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Background: Clear cell renal cell carcinoma (ccRCC) is a metabolic disorder

characterized by abnormal lipid accumulation in the cytoplasm. Lipid

metabolism-related genes may have important clinical significance for

prognosis prediction and individualized treatment.

Methods: We collected bulk and single-cell transcriptomic data of ccRCC and

normal samples to identify key lipid metabolism-related prognostic signatures.

qPCR was used to confirm the expression of signatures in cancer cell lines. Based

on the identified signatures, we developed a lipid metabolism risk score (LMRS) as

a risk index. We explored the potential application value of prognostic signatures

and LMRS in precise treatment from multiple perspectives.

Results: Through comprehensive analysis, we identified five lipid metabolism-

related prognostic signatures (ACADM, ACAT1, ECHS1, HPGD, DGKZ). We

developed a risk index LMRS, which was significantly associated with poor

prognosis in patients. There was a significant correlation between LMRS and

the infiltration levels of multiple immune cells. Patients with high LMRS may be

more likely to respond to immunotherapy. The different LMRS groups were

suitable for different anticancer drug treatment regimens.

Conclusion: Prognostic signatures and LMRS we developed may be applied to

the risk assessment of ccRCC patients, which may have potential guiding

significance in the diagnosis and precise treatment of ccRCC patients.
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1 Introduction

Renal cell carcinoma (RCC) represents the most prevalent form

of kidney cancer, with 90% of cases being attributed to this type, and

a higher incidence in males compared to females (1). Histologically,

RCC can be categorized into various subtypes, among which clear

cell renal cell carcinoma (ccRCC) is the most common, accounting

for approximately 75% of cases (2). In contrast to other RCC

subtypes, patients with ccRCC exhibit the lowest 5-year survival

rates and are more prone to advanced T stage, metastatic disease,

and higher-grade tumors (3, 4). Notably, ccRCC is characterized as

a metabolic disease, with the formation of lipid droplets

representing a distinct histological feature (5). In recent years,

substantial advancements have been made in the treatment of

ccRCC, encompassing nephrectomy, targeted therapies against

vascular endothelial growth factor (VEGF), and emerging

immunotherapeutic agents (6). However, the inherent toxicities of

these therapies have limited their application, with generally poor

overall response rates (7). Moreover, the presence of tumor

heterogeneity underscores the need for personalized treatment

strategies tailored to individual tumor characteristics (8, 9).

Consequently, the exploration of novel prognostic signatures and

the construction of corresponding risk indices related to tumor

heterogeneity for prognosis prediction and precise therapy may

hold significant clinical significance.

Tumor initiation relies on the reprogramming of cellular

metabolism, as cancer cells undergo specific metabolic

reprogramming to sustain cellular growth and proliferation (10).

Most cancer types exploit lipids and cholesterol to meet their

insatiable energy demands (11). ccRCC, a distinct subtype of

RCC, is characterized by the accumulation of lipids within the

cytoplasm. Research evidence has indicated the role of aberrant

lipid accumulation in ccRCC disease progression (12, 13).

Additionally, the inactivation of the AMPK-GATA3-ECHS1

pathway can induce fatty acid synthesis, promoting ccRCC

growth (14). E2F1, through the activation of SREBP1-dependent

fatty acid biosynthesis, facilitates the proliferation and metastasis of

ccRCC (15). These lines of evidence collectively demonstrate the

close association between lipid metabolism and the progression of

ccRCC. Furthermore, the nutrient competition between tumor cells

and immune cells within the tumor microenvironment results in

various functional impairments of immune cells, subsequently

affecting the efficacy of immunotherapeutic interventions (16).

Research evidence suggests that interventions targeting the

reprogramming of lipid metabolism can prevent effector T cell

senescence within the tumor microenvironment and enhance the

efficacy of tumor immunotherapy (17).

In this study, we evaluated the dysregulation and prognostic

potential of lipid metabolism-related genes in ccRCC based on the

bulk transcriptomic data from the Cancer Genome Atlas (TCGA)

clear cell renal cell carcinoma (KIRC) cohort. Integrating single-cell

transcriptome analysis, we ultimately identified a set of key lipid

metabolism-related prognostic signatures. We explored the

potential of prognostic signatures in predicting the occurrence of

ccRCC and patient prognosis through machine learning model.

Furthermore, based on these signatures, we developed a lipid
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metabolism risk score (LMRS) as a risk index in ccRCC and

comprehensively analyzed the associations between LMRS and

patient survival, patient genomic characteristics, immune cell

infiltration, immunotherapy, and anticancer drug sensitivity. In

summary, our study offers new insights into the potential

application value of lipid metabolism in ccRCC.
2 Materials and methods

2.1 Data acquisition

In this study, clinical data and bulk transcriptomic data of 602

samples from the TCGA-KIRC cohort were downloaded from

UCSC Xena (http://xena.ucsc.edu/, accessed on 2 January 2023)

(18). The bulk transcriptomic data comprised the raw gene counts

matrix and the corresponding fragments per kilobase of exon model

per million mapped fragments (FPKM) matrix. The clinical data

included sample pathology status, survival time, survival outcome,

age, gender, and other relevant information. Additionally,

microarray data from the GSE53757 (n=144) (19), GSE36895

(n=52) (20), GSE22541 (n=24) (21), and GSE67501 (n=11) (22)

cohorts were obtained from the gene expression omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/, accessed on 20 January

2023). The microarray data from E-MTAB-1980 (n=101) (23) were

sourced from the EMBL-EBI database (https://www.ebi.ac.uk/,

accessed on 12 February 2023). Sample information provided by

data contributors was used to distinguish ccRCC samples and

normal tissue samples in the GSE53757 and GSE36895 cohorts.

Survival outcome information for ccRCC samples in the E-MTAB-

1980 and GSE22541 cohorts was extracted from the corresponding

supplementary files of the respective studies. The response data of

11 ccRCC patients to nivolumab in the immunotherapy cohort

GSE67501 was provided by the authors. We retained only those

samples in all cohorts that were explicitly labeled as ccRCC tumors

or normal kidney tissues. Detailed baseline clinical data for all

ccRCC cohorts are summarized in Table 1.
2.2 Transcriptomic data processing

The FPKM matrix from the TCGA-KIRC cohort was

transformed into a transcripts per kilobase of exon model per

million mapped reads (TPM) matrix for subsequent analyses,

such as the evaluation of the level of immune cell infiltration.

Specifically, for each gene within a sample, the FPKM value of that

gene was divided by the sum of FPKM values for all genes within

that sample. Subsequently, the library size of each sample was

uniformly scaled to 1 000 000.

The transcriptomic data provided by the E-MTAB-1980 cohort

was directly utilized for our analysis. Additionally, we downloaded

microarray data from the GSE53757, GSE36895, GSE22541, and

GSE67501 cohorts. We computed the signal intensities of each probe

using the affy v1.74.0 package in R with the robust multichip average

(RMA) algorithm. The GSE53757, GSE36895, and GSE22541 cohorts

were all based on the GPL570 platform. We utilized the AnnoProbe
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http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/
https://doi.org/10.3389/fonc.2024.1378095
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1378095
v0.1.7 package in R to obtain annotations for the probes of the

GPL570 platform and matched probe IDs with gene names. In cases

where the same gene corresponded to multiple probes, the data from

the probe with the highest signal intensity were retained as the final

gene expression level. The GSE67501 cohort was based on the

GPL14951 platform. We manually downloaded annotation

information of the GPL14951 platform from GEO and employed

the same method as mentioned above to convert the probe signal

intensity matrix to a gene expression matrix. In addition, the

microarray data from the Caki-1 and RPTEC/TERT1 cell lines in

the GSE232951 dataset (GPL17692 platform) were also processed in

the same manner as described above.
2.3 Differential gene expression analysis,
functional enrichment analysis, and gene
set enrichment analysis

We extracted normal control samples and matched KIRC

samples from 71 patients in the TCGA-KIRC cohort. Using the

raw gene counts matrix of the samples, we utilized the DESeq2

v1.36.0 (24) package in R to identify differentially expressed genes.

Genes with | log2(FoldChange) | > 1 and an adjusted p-value< 0.05

were considered to have significantly changed expression levels.

Pathway information was obtained from the kyoto encyclopedia of

genes and genomes (KEGG) (https://www.kegg.jp, accessed on 5

March 2023) (25). We used the clusterProfiler v4.4.1 (26) package

in R to perform gene functional enrichment analysis and gene set

enrichment analysis (GSEA). Pathways with an adjusted p-value<

0.05 were considered significantly enriched in gene functional

enrichment analysis. In the GSEA, we first sorted the genes
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according to their log2(FoldChange) from largest to smallest, and

then carried out enrichment analysis. Visualization of the results

from GSEA was completed using the enrichplot v1.16.1 package

in R.

The differential gene expression analysis between Caki-1 and

RPTEC/TERT1 cell lines was performed using limma v3.56.2.
2.4 Analysis of single-cell
transcriptomic data

We obtained single-cell sequencing data of 7 ccRCC tumor

samples and 6 normal samples in GSE159115 (accessed on 25

February 2023) (27) and incorporated them into the analysis

pipeline using the Seurat v4.1.1 package in R (28). We retained

only high-quality cells with more than 200 expressed genes and

mitochondrial gene expression accounting for less than 10% of the

total expression. The raw gene counts matrix was normalized using

the NormalizeData() function with LogNormalize method. We then

selected the top 2000 highly variable genes for principal component

analysis (PCA) using the FindVariableFeatures(), ScaleData(), and

RunPCA() functions. Batch differences between samples were

eliminated using the harmony v0.1.1 package (29). The

FindNeighbors(x, reduction = “harmony”) and FindClusters()

functions were employed for cell clustering. Subsequently, the

FindMarkers() and FindAllMarkers(x, min.pct = 0.3) function

was used to identify differentially expressed genes in each cell

cluster. Genes with | logfc.threshold | > 0.1 and an adjusted p-

value< 0.05 were considered as differentially expressed genes. We

obtained a list of marker genes for multiple cell types from Cell

Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy) (30) and
TABLE 1 Clinical characteristics of the samples in each study cohort.

Cohort TCGA-KIRC GSE53757 GSE36895 E-MTAB-1980 GSE22541 GSE67501

Samples,n 602 144 52 101 24 11

Tumor 531 72 29 101 24 11

Normal 71 72 23 ––– ––– –––

Age

<60 years 276 ––– ––– 41 ––– –––

>=60 years 326 ––– ––– 60 ––– –––

Gender

Male 399 ––– ––– 77 ––– –––

Female 203 ––– ––– 24 ––– –––

Vital status

Alive 405 ––– ––– 78 18 –––

Dead 197 ––– ––– 23 6 –––

Response to immunotherapy

Responsive ––– ––– ––– ––– ––– 4

Non-responsive ––– ––– ––– ––– ––– 7
'—' indicates that there is no information available for the corresponding entry in the table.
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annotated cell types for each cell cluster based on the differentially

expressed genes in each cell cluster. The uniform manifold

approximation and projection method (UMAP) algorithm was

then employed to generate two-dimensional mappings of all cells.
2.5 Estimation of single-cell
metabolic levels

To study the activation levels of metabolic pathways within each

cell, we utilized the scMetabolism v0.2.1 package (31) for evaluation.

scMetabolism encapsulates multiple algorithms for quantifying

metabolic activity at the single-cell resolution and is compatible

with Seurat. We used the AUCell algorithm to assess the activation

levels of KEGG metabolic pathways integrated within scMetabolism.
2.6 Cell culture

Caki-1 and RPTEC/TERT1 cell lines were purchased from the

Cell Bank of Chinese Academy of Sciences (China). Caki-1 cells

were cultured in McCOY’s 5A media (Sigma-Aldrich, USA)

supplemented with 10% fetal bovine serum (HyClone, Logan,

UT), 1% L-glutamine (Invitrogen, Carlsbad, CA), and 1%

penicillin-streptomycin (Invitrogen, Carlsbad, CA), and incubated

in 5% CO2 with a balance of air at 37°C. The RPTEC/TERT1 cells

were cultured in DMEM/F12 medium (Invitrogen, Carlsbad, CA)

containing 10% fetal bovine serum (HyClone, Logan, UT) and 1%

L-glutamine (Invitrogen, Carlsbad, CA), and 1% penicillin-

streptomycin (Invitrogen, Carlsbad, CA). Culture media were

replaced every 2–3 days until the cells reached 80% confluence,

and 0.25% trypsin was then added for cell passaging.
2.7 Quantitative RT-PCR

Total RNA was isolated from Caki-1 and RPTEC/TERT1 cells

using RNAiso plus (Takara, 108–95-2). The RNA concentration and

pur i t y were de t ermined through a NanoDrop One

Spectrophotometer and 2100 Bioanalyzer (Agilent Technologies,

Wilmington, DE, USA). A total of 500 ng RNA was reverse

transcribed to cDNA and purified using the SuperScript First-

Strand Synthesis System for RT-PCR (Invitrogen, 11904–018).

Real-time RT-PCR was performed on the BioRAD CFX96™

Touch (Bio-Rad Laboratories Inc.), using SYBR Green Supermix

(Vazyme, Q312–02). qPCR reactions using primers targeting ACAT1

(forward 5′-GGAGGTGAAGGACAAGCTCC-3′ and reverse 5′-
TCTACAGCAGCGTCAGCAAA-3′), ECHS1(forward 5′- TCCT

GACTGGAGCACCTTCT3′ and reverse 5′-GCATCTGTAT

GAAGGCAGCA3′) and ACADM (forward 5′- ACAACGTGAAC
CAGGATTAG-3′ and reverse 5′-TGGCAAATTTACGAGCAGTA-
3′), with GAPDH (forward 5′-GCACCACCAACTGCTTA-3′ and
reverse 5′-AGTAGAGGCAGGGATGAT-3′) as the loading control.
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2.8 Univariate Cox analysis, multivariate
Cox analysis, and LMRS

The survival v3.3.1 package in R was utilized for conducting

kaplan-meier analysis, and constructing univariate Cox regression

models (Cox models) and multivariate Cox models. Based on the

prognostic biomarkers we found, we constructed a lipid metabolic

risk score (LMRS):

LMRS =oi bi � EXPi

bi is the regression coefficient of gene i in the univariate Cox

regression model and is used as the weight of gene i in the

calculation formula. EXPi indicates the expression level of gene i.

Univariate Cox models were built based on survival time,

survival outcome, gene expression levels or the LMRS.

Multivariate Cox models were constructed based on survival time,

survival outcome, gene expression levels or LMRS, along with age

and gender. For Cox models, a model was considered reliable when

the p-value from the model’s wald test was less than 0.05. Factors

with wald test p-values less than 0.05 were considered to

significantly influence survival in a reliable Cox model. Kaplan-

meier analysis was employed to compare the survival rates of

different sample groups and to plot survival curves. The log-rank

test was utilized as a non-parametric method for comparing

survival rates, with a p-value less than 0.05 indicating significant

differences in survival rates between two groups. Additionally, the

time-dependent prognostic significance of LMRS was investigated

using the timeROC v0.4.0 package in R.
2.9 Machine learning model

We used the glmnet v4.1 package in R to build a lasso

classification model using expression data from all ccRCC

samples obtained from the TCGA-KIRC cohort, aiming to select

important variables significantly associated with patient prognosis.

Variables with non-zero coefficients in the lasso model are

considered important for model.

In addition to this, the samples from the TCGA-KIRC cohort

were divided into a training set and an internal validation set in a

7:3 ratio. We used the caret v6.0.92 package in R to build machine

learning models. To construct the best-performing models, we

included ten of the most common machine learning algorithms:

bayesian generalized linear model (bayesglm), random forest (rf),

neural network (nnet), k-nearest neighbors (knn), support vector

machines with linear kernel (svmLinear), support vector machines

with radial basis function kernel (svmRadial), classification and

regression tree (rpart), linear discriminant analysis (lda), linear

discriminant analysis with stepwise feature selection (stepLDA),

and bagged AdaBoost (AdaBag). The caret package automatically

selects the optimal values for each important parameter affecting

model performance during training, thus constructing the best-

performing machine learning models. Subsequently, we validated

the ten trained models using the internal validation set. By plotting

the receiver operating characteristic (ROC) curves, we selected the
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model with the highest area under curve (AUC) value as the final

best machine learning model. We then applied the best model to the

external validation set, and the AUC value reflected the predictive

performance of the model.
2.10 Evaluation of immune cell infiltration
levels, ESTIMATE evaluation, and
TIDE score

We used the immunedeconv v2.0.3 (32) package in R to

evaluate the immune cell infiltration levels in the TCGA-KIRC

cohort. Immunedeconv provides a unified interface for multiple

immune cell infiltration algorithms, such as quantiseq and

cibersort, and accepts the TPM matrix as input for evaluation.

We used the quantiseq (33) algorithm to assess the relative

infiltration levels of 11 cell types in the TME of each sample.

Additionally, we employed the cibersort (34) algorithm to assess

the relative infiltration levels of 22 cell types in the TME of each

sample. Furthermore, the estimate v1.0.13 (35) package in R was

used to evaluate the StromalScore, ImmuneScore, and

ESTIMATEScore of the TME for each sample in the TCGA-

KIRC cohort. The tumor immune dysfunction and exclusion

(TIDE) scores for each sample in the TCGA-KIRC cohort were

obtained from TIDE (http://tide.dfci.harvard.edu/, accessed on 17

October 2023) (36).
2.11 Somatic mutation analysis

Previously published work provided a high-quality assessment

of the somatic mutation landscape in the TCGA cohort and made

the results available for download in the form of MAF files (accessed

on 23 June 2023) (37). We used the maftools v2.12.0 package in R to

read the downloaded MAF files. Oncoplot was used to display the

mutation frequencies of genes. Additionally, we evaluated the

tumor mutation burden (TMB) for each sample.
2.12 Drug sensitivity analysis

Transcriptomic alterations in cancer patients strongly influence

their response to anticancer drugs (38). The development of the

oncoPredict v0.1.0 (39) package in R helped us predict patient

responses to anticancer drugs based on the bulk transcriptomic

data. Using gene expression matrices and drug response matrices

from GDSC (accessed on 28 May 2023) (40) as references, we

evaluated the drug sensitivity (IC50 values) of the TCGA-KIRC

cohort’s ccRCC samples to 449 drugs. The assessed drug sensitivity

values represented the IC50 values of the samples’ response to the

drugs. A smaller IC50 value indicates a stronger response to the

drug. Additionally, we obtained detailed information on the drug

targets from GDSC.
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2.13 Statistical analysis

All statistical analyses were conducted using R v4.2.2. The

psych v2.2.5 package was used for correlation analysis. Unless

otherwise specified, all correlation analyses were pearson

correlations. The stats v4.2.2 package was used for related

statistical tests, such as the T-test. Plotting was primarily done

using packages such as pheatmap v1.0.12, ggplot2 v 3.3.6, and

ggpubr v 0.4.0 in R.
3 Results

3.1 Identification of lipid metabolism
dysregulation genes associated with
prognosis through bulk
transcriptome analysis

In our study, we incorporated 14 lipid metabolism-related

pathways from KEGG, encompassing a total of 372 lipid

metabolism-related genes (Supplementary Table S1). To investigate

the dysregulation of lipid metabolism-related genes in clear cell renal

cell carcinoma (ccRCC), we collected bulk transcriptome data from 602

samples within the TCGA-KIRC cohort (531 tumor samples; 71

normal samples) and conducted a comprehensive analysis. The

analysis of differentially expressed genes (DEGs) between tumor and

normal samples revealed significant upregulation of expression in 6336

genes and significant downregulation in 5293 genes within the ccRCC

samples (Figure 1A). Functional analysis of the DEGs indicated that the

upregulated genes in ccRCC were primarily enriched in pathways such

as HIF-1 signaling pathway and FoxO signaling pathway, whereas

downregulated genes were predominantly enriched in pathways

including retinol metabolism, carbon metabolism, and fatty acid

degradation (Figures 1B, C). Gene set enrichment analysis (GSEA)

corroborated these findings, revealing significant upregulation of

pathways such as the NOD-like receptor signaling pathway and

FoxO signaling pathway in ccRCC (Figure 1D). Conversely,

pathways like carbohydrate digestion and absorption, fatty acid

degradation, and pyruvate metabolism were significantly associated

with the phenotypes of normal samples and downregulated in ccRCC

samples (Figure 1E). Moreover, we identified a total of 134

dysregulated lipid metabolism genes, of which 50 genes exhibited

significantly increased expression and 84 genes displayed significant

downregulation in ccRCC (Supplementary Table S2).

We constructed univariate and multivariate Cox regression models

to explore the association between dysregulated lipid metabolism genes

and the prognosis of ccRCC patients (Supplementary Table S3). Under

the condition that the significance level of the univariate Cox model

and multivariate Cox model were met at the same time, we discovered

that the expression of 30 genes among 134 dysregulated lipid

metabolism genes identified by differential expression analysis was

significantly associated with the prognosis of ccRCC patients. Among

the 30 lipid metabolism dysregulation genes associated with prognosis

(LMDPs), 9 genes were implicated in the steroid hormone biosynthesis

pathway, followed by 8 genes in the fatty acid degradation pathway
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(Figure 1F). We further constructed a lasso classification machine

learning model to select important variables associated with prognosis

(Supplementary Table S4). Under the optimal lambda parameter, a

total of 23 significant LMDPs were identified (Figures 1G, H). These

LMDPs serve as our primary focus for subsequent analysis.
3.2 Further integrates single-cell
transcriptomic analysis to identify key
prognostic signatures

Bulk RNA-Seq reflects a complex transcriptional landscape of

all cell populations within the tumor microenvironment (TME). To
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finely explore the landscape of lipid metabolism reprogramming in

various cells within the tumor microenvironment (TME) of ccRCC

patients, we conducted a study on single-cell transcriptomes of 7

ccRCC samples and 6 normal samples from the GSE159115 dataset.

After quality control, 25,558 high-quality cells were retained and

clustered into 13 major cell types: Tumor/Epithelial cell, Plasma

cell, Monocyte, Memory B cell, Mast cell, Macrophage, Gamma-

delta T cell, Alpha-beta T cell, Endothelial cell, Smooth muscle cell,

Intercalated cell-tran-principal cell, Mesangial cell, Fibroblast

(Figures 2A, B). High lipid absorption, storage, and fat generation

occur in various cancers, contributing to the rapid growth of tumors

(41). We evaluated the activation levels of 14 lipid metabolism-

related pathways in various cell subtypes. Subsequently, we used the
A B

D E

F G

H

C

FIGURE 1

Identification of LMDPs through bulk transcriptome analysis. (A) Differential expression gene (DEG) analysis between ccRCC samples and normal
tissues. Red indicates significantly upregulated DEGs in ccRCC samples. Blue indicates significantly downregulated DEGs in ccRCC samples. Gray
indicates no significant difference in gene expression between the two groups. (B) KEGG functional enrichment analysis (top 15) of significantly
upregulated DEGs in ccRCC samples. (C) KEGG functional enrichment analysis (top 15) of significantly downregulated DEGs in ccRCC samples.
(D) GSEA analysis shows the top 5 KEGG pathways significantly associated with the ccRCC phenotype. (E) GSEA analysis shows the top 5 KEGG
pathways significantly associated with normal tissue phenotype. (F) Functional annotation of 30 LMDPs. (G) Misclassification error corresponding to
different lambda parameters in the lasso model. (H) Coefficients corresponding to each gene in the lasso model.
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U-test to compare the differences in the activation levels of

metabolic pathways between tumor samples and normal samples

(Supplementary Table S5; Figure 2C). For Tumor/Epithelial cells,

we found that the activation levels of 9 lipid metabolism pathways

were significantly higher in tumor samples than in normal samples.

In addition, lipid metabolism undergoes varying degrees of

reprogramming in seven other immune cell subtypes among

cancer patients. Thus, within the nutritionally deficient tumor

microenvironment, as nutrient levels fluctuate, tumor cells utilize

lipid metabolism reprogramming to enhance their survival
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environment, leading to metabolic competition that may affect

the normal function of immune cells.

Based on single-cell transcriptome data, we analyzed the

transcriptional variation landscape of various cell subtypes in

cancer samples compared to normal samples (Supplementary

Table S6). We then overlapped all identified differentially

expressed genes in each cell subtype with the 23 LMDPs

identified through bulk transcriptome analysis, revealing 5

overlaps. These included 4 protective genes (ACADM, ACAT1,

ECHS1, HPGD) and 1 risk gene (DGKZ) (Figure 2D,
A B

D E F

C

FIGURE 2

Single-cell transcriptomic analysis identifies key prognostic signatures. (A) Cell annotation of 25,558 cells. (B) Display of the marker genes for each
cell subtype. (C) Comparison of activation levels of lipid metabolism pathways in each cell subtype between tumor samples and normal samples.
The height of the histogram represents the mean level of pathway activation. (D) Differential expression landscape of key LMDPs in each cell
subtype. (E) DEG analysis between Caki-1 and RPTEC/TERT1. Red indicates significantly upregulated DEGs in Caki-1. Blue indicates significantly
downregulated DEGs in Caki-1. (F) qRT-PCR results of genes (ACAT1, ACADM, and ECHS1) in Caki-1 and RPTEC/TERT1 cell lines. '*' indicates that the
p-value from the t-test is less than 0.05.
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Supplementary Figure S1A). The expression levels of three

protective genes (ACAT1, ACADM, and ECHS1) were

significantly higher in Tumor/Epithelial cells of tumor patients

than in normal samples at single-cell level. To verify this result,

we collected microarray data from the ccRCC cell line (Caki-1) and

the human renal epithelial cell line (RPTEC/TERT1), and found

that the expression levels of three genes (ACAT1, ACADM, and

ECHS1) were significantly higher in Caki-1 (Supplementary Table

S7; Figure 2E). Next, we also found that the expression levels of

three genes (ACAT1, ACADM, and ECHS1) were significantly

higher in Caki-1 cell line than RPTEC/TERT1 through qRT-PCR

experiments (Figure 2F). This was consistent with our findings at

the single-cell level. Conversely, in adaptive immune cells of tumor

samples (Alpha-beta T cell, Plasma cell, Memory B cell), the

expression level of ACAT1 was significantly lower than in normal

samples. Bulk transcriptome analysis based on the TME indicated

that relative to normal samples, the expression levels of the 4

protective genes were significantly downregulated in ccRCC

samples, while the expression level of the risk gene DGKZ was

significantly upregulated (Supplementary Figure S1B), consistent

with the differentially expressed genes results based on ANOVA

analysis from GEPIA2 (Supplementary Figure S1C). In the

breakdown of fatty acids via the beta-oxidation pathway into

acetyl-CoA, the expression product of ACAT1 catalyzes the final

step of this reaction. ACAT1, ACADM, and ECHS1 are all involved

in the fatty acid degradation pathway. ACADM and ECHS1 also

play critical roles in this beta-oxidation process. The expression

product of HPGD catalyzes the dehydrogenation reaction of a series

of hydroxylated polyunsaturated fatty acids, participating in the

arachidonic acid metabolism pathway. The risk gene DGKZ is a

diacylglycerol kinase involved in the glycerolipid metabolism and

glycerophospholipid metabolism metabolic pathways. In summary,

these 5 key LMDPs identified through bulk and single-cell

transcriptome analysis may play important roles in lipid

metabolism reprogramming within the TME and could serve as

prognostic signatures for ccRCC.
3.3 Construction and validation of cancer
occurrence and prognosis models based
on key prognostic signatures

Renal cell carcinoma has been described as a metabolic disease,

with alterations in metabolism leading to diverse cancer etiologies,

particularly changes in lipid metabolism (42). Therefore, lipid

metabolism may hold potential value in the diagnosis of ccRCC

occurrence and progression. To explore the applicability of lipid

metabolism-related genes in predicting the occurrence and

prognosis of ccRCC, we constructed machine learning models to

assess their diagnostic performance. Leveraging the 5 key

prognostic signatures identified through combined bulk and

single-cell transcriptome analysis, we initially developed a

machine learning model for predicting the occurrence of ccRCC,

distinguishing ccRCC samples and normal samples. We partitioned

the entire TCGA-KIRC cohort into a training set and an internal

validation set in a 7:3 ratio, and found no significant differences in
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the distribution of various clinical features between the two datasets

(Figure 3A). To build the optimal machine learning model, we

included 10 of the most common machine learning algorithms.

Under the optimal parameters for each model, the bayesian

generalized linear model (bayesglm) exhibited the best

performance, with an AUC value of 0.946 for predictions on the

internal validation set (Figure 3B). For the bayesglm model, the risk

gene DGKZ is the most important factor (Figure 3C). Furthermore,

to further evaluate the performance of the model we constructed, we

included two external validation datasets, GSE53757 (72 ccRCC

tumor samples; 72 normal kidney samples) and GSE36895 (29

ccRCC tumor samples; 23 normal kidney cortex samples). In both

datasets, our bayesglm model effectively distinguished ccRCC

samples and normal samples, with AUC values of 0.938

(Figures 3D) and 0.879 (Figures 3E), respectively, indicating the

robustness and accuracy of the model.

The results of survival analysis from HPA (www.proteinatlas.org/)

confirmed the association between the expression offive key prognostic

signatures and the survival of ccRCC patients, which was consistent

with our findings (Supplementary Figure S2). To evaluate the potential

of prognostic signatures we identified in predicting ccRCC patient

prognosis, we employed a similar approach to construct a machine

learning model for predicting the survival outcomes (death or survival)

of ccRCC patients. We retained the cancer samples from the TCGA-

KIRC cohort and split the dataset into a training set and an internal

validation set in a 7:3 ratio, with no significant differences in the

distribution of various clinical features between the two datasets

(Figure 3F). Under the optimal parameters for each of the 10

machine learning algorithms, the neural network (nnet) model

exhibited the best performance, with an AUC value of 0.831 for

predictions on the internal validation set (Figure 3G). Regarding the

constructed nnet model, the protective gene ACADM demonstrated

the highest importance (Figure 3H). To validate the model’s

performance, we included two external validation datasets, GSE22541

(6 dead samples; 18 alive samples) and E-MTAB-1980 (23 dead

samples; 78 alive samples). Both datasets investigated the

transcriptomes of multiple ccRCC patients and provided clear

survival outcome information for each sample. Based on the

transcriptome data from the two cohorts, we utilized the constructed

nnet model to predict the survival outcomes of each sample. We found

that the nnet model we developed performed well in both datasets, with

AUC values of 0.806 (Figures 3I) and 0.762 (Figures 3J), respectively.

These findings suggested that prognostic signatures we found had great

application value in indicating the occurrence of ccRCC and

patient prognosis.
3.4 Construction of LMRS and its
association with genomic characteristics

To further explore the clinical application value of lipid

metabolism-related prognostic signature, we constructed the lipid

metabolism risk score (LMRS) as a risk index in ccRCC. LMRS is a

simple linear model based on the gene expression levels of key

prognostic signatures and their univariate Cox regression

coefficients. The calculation formula for LMRS is as follows: Risk
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score = 0.0272 * Exp (DGKZ) + (−0.0059) * Exp (ACADM) +

(−0.0033) * Exp (ACAT1) + (−0.0012) * Exp (ECHS1) + (−0.0186) *

Exp (HPGD). Using the median LMRS of the patients, the ccRCC

samples from the TCGA-KIRC cohort were divided into two

groups: High-LMRS and Low-LMRS (Supplementary Table S8).

Kaplan-meier analysis revealed a significantly poorer prognosis in

the High-LMRS group (log-rank test, p value< 0.0001) (Figure 4A).

Subsequently, we constructed a univariate Cox regression model
Frontiers in Oncology 09
and found that LMRS was significantly associated with poor

prognosis in the KIRC samples (HR = 3.56, p value< 0.0001). In

the multivariate Cox regression model considering the LMRS,

patient age, and patient gender, the relationship between LMRS

and poor prognosis remained significant (Figure 4B). Furthermore,

there were no significant differences in LMRS among different age

and gender groups (Supplementary Figures S3A, B). These findings

suggest that LMRS is an independent prognostic factor and is
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FIGURE 3

Construction and validation of cancer occurrence and prognosis models based on key prognostic signatures. (A) Clinical features of samples in the
internal validation set and training set used to construct the cancer occurrence model. (B) ROC curves of 10 cancer occurrence models applied to
the internal validation set. (C) Importance of each factor in the bayesglm model. (D) ROC curve of the bayesglm model applied to the GSE53757
dataset. (E) ROC curve of the bayesglm model applied to the GSE36895 dataset. (F) Clinical features of samples in the internal validation set and
training set used to construct the cancer prognosis model. (G) ROC curves of 10 cancer prognosis models applied to the internal validation set.
(H) Importance of each factor in the nnet model. (I) ROC curve of the nnet model applied to the GSE22541 dataset. (J) ROC curve of the nnet
model applied to the E-MTAB-1980 dataset.
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significantly associated with poor prognosis in ccRCC patients.

Time-dependent ROC curve analysis revealed that the LMRS

predicted the one-year, three-year, five-year, and ten-year survival

outcomes of ccRCC patients with AUC values of 0.693, 0.669, 0.719,

and 0.710, respectively (Figure 4C). This indicates that LMRS has

good sensitivity and specificity for predicting patient prognosis.

Then, we also observed that the high LMRS group had a lower

survival probability in the E-MTAB-1980 (log-rank test, p value =

0.018) and GSE22541 cohorts (log-rank test, p value = 0.092)

(Supplementary Table S9; Figure 4D).
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Genomic variations are not only the driving forces behind the

development of tumors but also major characteristics of cancer (43).

The proportion of mutation events was found to be higher in the

High-LMRS group (92.98%) compared to the Low-LMRS group

(87.96%) (Figure 4E). The most common mutations in both the

High-LMRS and Low-LMRS groups were VHL, PBRM1, and TTN.

The expression product of the von Hippel-Lindau tumor suppressor

(VHL) plays a critical role in cellular oxygen sensing by targeting

hypoxia-inducible factors for ubiquitination and proteasomal

degradation, and it has emerged as a potential therapeutic target
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FIGURE 4

Construction of LMRS and its association with genomic characteristics. (A) Kaplan-meier analysis of High-LMRS and Low-LMRS groups in TCGA-
KIRC cohort. (B) Multivariate Cox model constructed with LMRS, age, and gender. (C) Time-dependent ROC curve of LMRS. (D) Kaplan-meier
analysis of High-LMRS and Low-LMRS groups in E-MTAB-1980 and GSE22541 cohort. (E) Top 20 genes with the highest mutation frequency in
different LMRS groups. (F) Pearson correlation analysis between LMRS and TMB. (G) Kaplan-meier analysis of different TMB groups. (H) Kaplan-meier
analysis combining LMRS and TMB.
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for the treatment of late-stage ccRCC (44). Polybromo 1 (PBRM1)

encodes a subunit of the ATP-dependent chromatin remodeling

complex, and its mutations are associated with primary ccRCC

(45, 46). Titin (TTN) encodes a highly abundant sarcomeric

protein, and its mutations are implicated in the development of

various cancers (47–49). Tumor mutational burden (TMB) refers to

the number of variant bases per million bases in tumor tissue and is

an emerging biomarker increasingly used for predicting patient

prognosis. We found a significant positive correlation between

TMB and LMRS (Coef = 0.21, p value< 0.001) (Supplementary

Table S10; Figure 4F). Kaplan-meier analysis revealed that ccRCC

patients in the High-TMB group had a poorer prognosis (log-rank

test, p value< 0.0001) (Figure 4G). Furthermore, when combining

TMB and LMRS, a better prediction of prognosis was achieved, as

the ccRCC samples in the High-TMB with High-LMRS group

exhibited significantly poorer prognosis (log-rank test, p value<

0.0001) (Figure 4H).
3.5 Immune landscape in the tumor
microenvironment of different
LMRS groups

Different types of infiltrating immune cells in the tumor

microenvironment (TME) have varying impacts on tumor

progression, which may differ depending on the cancer type (50).

Clinical studies on immune cells infiltrating the TME have

confirmed the roles of cytotoxic T cells and tumor-associated

macrophages in cancer progression (51, 52). To further

investigate the immune characteristics of different LMRS groups,

we employed the quantiseq algorithm to evaluate the relative

infiltration levels of 11 immune cell types (B cell, macrophage

M1, macrophage M2, monocyte, neutrophil, natural killer (NK)

cell, T cell CD4+ (non-regulatory), T cell CD8+, T cell regulatory

(Tregs), myeloid dendritic cell, uncharacterized cell) in the TCGA-

KIRC cohort of ccRCC samples (Supplementary Table S11). The

uncharacterized cell was not included in our subsequent analysis.

We observed a significant positive correlation between LMRS and

the infiltration levels of macrophage M1, T cell CD8+, T cell

regulatory (Tregs), myeloid dendritic cell, and macrophage M2

(Figure 5A), while a significant negative correlation was found with

the infiltration levels of NK cells, B cells, and neutrophils.

Furthermore, compared to the Low-LMRS group, the High-LMRS

group exhibited significantly higher infiltration levels of

macrophage M1, T cell CD8+, and T cell regulatory (Tregs), and

significantly lower infiltration levels of neutrophils and NK

cells (Figure 5B).

In numerous human malignancies, the presence of T cells has

been associated with improved patient prognosis (53). However, we

found a significant positive correlation between LMRS and the

infiltration levels of T cell CD8+ (Coef = 0.24, p value< 0.001)

(Figure 5C), with the High-LMRS group exhibiting a poorer

prognosis. To elucidate this phenomenon, we re-evaluated the

immune infiltration levels of the TCGA-KIRC cohort of ccRCC
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samples using the cibersort algorithm and similarly observed a

significant positive correlation between LMRS and T cell CD8+

infiltration levels (Coef = 0.23, p value< 0.001) (Figure 5D). Indeed,

research evidence suggests elevated levels of T cells CD8+ in late-

stage ccRCC, impacting patient response to immunotherapy (54).

The TIDE algorithm evaluated the tumor-infiltrating cytotoxic T

cell exclusion score and dysfunction score. We found that the High-

LMRS group exhibited significantly higher T cell dysfunction scores

(T test, p value< 0.0001). Although the T cell exclusion score was

higher in the High-LMRS group, there was no statistically

significant difference between the two groups (Figure 5E).

Additionally, studies have indicated a link between lipid

accumulation and T cell dysfunction (55). Therefore, we speculate

that the tumor-infiltrating T cell CD8+ in ccRCC samples may

primarily be in an immunosuppressive state, unable to exert normal

cytotoxic functions, thus affecting patient prognosis. Furthermore,

we utilized the ESTIMATE algorithm to assess the stromal score,

immune score, and overall ESTIMATE score of the TCGA-KIRC

cohort of ccRCC samples, finding all three scores significantly

higher in the High-LMRS group (Figure 5F) (T test, p value<

0.0001). Overall, the High-LMRS group exhibited higher levels of

immune cell infiltration in the TME, potentially benefiting more

from immunotherapy.
3.6 Higher LMRS associated with enhanced
responsiveness to immunotherapy

Therapeutic interventions targeting lipid metabolism can

restrain tumor cell growth, and alleviate immune suppression

within the tumor microenvironment, thereby enhancing

responsiveness to immune checkpoint blockade therapy (56). To

evaluate the predictive potential of LMRS for the efficacy of immune

checkpoint blockade therapy, we collected 36 widely utilized

immune checkpoint genes (57). We found a widespread and

significant positive correlation between LMRS and immune

checkpoint genes in the TCGA-KIRC cohort (Figure 6A).

Additionally, in the analysis of the correlation with immune

checkpoint genes, LMRS exhibited a similar landscape to the risk

gene DGKZ. Moreover, PDCD1 (PD1), as an immune inhibitory

receptor, is expressed in various types of immune system cells,

particularly cytotoxic T cells (58). The expression of PDCD1 and

CTLA4 is commonly associated with improved immunotherapeutic

efficacy (59, 60). We observed a significant positive correlation

between the two classical immune checkpoints (PDCD1 and

CTLA4) with LMRS (Figures 6B, C). These findings suggest that

higher LMRS might be associated with improved responsiveness to

immune checkpoint blockade therapy.

During the course of patient response to immune checkpoint

blockade therapy, the support of products of certain essential genes

is required. These essential genes play a crucial role in antigen

presentation and the cytotoxic capability of T cell CD8+, directly

impacting the efficacy of immune checkpoint blockade therapy (61).

We compiled 18 essential genes for immune checkpoint blockade
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therapy (62) and found a significant positive correlation between

LMRS and the expression of multiple essential genes (Figure 6D).

Subsequently, we incorporated a cohort of immune therapy

(GSE67501), which studied the transcriptional landscape of 11

ccRCC patients before receiving nivolumab (anti-PDCD1)

treatment and carefully documented the response of each patient

to immunotherapy after nivolumab treatment (7 non-responsive

samples and 4 responsive samples) (Supplementary Table S12). We

found that the expression of PDCD1 in the responsive group was

higher than in the non-responsive group, although not statistically

significant (Figure 6E). Meanwhile, the LMRS of the responsive

group was significantly higher than the non-responsive group (T

test, p value = 0.030). In conclusion, LMRS can be used to predict

the response of ccRCC patients to immune checkpoint blockade
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therapy. Patients with higher LMRS are more likely to benefit

from immunotherapy.
3.7 Significance of LMRS in guiding
anticancer drug selection

Current treatments for ccRCC often involve cytokine therapy and

targeted drug therapy, yet they fail to generate a universal and enduring

complete remission response (63). To explore the guidance significance

of LMRS in anticancer drug therapy, we employed oncoPredict to

predict the drug sensitivity (IC50 values) of 449 drugs included in

GDSC for ccRCC samples in the TCGA-KIRC cohort (Supplementary

Tables S13, S14). Lower IC50 values indicate higher sensitivity of the
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FIGURE 5

Immune landscape of different LMRS groups. (A) Correlation analysis between LMRS and immune cell infiltration levels. (B) Comparison of immune
cell infiltration levels between different LMRS groups. (C) Correlation analysis between LMRS and T cell CD8+ infiltration levels evaluated by the
quantiseq. (D) Correlation analysis between LMRS and T cell CD8+ infiltration levels evaluated by the cibersort algorithm. (E) Comparison of
exclusion score and dysfunction score between different LMRS groups (ns, non-significant; ****, p value< 0.0001). (F) Comparison of stromal score,
immune score, and estimate score between different LMRS groups (****, p value< 0.0001). '*' indicates that the p-value is less than 0.05, and '***'
indicates that the p-value is less than 0.001.
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samples to anticancer drugs. Our study identified a significant

correlation between LMRS and IC50 values of 348 drugs, with

90.23% showing a significant negative correlation (Supplementary

Table S15; Figure 7A). Considering the target information of the

drugs, we identified 9 drugs targeting metabolic pathways. Among

them, LMRS exhibited a significant negative correlation with the IC50

values of 6 drugs targeting metabolic pathways (BX-912, AICA

ribonucleotide, DMOG, OSU-03012, daporinad, CAP-232), and only

a significant positive correlation with AGI-6780 (Figure 7B).
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Sunitinib, an orally active small molecule tyrosine kinase

inhibitor, with potent anti-angiogenic and antitumor activities, is

widely used as a first-line treatment for renal cell carcinoma (64).

Additionally, other drugs such as axitinib are also commonly used

in the first-line treatment of ccRCC patients (6, 7). We found a

significant negative correlation between LMRS and the IC50 values

of sunitinib, axitinib, temsirolimus, rapamycin, and pazopanib

(Figure 7C). While LMRS exhibited a negative correlation with

the IC50 value of sorafenib, it was not statistically significant.
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FIGURE 6

Association of LMRS with immunotherapy efficacy. (A) Correlation between prognostic signatures, LMRS, and immune checkpoint genes (*, p value<
0.05; **, p value< 0.01; ***, p value< 0.001). (B) Correlation analysis between LMRS and CTLA4. (C) Correlation analysis between LMRS and PDCD1.
(D) Pearson correlation analysis results between LMRS and essential genes for immunotherapy. (E) Comparison of the expression levels of PDCD1
and LMRS between different response groups to immunotherapy (ns, non-significant; *, p< 0.05).
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The structural heterogeneity of the tumor microenvironment in

ccRCC patients leads to different clinical outcomes and

postoperative recurrence risks, thus emphasizing the urgent need

for personalized treatment strategies (65, 66). We further compared

the drug sensitivity between the High-LMRS and Low-LMRS

groups, discovering that the High-LMRS group showed greater

sensitivity to 178 drugs such as gemcitabine (pyrimidine

antimetabolite targeting DNA replication) and irinotecan

(topoisomerase I inhibitor targeting DNA topology) (Figure 7D).

In contrast, the Low-LMRS group demonstrated increased
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sensitivity to 86 drugs, including vincristine (microtubule

assembly inhibitor) and WYE-125132 (mTOR inhibitor).

Statistical analysis of the targeted pathways for each drug revealed

that the sensitive drugs in the High-LMRS group primarily targeted

kinases and DNA replication (Figure 7E). Conversely, the sensitive

drugs in the Low-LMRS group mainly targeted RTK signaling,

EGFR signaling, and PI3K/MTOR signaling pathways. In summary,

these findings indicate that the LMRS we constructed could offer

guidance for targeted therapy, facilitating the development of

personalized treatment regimens for ccRCC.
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FIGURE 7

The guiding significance of LMRS in the selection of anticancer drugs. (A) Statistics of correlation analysis between IC50 value of anticancer drugs
and LMRS. (B) Correlation between LMRS and 9 targeted metabolic pathway anticancer drugs (***, p value< 0.001; *, p value< 0.05). (C) Correlation
analysis between LMRS and 6 commonly used anticancer drugs. (D) Differential analysis of IC50 values of anticancer drugs between different LMRS
groups. Blue represents drugs with lower IC50 values in the High-LMRS group. Red represents drugs with higher IC50 values in the High-LMRS
group. The top 10 drugs with the largest differences in IC50 values between the two groups are specifically marked.
(E) Statistical analysis of the targets of drugs with significant differences in IC50 values between the two groups.
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4 Discussion

Renal cell carcinoma (RCC) refers to cancer originating in the

renal epithelium, and clear cell renal cell carcinoma (ccRCC) is the

most common subtype of RCC (67). Histologically, ccRCC is

defined by malignant epithelial cells with clear cytoplasm,

attributed to the accumulation of abundant lipid droplets within

the cytoplasm (68). While the 5-year survival rate for stage I ccRCC

patients approaches 90%, it drops below 10% for patients with stage

IV disease (69). Metabolic dysregulation is a recognized hallmark of

cancer and an enticing target for cancer therapy (70). Elevated lipid

levels are associated with tumor progression and pathophysiology

of ccRCC (12). Additionally, aberrant lipid metabolic activities

within the tumor microenvironment (TME) promote tumor

growth and suppress the activation of immune cells, thereby

attenuating anti-tumor immunity (71). And ccRCC often exhibits

significant tumor heterogeneity, presenting a major challenge for

anticancer therapies (72, 73). Although there is a strong correlation

between the pathological stage and the risk of death in ccRCC,

relying solely on the pathological stage is insufficient to inform the

prognosis of most patients (74). Therefore, it is essential to

comprehensively investigate lipid metabolism-related genes as

potential novel prognostic signatures for ccRCC and construct

corresponding risk indices to predict the prognosis and treatment

response of ccRCC patients.

A previous study developed a risk model consisting of four

genes (ACADM, ACAT1, CPT1B, and HACD1) for assessing the

risk of ccRCC. This study provides a valuable research paradigm

and has some findings similar to ours. However, it did not focus on

the association between lipid metabolism and ccRCC patients at the

single-cell level (75). In our study, we identified five lipid

metabolism-related prognostic signatures, including four

protective genes (ACADM, ACAT1, ECHS1, HPGD) and one

risk gene (DGKZ), through the integration of bulk and single-cell

transcriptome analyses. Bulk transcriptome analysis revealed the

downregulation of the four protective genes and upregulation of the

risk gene in ccRCC samples relative to normal kidney tissue

samples. The analysis of single-cell transcriptomes shows that

these five genes exhibit significant differences in expression levels

across multiple cell types in tumor samples compared to normal

samples. ACAT1, ACADM, and ECHS1 are all involved in the fatty

acid degradation pathway. ACAT1, serving as acetyl-CoA

acetyltransferase, catalyzes the final step of the reaction where

fatty acids are broken down into acetyl-CoA via the beta-

oxidation pathway. Furthermore, the expression product of

ACADM (medium-chain specific acyl-CoA dehydrogenase) is one

of the key enzymes catalyzing the first step of this beta-oxidation

reaction, while ECHS1 (enoyl-CoA hydratase, short chain 1)

functions in the second step of the beta-oxidation reaction.

Multiple studies have demonstrated that ACAT1 can serve as a

prognostic marker for ccRCC, with its high expression

being associated with better overall survival, which is

consistent with our findings (76, 77). The expression

product of HPGD (15-hydroxyprostaglandin dehydrogenase)

catalyzes a series of dehydrogenation reactions of hydroxylated

polyunsaturated fatty acids and is involved in the arachidonic acid
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metabolism pathway. Furthermore, the risk gene DGKZ

(diacylglycerol kinase) participates in the glycerolipid metabolism

and glycerophospholipid metabolism pathways. Highly

proliferative cancer cells require de novo synthesis of fatty acids to

sustain the production of glycerophospholipids, especially for

membrane production (78). Moreover, DGKZ can act as a central

switch between second messenger-activated signaling pathways,

negatively regulating T cell receptor signal transduction (79).

Subsequently, the machine learning model constructed based on

the five prognostic signatures exhibited excellent performance in

predicting the occurrence and prognosis of ccRCC in multiple

external validation sets. In conclusion, these results confirm the

reliability of the five lipid metabolism-related prognostic signatures

we identified, indicating their significant potential in ccRCC.

Based on five lipid metabolism-related prognostic signatures,

we constructed a lipid metabolism risk score (LMRS) as a risk index

in ccRCC.We found that LMRS is an independent prognostic factor

and significantly correlates with poor outcomes in ccRCC patients.

Moreover, there exists a significant positive correlation between

LMRS and tumor mutation burden (TMB). When combined with

TMB, LMRS demonstrates improved predictive capability for

patient prognosis. TMB serves as a metric for the number of

cancer mutations, with higher mutation rates resulting in more

neoantigens, thereby increasing the chances of triggering T cell

responses and potentially eliciting a response to immune therapy

(80). Using deconvolution methods, we assessed the relative

infiltration levels of multiple immune cells within the TME in the

TCGA-KIRC cohort. We discovered a significant positive

correlation between LMRS and the infiltration levels of

macrophage M1, T cell CD8+, T cell regulatory (Tregs), myeloid

dendritic cell, and macrophage M2, while significant negative

correlations were observed with the infiltration levels of NK cell,

B cell, and neutrophil. Tumor-infiltrating leukocytes, such as

myeloid cells and T cell regulatory (Tregs), can be modulated by

malignant tumor cells to evade immune attacks from cytotoxic

immune cells at the primary tumor site, enhancing tumor cell

survival and promoting the dissemination of tumor cells to

metastatic sites (81). T cells represent one of the most abundant

and prominently featured cell populations in the TME of solid

tumors (82). Additionally, tumor-associated macrophages (TAMs)

constitute another crucial immune population within the TME,

exerting either inhibitory or promotive effects on tumor growth

(83). Consequently, both T cells and TAMs have emerged as

promising therapeutic targets and attractive biomarkers (84).

Among the multiple subtypes of T cells, CD8+ cytotoxic T cells

release various cytolytic mediators, leading to the dissolution and

death of target cells, playing a crucial role in the body’s anti-tumor

mechanisms (85). We observed a significantly higher infiltration

level of T cell CD8+ in the High-LMRS group. The nutritional

competition between multiple cellular components within the TME,

including glucose and lipid competition, affects the transport,

differentiation, and function of T cell CD8+ (86). Indeed, within

established tumors, T cells CD8+ are often found to be functionally

impaired (87). Our study revealed a significantly higher T cell

dysfunction score in the High-LMRS group of ccRCC samples.

Additionally, the High-LMRS group exhibited significantly higher
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stromal score, immune score, and overall ESTIMATE score. These

results suggest that the LMRS we established may serve as a risk

indicator associated with the immune and metabolic homeostasis

within the TME.

In the treatment of ccRCC patients, a combination of immune

checkpoint inhibitors (ICIs) and vascular endothelial growth factor

receptor tyrosine kinase inhibitors (TKIs) can be used for high-risk

disease patients requiring systemic therapy (88). However, there is

currently no established standard treatment regimen, and prospective

controlled trials are also limited (89). In terms of immunotherapy for

ccRCC, some immune checkpoint inhibitors such as nivolumab

(anti-PD1) have shown significant clinical benefits for patients with

advanced ccRCC (90). Our study revealed extensive positive

correlations between LMRS and the risk gene DGKZ with multiple

immune checkpoints, including PDCD1 (PD1), CTLA4, and others.

Furthermore, the LMRS of samples responding to immunotherapy

was significantly higher than that of non-responsive samples,

indicating that patients with higher LMRS may be more likely to

benefit from immunotherapy. In the realm of anticancer drugs, first-

line treatments for metastatic RCC, such as sunitinib and pazopanib,

have demonstrated improved overall survival and response rates and

prolonged progression-free survival (91, 92). We found a significant

negative correlation between LMRS and the IC50 values of sunitinib,

axitinib, temsirolimus, rapamycin, and pazopanib, suggesting that

patients with higher LMRS are more sensitive to these drugs.

Additionally, our analysis of drug therapeutic targets indicated that

the High-LMRS group is more sensitive to anticancer drugs targeting

kinases and DNA replication, whereas the Low-LMRS group is more

sensitive to anticancer drugs targeting RTK signaling and EGFR

signaling. Currently, there is still controversy regarding the optimal

treatment choices and strategies for individual patients, with

nivolumab in combination with cabozantinib showing significant

advantages over sunitinib in terms of progression-free survival,

overall survival, and the likelihood of remission (93). Furthermore,

the combination of lenvatinib and pembrolizumab demonstrated

significantly longer progression-free survival and overall survival

compared to sunitinib (94). In summary, the LMRS we developed

may serve as a significant signature for assessing immunotherapy

response and targeted therapy, and we hope it will facilitate the

development of precise treatment approaches for ccRCC.

On the whole, our study systematically investigated the

association between lipid metabolism and the prognosis of ccRCC

patients. We identified five lipid metabolism-related prognostic

signatures for ccRCC. Moreover, through machine learning

models, we extensively analyzed and validated the potential

significance of these prognostic signatures for occurrence and

prognosis of ccRCC. Additionally, based on these signatures, we

developed a lipid metabolism risk score (LMRS) as a risk index.

After our comprehensive analysis, the LMRS we developed may be

applied to the risk assessment of ccRCC patients, contributing to

clinical practitioners in diagnosing ccRCC patients and providing

them with optimal precise treatment plans. However, despite

deepening our understanding of the association between lipid

metabolism and ccRCC, there are still some limitations. While we

retrospectively constructed and validated our findings in public

research cohorts, the lack of sufficiently large prospective studies
Frontiers in Oncology 16
hinders the assessment of the clinical utility of the prognostic

signatures we constructed in ccRCC. In conclusion, our findings

may have important implications for the diagnosis, prognostic

evaluation, and precise treatment of ccRCC.
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SUPPLEMENTARY FIGURE 1

Analysis results of key LMDPs in bulk transcriptome. (A) Univariate Cox
analysis results of key LMDPs. (B) Differential expression of key LMDPs

between ccRCC samples and normal control samples in TCGA-KIRC

cohort. (C) Differentially expressed gene results from ANOVA analysis
in GEPIA2.

SUPPLEMENTARY FIGURE 2

The survival analysis results of 5 prognostic signatures from the HPA.

SUPPLEMENTARY FIGURE 3

Comparison of LMRS among different age (A) and gender (B) groups.
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