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Profiling of serum metabolome
of breast cancer: multi-cancer
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with breast cancer
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Introduction: The progression of solid cancers is manifested at the systemic level

as molecular changes in the metabolome of body fluids, an emerging source of

cancer biomarkers.

Methods: We analyzed quantitatively the serum metabolite profile using high-

resolution mass spectrometry. Metabolic profiles were compared between

breast cancer patients (n=112) and two groups of healthy women (from Poland

and Norway; n=95 and n=112, respectively) with similar age distributions.

Results: Despite differences between both cohorts of controls, a set of 43

metabolites and lipids uniformly discriminated against breast cancer patients

and healthy women. Moreover, smaller groups of female patients with other

types of solid cancers (colorectal, head and neck, and lung cancers) were

analyzed, which revealed a set of 42 metabolites and lipids that uniformly

differentiated all three cancer types from both cohorts of healthy women. A

common part of both sets, which could be called a multi-cancer signature,

contained 23 compounds, which included reduced levels of a few amino acids

(alanine, aspartate, glutamine, histidine, phenylalanine, and leucine/isoleucine),

lysophosphatidylcholines (exemplified by LPC(18:0)), and diglycerides.

Interestingly, a reduced concentration of the most abundant cholesteryl ester

(CE(18:2)) typical for other cancers was the least significant in the serum of breast

cancer patients. Components present in a multi-cancer signature enabled the

establishment of a well-performing breast cancer classifier, which predicted

cancer with a very high precision in independent groups of women (AUC>0.95).
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Discussion: In conclusion, metabolites critical for discriminating breast cancer

patients from controls included components of hypothetical multi-cancer

signature, which indicated wider potential applicability of a general serum

metabolome cancer biomarker.
KEYWORDS

biomarker, breast cancer, high-resolution mass spectrometry, metabolomics,
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1 Introduction

In women’s population breast cancer (BC) represents 25% of

newly diagnosed cancer cases and about 15% of cancer-related

deaths worldwide. In many developed countries, this cancer ranks

first on the list of morbidity and mortality among all malignancies.

Moreover, according to epidemiologic forecasts, both values will

increase over the next decades (1). Therefore, intensive research is

needed on the mechanisms of development of this very

heterogenous malignancy (2) to clarify many aspects of its

molecular biology further and identify biomarkers for risk

assessment and early detection of this cancer (3).

Since 1920, when Otto Warburg noticed the accumulation of

lactate in tumor tissue due to increased glucose consumption by

aerobic glycolysis, cancer metabolomics has made great progress (4,

5). The metabolome combines information resulting from both

endogenous processes and exogenous interactions, thus providing

insight into cellular mechanisms and their modifications caused by

a wide range of stimuli. In addition, metabolic changes are visible

earlier than phenotypic ones, and their examination is possible in a

quick and minimally invasive way (e.g., by determination in body

fluids). Studying the profiles of metabolites enables the creation of

so-called “metabolic fingerprints’’, i.e. changes in the metabolome

characteristic of a specific state of the body. Numerous studies have

been conducted to characterize cancer-related changes, using

different cohorts and on various types of material (tissue, blood,

etc.) (6, 7). Metabolic features of breast cancer were addressed in

several reports, including information on cancer-related changes in

the metabolism of amino acids, fatty acids, or glycerolipids (8–11).

Unfortunately, reported results are ambiguous, hence the metabolic

fingerprint for breast cancer and its specificity regarding other

cancer types have yet to be fully characterized (12).

In the current study, we performed a quantitative analysis of

metabolites present in serum samples of breast cancer patients and

two cohorts of healthy women, which allowed us to identify

differences in the metabolic profiles of healthy women and

patients diagnosed with breast cancer. Moreover, women with

three other types of solid cancers (colorectal cancer, head and

neck cancer, and lung cancer) were included in the study, which
02
revealed “multi-cancer” characteristics of certain metabolic features

observed in patients with breast cancer.
2 Materials and methods

2.1 Characteristics of analyzed groups

The clinical material was collected at the Maria Sklodowska-

Curie National Research Institute of Oncology, Gliwice Branch

between 2010 and 2020. Blood samples were collected from women

patients with breast (BC), colorectal (CC), head and neck (HC), and

lung (LC) cancers before the start of cancer therapy. Two groups of

healthy donors were included in the study: healthy volunteers living

in the Silesia region, Poland (Ctr_P), recruited in the same period as

cancer patients, and a subset of healthy women selected from

participants of the HUNT2 study performed between 1995 and

1997 in the Trøndelag region, Norway (Ctr_N). The Trøndelag

Health Study (HUNT) is a collaboration between HUNT Research

Centre (Faculty of Medicine and Health Sciences, Norwegian

University of Science and Technology NTNU), Trøndelag County

Council, Central Norway Regional Health Authority, and the

Norwegian Institute of Public Health (13). The latter set included

women selected from a group of 450 healthy participants analyzed

in a previously published study (14) to match the age of BC patients

(see diagram in Supplementary Figure S1). Consequently, two

independent cohorts of healthy controls were included: Ctr_P and

Ctr_N. The characteristics of the study cohort are presented in

Table 1. Peripheral blood was collected into a 5 mL BD Vacutainer

Tube, incubated for 30 min at room temperature to allow clotting,

and then centrifuged at 1000× g for 10 min to remove the clot. The

serum was aliquoted and stored at −80°C before further processing.

The study was conducted following the Declaration of Helsinki, and

approved by the Ethics Committee of Maria Sklodowska-Curie

National Research Institute of Oncology, Gliwice Branch (KB/493-

53/10 and KB/430-84/20) and the Regional Committee for Medical

and Health Research Ethics (REK#1995/8395 and REK#2017/2231).

All participants provided informed consent indicating their

voluntary participation.
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2.2 Quantitative high-resolution
mass spectrometry

Quantitative analysis of metabolites for all serum samples was

performed using the Absolute IDQ p400 HR kit (Biocrates Life

Sciences AG, Innsbruck, Austria) following the procedure

recommended by the producer (Supplementary Data: Protocol for

metabolite detection and quantification by the Absolute IDQ p400

HR kit). This is a commercial assay with an automated workflow,

whose quality, stability, and repeatability were validated in the

international ring trial (15). Orbitrap Q Exactive Plus high-

resolution mass spectrometer (Thermo Fisher Scientific,

Waltham, MA, USA) and 1290 Infinity UHPLC (Agilent, Santa

Clara, CA, USA) system was used to measure concentrations of

selected metabolites (including amino acids, biogenic amines,

hexoses, acylcarnitines, diglycerides, triglycerides, (lyso)

phosphatidylcholines, sphingolipids, and cholesteryl esters) in 10

µl human serum. Samples were measured in batches designed to

secure the same proportion of different groups with a randomized

order of samples within each group. The obtained chromatograms

and spectra were processed using Xcalibur 4.1. and MetIDQ

DB110-2976 software (Biocrates Life Sciences AG) resulting in a

matrix of concentrations of metabolites in µM. To control the

quality of quantitative analyses the coefficient of variation (CV) of

all Quality Control (QC) measurements for all metabolites was

calculated (16).
2.3 HRMS data processing

The MS dataset contained measurements of the levels of 389

metabolites present in 416 samples. Firstly, detection and

imputation of missing values were performed. According to the

recommendations of Chen and coworkers (17) a threshold of 50%

was adopted for values missing not at random (i.e., values below the

limit of detection). In the case of data missing completely at random

(i.e., generated as a result of the internal standard error), a threshold

of 10% was adopted. In the first case, missing values were imputed
Frontiers in Oncology 03
by random numbers generated from normal distribution truncated

to a segment between 0 and the median value of the limits of

quantitation for all test plates. In the second case, missing values

were imputed using the k-nearest neighbor approach (the nearest

observed data were identified using a correlation distance metric,

and the mean value of the three nearest neighbors was used based

on measurements collected for the same group). Metabolites that

were non-compliant with these criteria were excluded from further

analyses. Finally, 284 metabolites were qualified for quantitative

analysis, and the remaining 105 compounds were left for binary

analysis, which statistically tests whether the absence/presence

status of a metabolite is a group-related feature. In the next step,

the data were transformed using the log base 2 function, and then

the batch effect was corrected using an empirical Bayes method,

assuming that samples measured using a single 96-well sample

preparation plate represent one batch (18).
2.4 Statistical and bioinformatics analyses

The quantitative analysis of metabolites that differentiated BC

cases (n=112) and either control group (n=95 or n=112 for Ctr_P

and Ctr_N, respectively) was performed using the Mann–Whitney

U test, and then the Benjamini–Hochberg procedure was performed

to reduce the number of false positive results. To analyze

metabolites that differentiated either control group (n=35 for both

Ctr_P and Ctr_N) from BC (n=35), CC (n=30), HC (n=32), and LC

(n=35) cases, the Kruskal−Wallis test, followed by the post-hoc

Conover test for pairwise comparisons was implemented. All

statistical hypotheses were tested at the 5% significance level. In

addition, the “r” effect size was calculated according to the formula:

r=z/square root of N (where z is the value of the test statistic and N

is the total number of observations in two compared groups) with

interpretation according to the Cohen’s criterion (small effect – |r|

>0.1, medium effect – |r|>0.3, large effect – |r|>0.5) (19). Fisher’s

exact test was applied for metabolites that did not qualify for

quantitative analysis to determine if there was a nonrandom

association between the absence/presence of metabolites and
TABLE 1 Characteristics of the study cohorts.

Control
(Poland)

Control
(Norway)

Breast
Cancer

Colorectal
Cancer

Head &
Neck Cancer

Lung
Cancer

Abbreviation Ctr_P Ctr_N BC CC HC LC

N 95 35* 112 35* 112 35* 30 32 35

Age (years)
mean [S.D.]

48.3
[6.5]

53.7
[3.6]*

49.3
[11.0]

63.0
[9.0]*

49.3
[11.0]

60.5
[7.4]*

64.8 [10.5] 59.4 [11.9] 65.2 [8.8]

Clinical stage

I – – – – 0 0* 6 0 9

II – – – – 56 19* 11 2 8

III – – – – 49 14* 12 9 13

IV – – – – 7 2* 1 21 5
*Sub-cohort of controls and BC cases selected for comparison with other solid cancers to enable similar age distribution in all groups.
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analyzed groups. Hierarchical clustering was performed to assess

similarities between the analyzed groups. The median value of

metabolite abundances for samples within a particular group was

calculated (raw abundances were previously transformed to z-

scores). Each analyzed group was characterized by a vector

consisting of the calculated median value of metabolite

abundances, and then similarities between groups were analyzed

using agglomerative hierarchical cluster analysis with the

Minkowski distance between pairs of observations and the

average linkage clustering method. To assess the predictive

quality of the multi-cancer signature for distinguishing breast

cancer samples and controls, a classifier was constructed on a

dataset containing samples not used for the signature selection

(60 Ctr_P, 60 Ctr_N, 77 BC cases). A support vector machine

(SVM) model with a radial kernel function was trained on half of

the BC cases (n=39) and an equal number of Ctr_N controls, and

tested on the remaining half of the BC cases (n=38) and an equal

number of Ctr_P controls (see diagram in Supplementary Figure

S1); this design enabled the validation of the universality of

classification model using different populations of healthy women.

The prediction quality on the test set was evaluated in terms of

accuracy, sensitivity, specificity, positive and negative predictive

value (PPV and NPV, respectively), and area under the receiver

operating characteristic curve (AUC). To obtain a reliable

estimation of classification quality, the procedures (sampling,

training, and testing/validation) were repeated 500 times. All

analyses were performed using the R Statistical Software (version

4.1.2, R Foundation for Statistical Computing, Vienna, Austria).

The metabolic pathway enrichment analysis was performed using

the MetaboAnalyst 5.0 platform for all quantitative data (https://

www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml; last

access October 6, 2023).
3 Results

3.1 HRMS-based analysis of serum
metabolites revealed compounds
discriminating between controls and breast
cancer cases

Serummetabolite and lipid profiles were analyzed quantitatively

by HRMS in a set of samples collected from breast cancer patients

and two cohorts of healthy women living in Poland or Norway;

three other types of solid cancer were also used for the comparison

(baseline characteristics of the study groups are presented in

Table 1; a similar age distribution was ensured between the

compared groups). This approach enabled the detection of 389

metabolites, among which 284 compounds quantified in the

majority of samples were used in quantitative analyses. The

median value of concentrations of quantified compounds and the

strength of differences between controls and BC cases are presented

in Figure 1A. Good separation of cancer and control samples in the

unsupervised Principal Component Analysis (PCA) was noted;

moreover, a separation was also observed between both groups of
Frontiers in Oncology 04
control samples (Figure 1B, also see Supplementary Figure S1A for

the results of the OPLS-DA analysis). There were 60 serum

metabolites whose levels were significantly different between BC

cases and Polish controls (medium or large effect size), including 49

metabolites downregulated and 11 upregulated in BC cases. On the

other hand, there were 114 metabolites with levels significantly

different between BC cases and Norwegian controls, including 88

downregulated and 26 upregulated in cancer samples (see

Supplementary Table S1 for details). Moreover, when the

remaining set of 105 metabolites not qualified for quantitative

analysis was tested for the absence/presence status, 5 metabolites

(AC(15:0), AC(18:1), DG(38:0), PC(44:3), Cer(44:0)) were

significantly under-represented in BC cases compared to Polish

controls. On the other hand, 4 metabolites (AC(7:0), LPC-O(17:1),

PC(35:0), PC(44:10)) were under-represented while 4 metabolites

(AC(4:0-OH), spermidine, PC-O(44:5), PC-O(32:0)) were over-

represented in BC cases compared to Norwegian controls

(Supplementary Table S2).

Differences between (Polish) breast cancer cases and Norwegian

controls in concentrations of serum metabolites were stronger than

differences between cases and Polish controls (Figure 1C); the

medians of the effect sizes equal 0.228 and 0.153, respectively.

Partially different sets of metabolites that discriminated against

BC cases and either group of controls were related to significant

differences between both control groups. We found 85 compounds

with different concentrations between Ctr_P and Ctr_N groups

(Supplementary Table S1). Nevertheless, a large set of metabolites

commonly differentiated BC cases from both control groups: there

were 33 overlapped metabolites significantly downregulated in BC

cases and 10 metabolites significantly upregulated in BC cases in

comparison to both control cohorts (medium or large effect size;

Supplementary Table S1). Importantly, the identification of the

same features in two different cohorts of healthy women indicated a

universal significance of the signature, which could be called the

“breast cancer signature”. This signature included 13 amino acids,

12 lysophosphatidylcholines, and 6 diglycerides downregulated in

BC cases as well as 9 acylcarnitines upregulated in BC cases.

Noteworthy, the increased level of hexoses (incl. glucose) detected

in cancer samples was significantly higher compared to Polish

controls than compared to Norwegian controls (large and small

effect size, respectively). The volcano plot in Figure 1D and

Supplementary Figure S3 illustrates the metabolites that showed

the most robust differences between controls and BC cases. These

included glutamic acid (Glu) and aspartic acid (Asp) whose

concentration was markedly reduced in the serum of BC patients

compared to both groups of healthy controls (Figure 1E). Moreover,

assuming the potential functional redundancy of lipids from the

same class, aggregated amounts of major classes of detected lipids

were also compared (Figure 1F). We found that total levels of

lysophosphatidylcholines (LPC) and diglycerides (DG) were

markedly reduced in sera of breast cancer patients compared to

both groups of controls (effect size r<-0.3). Similar total levels of

lipid classes were observed in sera of healthy individuals from both

control cohorts (except for lysophosphatidylcholines slightly

upregulated in Norwegian controls).
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3.2 HRMS-based analysis of serum lipids
and metabolites revealed a common set of
compounds that differentiated controls
from breast cancer cases and three other
types of solid cancers

Knowing serum metabolites that differentiated breast cancer

patients from healthy controls, we aimed to check its potential
Frontiers in Oncology 05
specificity for this particular cancer compared to features of serum

metabolome observed in other types of solid cancers. Therefore,

additional groups of women patients diagnosed with either colorectal

cancer (CC), head and neck cancer (HC), or lung cancer (LC) were

included in the analysis. Assuming that the age of participants is a

potential confounding factor in this type of study, smaller sub-

cohorts of healthy controls and BC cases were selected to enable a

similar age distribution in all groups (Table 1). The median value of
A B

D

E F

C

FIGURE 1

Characterization of the serum metabolome profile analyzed by mass spectrometry in breast cancer patients and healthy women. Panel (A) – Levels
of metabolites in serum samples from 112 Norwegian and 95 Polish controls (Ctr_N and Ctr_P, respectively) and 112 cancer cases (BC); heatmap
visualizes median levels of analyzed metabolites in each group (raw abundances were converted into z-scores) and magnitudes of differences
between groups (quantified as “r” effect size). Panel (B) – Plot of the data in two dimensions of the first two principal components of PCA analysis to
visually identify clusters; cases and controls are marked separately (large circles represent the average of each group). Panel (C) – The histograms for
metabolites that showed the increased significance of differences between BC cases and either group of controls (vertical lines represent the
median value of “r” effect sizes). Panel (D) – The volcano plot representing metabolites with significantly different concentrations between BC and
Ctr_P; shown is the fold-change and corresponding p-value. Panel (E) – Concentrations of glutamic acid (Glu) and aspartic acid (Asp) in samples of
BC cases and controls. Panel (F) – Differences in aggregated concentration of different classes of lipids between BC cases and controls. Boxplots
represent minimum, lower quartile, median, upper quartile, and maximum; medium (|r|>0.3) or large (|r|>0.5) effect size is marked with one hash (#)
or two hash (##) symbols, respectively; AC – acylcarnitines, DG – diglycerides, TG – triglycerides, LPC – lysophosphatidylcholines, PC –

phosphatidylcholines, SM – sphingomyelins, Cer – ceramides, CE – cholesteryl esters.
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concentrations of quantified compounds in all six groups and the

strength of differences between controls and each cancer type are

presented in Supplementary Figure S4. When clusters of samples

were observed in the PCA analysis, both control groups were distinct

from any cancer cases; Norwegian controls were the most dissimilar

(Figure 2A; the analysis was based on all quantitated metabolites; also

see Supplementary Figure S1B for the results of the OPLS-DA

analysis). Similarly, unsupervised hierarchical clustering of

“averaged group representatives” revealed the largest distance of

controls from all cancer types (Figure 2B); CC cases and HC cases

appeared the most similar. When the average strength of differences

between controls and cancer cases were compared (based on the

histogram of metabolites differentiating controls and cases with

increasing effect size), the biggest effect was noted for CC and HC

cases, while the effect was lower for BC cases (median value of the

effect sizes equal to 0.157 and 0.259 for Ctr_P and Ctr_N,

respectively) (Supplementary Figures S5A, B). Aggregated amounts
Frontiers in Oncology 06
of the major classes of lipids were also analyzed which revealed

reduced levels of total serum lysophosphatidylcholines and

diglycerides as a general cancer-related feature. On the other hand,

certain lipid features characteristic of CC, HC, and LC were not

observed in BC cases. These included downregulation of ceramides,

sphingomyelins, and cholesteryl esters; the latter feature (i.e.,

downregulation of cholesteryl esters compared to both control

groups) was statistically significant in all solid cancers except BC

cases (Figure 2C).

Furthermore, we searched for specific metabolites whose serum

levels differentiated both control cohorts from all cancer types (i.e.,

components of a hypothetical “multi-cancer” signature); cancer cases

were analyzed against each control cohort separately (Supplementary

Table S3). We found that 29 features discriminated between Polish

controls and all four types of solid cancers (large andmedium effect size);

all but one (AC(14:1)) showed reduced concentration in cancer samples

(Supplementary Figure S5C). On the other hand, 98 features
A B

D E

C

FIGURE 2

The serum metabolome features differentiate healthy women and patients with four types of solid cancers. Panel (A) – Plot of the data in two
dimensions of the first two principal components of PCA analysis of samples of women diagnosed with breast (BC), colorectal (CC), head and neck
(HC), and lung (LC) cancers, and healthy controls (large circles represent the average of each group). Panel (B) – Dendrogram of the hierarchical
binary cluster tree of six groups based on the median value of metabolite concentrations; the height of each U represents the Minkowski distance
between the two analyzed groups being connected within a cluster. Panel (C) – Differences in aggregated concentrations of the major classes of
lipids between controls and four types of cancers; medium (|r|>0.3) or large (|r|>0.5) effect size of differences between control and particular cancer
type is marked with one hash (#) or two hash (##) symbols, respectively (green marks on left and blue marks on right represent the significance of
differences between cancer cases and Ctr_N or Ctr_P, respectively). Panel (D) – The Venn diagram showing the overlap of metabolites that
discriminated four types of solid cancers from both groups of controls consistently (large and medium effect size). Panel (E) – Concentrations of
selected metabolites that differentiated controls and four types of cancers (the effect size is marked as in Panel C).
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discriminated between Norwegian controls and all four types of solid

cancers, which included reduced total concentrations of

lysophosphatidylcholines, diglycerides, and sphingomyelins in cancer

samples (Supplementary Figure S5D). Importantly, when these two

sets of metabolites common for all cancer types were combined, 24

overlapped features were revealed (Figure 2D). This common “multi-

cancer signature” included 6 amino acids (Ala, Asp, Glu, His, Phe, Leu

+Ile), 2 DGs, 2 TGs, and 13 LPCs (and total LPC level) (Supplementary

Table S4).

This is noteworthy, that only a small fraction of compounds (5

metabolites) differentiating BC cases from both cohorts of controls

did not belong to this multi-cancer signature. Hence, the major

fraction of metabolites that differentiated controls and BC cases

showed similar differences between controls and other types of solid

cancers. On the other hand, a subset of features that discriminated

both cohorts of controls from cancers LC, HC, and CC but not from

BC cases was relatively large (14 features). These cancer-specific

features that were missed in the case of breast cancer included

reduced concentration of CE(18:2), which is the most abundant

cholesteryl ester detected in the serum (in general, similar

concentrations of cholesteryl esters were noted in BC cases and

controls). Examples of metabolites that discriminated control and

cancer samples, including components of a hypothetical multi-

cancer signature, are presented in Figure 2E.
3.3 Breast cancer classifier based on serum
metabolome components present in the
multi-cancer signature

Metabolites present in a hypothetical multi-cancer signature

were used to test multicomponent binary classifiers discriminating

breast cancer cases from healthy controls. Considering a high

correlation of serum concentrations of 13 LPCs present in this

signature, only an aggregated LPC level was included in the tested

model. Therefore tested signature was composed of 11 features: Ala,

Asp, Glu, His, Phe, Leu+Ile, DG(34:3), DG(36:4), TG(44:2), TG
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(46:2), and total LPC. Samples used for the identification of the

multi-cancer signature were not used for training and testing of the

classifier to avoid information leaks (scheme in Supplementary

Figure S1). The classification model was trained using Norwegian

controls and tested using Polish controls; this design strengthened

the validation of the universality of the classification model. Five

hundred repeats of the train/test procedure were implemented to

assess the prediction power of the classifier. The indices of the

classification model obtained during its vali-dation are presented in

Figure 3A. In general, we found a very high prediction power of the

resulting breast cancer classifier: sensitivity=0.97, specificity=0.92,

and AUC=0.98. We concluded that a set of metabolites selected to

differentiate healthy women from patients with four types of solid

cancers (multi-cancer signature) classified an independent group of

BC cases with very high precision.
3.4 Similar metabolic pathways were
associated with breast cancer and three
other types of solid cancers

The analysis of metabolic pathways associated with a set of 43

compounds whose levels differed between both groups of controls

and BC cases (i.e., breast cancer signature) revealed several terms

primarily related to amino acid metabolism. Pathway analysis was

also performed with a set of 42 compounds whose levels differed

between both groups of controls and three other types of cancer

(CC, HC, and LC) not taking into account BC. Practically the same

pathways were associated with sets of compounds differentiating

controls from BC and compounds commonly differentiating

controls from other types of cancers (Figure 3B); however, lipids

that are not properly annotated in the used bioinformatics tool are

not illustrated in either case. Nevertheless, the top-3 pathways were

the same in both sets: “aminoacyl-tRNA bio-synthesis”, “alanine,

aspartate, and glutamate metabolism”, and “histidine metabolism”,

confirming the functional similarity of serum metabolites

characteristic of BC and other types of solid cancers.
A B

FIGURE 3

Comparison of the serum metabolite features characteristic of breast cancer patients and patients with other types of solid cancers. Panel (A) –
Performance of breast cancer classifier built of features present in the multi-cancer signature. The classifier was trained and tested using Norwegian
(Ctr_N) and Polish (Ctr_P) controls, respectively. Panel (B) – Metabolic pathways associated with compounds whose levels were different between
controls and BC cases (left) or controls and other types of cancers (CC, HC, LC); shown are pathways with the most significant enrichment (size of a
dot corresponds to the enrichment ratio).
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3.5 Possible confounding factors affecting
the study

The age of participants is a strong factor affecting the serum

concentrations of several metabolites, which is manifested by a

positive correlation between age and concentration of lipids,

particularly DGs (only concentrations of LPCs were age-

independent) (14). However, the compared groups have a similar

age distribution in the present study, which excluded age as a

confounding factor during the comparison between controls and

cancer cases. Nevertheless, we have performed additional analysis

where differences between the BC cases and controls were analyzed

separately in sub-cohorts of “younger” (<50 year-old) and “older”

(≥50 year-old) women, which putatively mirrored their pre- and

post-menopause statuses (Supplementary Table S5). This analysis

revealed the same patterns of difference between the BC cases and

both groups of controls (Ctr_P and Ctr_N) in either age-defined

sub-cohorts, which indicated that features of cancer signature were

age-independent). Another biological factor that putatively affects

serum concentrations of metabolites is a fasting period before the

blood collection, which was not controlled in the current study for

cancer patients and Polish controls. However, based on data

obtained from healthy participants of the HUNT2 study (14), we

found that levels of lysophosphatidylcholines differentiating

controls and cancer cases (e.g., LPC(16:0), LPC(18:0), and total

LPC level) were not affected by fasting. Similarly, levels of amino

acids essential for cancer classification (Asp, Glu, Phe), which were

generally decreased in cancer samples, were barely affected by

fasting (a slight increase with time of fasting could be noted)

(Supplementary Figure S6), which further reduced the putative

confounding significance of this factor for hypothetical cancer

signature. Moreover, since the sample’s storage periods extended

two years some metabolites might have been affected by long-term

storage (20). Importantly, however, any changes induced by long-

term storage were randomly distributed over the cases (BC, CC,

HC, LC) and Ctr_P samples, which reduced the impact of this

confounding factor on the observed differences between cancer

patients and healthy controls. HUNT samples (Ctr_N) were stored

for a longer time compared to Polish samples. However, proposed

cancer signature included only compounds that jointly

differentiated cancer samples from both groups of controls, which

reduced the potential impact of differences in the storage period.

Furthermore, measuring groups of samples as separate batches

could result in differences strengthened by analytical factors such

as instrumental drift. However, in the current study, all types of

cancer and control samples were similarly distributed among sets/

batches of measurements, and then potential batch effects among

these sets were corrected during the data processing procedure.
4 Discussion

Metabolomics, which addresses the most dynamically changing

system in the human body – the metabolome, represents an

emerging opportunity for the understanding of human disease

(6). The implementation of analytical approaches based on NMR
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metabolites present in blood and other body fluids enabled the

identification of multicomponent signatures that could be

considered a goldmine of biomarkers of different cancers,

including breast cancer (21, 22). However, though molecular

features of breast cancer have been widely reported in the

literature, the specificity of metabolic serum fingerprint for breast

cancer has not been characterized comprehensively yet (12).

Here we applied an HRMS-based quantitative approach to

compare metabolic profiles of serum from breast cancer patients

and two cohorts of healthy women, which revealed a set of

metabolites whose serum levels were significantly different be-

tween cancer cases and controls. Cancer-related features were

clearly distinguished despite significant differences between Polish

and Norwegian cohorts of healthy women used as a control.

Differences between the cohorts of healthy women are putatively

related to differences in lifestyle-related factors, including diet and

physical activity, since the potential influence of ethnic/genetic

background was rather limited (however, due to lack of

demographic details analysis of hypothetical lifestyle-related

factors could not be performed) or changes in the metabolite

concentrations during the extend sample storage (Norwegian

samples collected in the frame of HUNT2 study were

stored for a longer period than Polish cases and controls).

We found that concentrations of most of the amino acids (Glu

and Asn in particular), diglycerides, triglycerides, and

lysophosphatidylcholines were generally decreased while

concentrations of hexoses (incl. glucose), and certain

acylcarnitines were increased in sera of breast cancer patients. A

study that applied the earlier version of the quantitative MS-based

platform than the one used in our study (the Biocrates p180 assay),

revealed significantly reduced concentrations of several amino acids

(Ala, Asn, Glu, His, Leu, Lys, Met, Orn, Phe, Thr, Trp, Val) and

biogenic amines (kynurenine and Met-SO) in plasma of breast

cancer patients (23), which was fully coherent with results of the

current study. However, metabolic patterns of breast cancer

reported in several other studies only partially overlapped with

the present study. For example, multiplatform (NMR, LC-MS, and

GC-MS) analysis of plasma metabolome performed in a group of

Hispanic women with breast cancer revealed an increased

concentration of several acylcarnitines (which was coherent with

our study) but also triglycerides, and lysophosphatidylcholines

(which was contrary to our study) (24). Another study based

on the combination of LC-MS and GC-MS showed increased

levels of Gln and acylcarnitines while decreased levels of

lysophosphatidylcholines and amino acids in plasma of breast

cancer patients, which was consistent with our study, yet levels of

glucose were decreased in cancer (25). Such inconsistencies among

reports could be due to different analytical platforms and different

demography/pathology characteristics of studied cohorts (for

example, the age of donors is a major confounding factor

affecting the profile of metabolites in serum samples (14)).

Nevertheless, the majority of studies showed reduced levels of

amino acids in the plasma or serum of breast cancer patients (8,

23, 26). Moreover, similar to our report, increased levels of glucose

(27, 28) were documented in other studies. Hence, though several
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differences among published reports exist, impaired metabolism of

amino acids (manifested by their reduced serum/plasma

concentrations) and glycolysis (manifested by increased

concentration of glucose) appeared as general metabolic features

observed in the blood of breast cancer patients.

Though major cancer-related changes in cellular metabolism

are common for malignant cells (29, 30), specific differences could

be observed when metabolic profiles of serum/plasma are compared

among patients with different types of cancer. For example,

differences in serum levels of certain amino acids and lipids were

reported in patients with different leukemias (31). Here we observed

several differences in serum metabolome patterns among four

types of solid cancers. This could be exemplified by different

serum lipid profiles: reduced levels of cholesteryl esters and

phosphatidylcholines characteristic for patients with head and

neck, lung, or colorectal cancer were not observed in patients

with breast cancer. Nevertheless, a set of metabolites that

significantly differentiated healthy controls from patients with all

types of investigated solid cancers was identified. This set of

metabolites comprised several amino acids (Ala, Asp, Glu, His,

Leu, Ile, Phe) and lysophosphatidylcholines (including the most

abundant LPC(16:0) and LPC(18:0)) with reduced serum

concentrations in cancer patients. Hence, we concluded that

metabolic features of serum that most markedly differentiated

healthy women and breast cancer patients represent a set of

metabolites common for women with different solid cancers,

which could be considered as a “multi-cancer signature”. This

conclusion was further confirmed because metabolites present in

this signature could be used to build a specific breast cancer

classifier that showed very high prediction power when validated

using independent groups of women.

The characteristic feature of the hypothetical multi-cancer

signature was the reduced serum level of amino acids and lipids,

a phenomenon widely described in the literature. In general,

reduced levels of metabolites in the serum of cancer patients

could reflect their transfer from blood to the tumor site caused by

their higher consumption by cancer cells, where they work as

biosynthesis substrates, fatty acid carriers, energy sources, and/or

signaling molecules. Increased uptake from blood and enhanced

metabolism of amino acids is a hallmark of many cancers, including

cancers addressed in the current study (32). Under different types of

stress conditions, amino acids facilitate the survival and

proliferation of cancer cells due to their essential role in

nucleotide and protein synthesis or DNA methylation. Moreover,

some amino acids function as precursors of polyamines or nitric

oxide, as well as act as signaling molecules (33). Decreased level of

circulating amino acids is linked to increased uptake by cancer cells

due to overexpression of amino acid transporters, including

SLC1A5 (Gln uptake), SLC1A4 (Ser uptake), SLC7A5 (Leu, Ile,

and Val uptake), or SLC7A1 (Arg uptake) (4). Another tumor-

related feature is generally reduced levels of serum lipids (so-called

hypolipidemia) resulting from increased utilization of lipids by

cancer cells (34). Few studies showed decreased serum levels of

glycerides (35) and cholesterols (36) in breast cancer patients.

However, the most characteristic feature observed in cancer
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patients is a reduced level of circulating lysophosphatidylcholines

with a chain of palmitic, stearic, or oleic acids (LPC(16:0), LPC

(18:0), and LPC(18:1), respectively). Reduced serum levels of LPCs

putatively reflected their transfer to tumor tissue and higher

consumption by cancer cells. This effect could also result from

intensified conversion of LPC by autotaxin (ATX) to

lysophosphatidic acid (LPA), since increased ATX expression was

observed in different cancers, including breast cancer where it was

linked to the promotion of metastasis (37). Moreover,

lysophosphatidylcholine acyltransferase 1 (LPCAT1), which

catalyzes the conversion of LPC to PC, is overexpressed in

different tumors including breast cancer (38–40). Nevertheless,

the metabolism of phosphatidylcholines is significantly disturbed

in cancer cells and their increased incorporation into plasma

membranes enhances proliferation and motility. Therefore, the

changed serum levels of their precursors (e.g., choline) and/or

derivatives (e.g., lysophosphatidylcholines) are considered

promising cancer markers (41, 42). This is noteworthy that

reduced levels of LPC(18:0) were associated with an increased risk

of different tumors including breast, prostate, colorectal, and lung

cancers (14, 43, 44). The reduced level of serum cholesterol was

another cancer-related feature observed in our study, though this

effect was milder in patients with breast cancer compared to other

cancers. Nevertheless, reduced levels of cholesterol may result from

the fact that cholesterol is a key precursor of estrogen (45).

Moreover, cholesterol-reach LDLs impact the proliferation of

breast cancer cells due to the overexpression of Akt and ERK

pathway intermediates (46), and high expression of LDL

receptors was detected in breast cancer cells (47). Furthermore,

increased serum concentrations of acylcarnitines, compounds

involved in lipid and energy metabolism (48), were also

characteristic of cancer patients. Noteworthy, similar metabolic

pathways were associated with sets of compounds characteristic

of breast cancer and characteristic of other types of solid cancers.

Therefore, one should assume that metabolites whose serum levels

differentiated healthy women from patients with breast cancer and

other solid tumors were undoubtedly associated with metabolic

pathways generally impaired in cancer cells.

Concentrations of serum metabolites are markedly affected by

several biological and preanalytical confounding factors. These

confounders include but are not limited to age, fasting status, and

extended sample storage which were considered in the present

study. However, other pre-analytical factors related to sample

processing (49, 50) not controlled in the current study may be

present as the cohorts were collected in the frame of different

studies. Hence, the significance of the multi-cancer signature

proposed in our pilot study should be further validated in the

independent prospective study involving cohorts matched

regarding age and medical conditions other than cancer status,

where samples are collected and processed in fully standardized and

controlled conditions. Nevertheless, a major strength of our results

is the discovery of cancer signatures obtained in comparison with

two different cohorts of control samples, and revealing the overlap

between serum metabolome signatures of breast cancer and other

types of solid cancers.
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5 Conclusions

The high-throughput metabolomics approach implemented in

the current study revealed a set of serum metabolites that

discriminated between healthy women and breast cancer patients.

The identified breast cancer signature included metabolites

associated with known cancer-related pathways. Despite some

differences in serum metabolome profiles among women with

different solid cancers, a common set of metabolic features that

discriminated cancer patients from healthy controls was

established. Noteworthy, metabolites critical for discriminating

breast cancer patients from controls included components of a

hypothetical multi-cancer signature, which indicates wider

potential applicability of a general metabolic cancer biomarker

after its comprehensive validation.
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