging holds promise for various clinically important

applications, including improved detection and interpretation of

pancreatic tumors.
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