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Background: This study aims to develop and validate a pretreatment MRI-based

radiomics model to predict lymph node metastasis (LNM) following neoadjuvant

chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC).

Methods: Patients with LACC who underwent NACT from two centers between

2013 and 2022 were enrolled retrospectively. Based on the lymph node (LN) status

determined in the pathology reports after radical hysterectomy, patients were

categorized as LN positive or negative. The patients from center 1 were assigned as

the training set while those from center 2 formed the validation set. Radiomics

features were extracted from pretreatment sagittal T2-weighted imaging (Sag-

T2WI), axial diffusion-weighted imaging (Ax-DWI), and the delayed phase of

dynamic contrast-enhanced sagittal T1-weighted imaging (Sag-T1C) for each

patient. The K-best and least absolute shrinkage and selection operator (LASSO)

methods were employed to reduce dimensionality, and the radiomics features

strongly associated with LNM were selected and used to construct three single-

sequence models. Furthermore, clinical variables were incorporated through

multivariate regression analysis and fused with the selected radiomics features to

construct the clinical-radiomics combined model. The diagnostic performance of

the models was assessed using receiver operating characteristic (ROC) curve

analysis. The clinical utility of the models was evaluated by the area under the

ROC curve (AUC) and decision curve analysis (DCA).

Results: A total of 282 patients were included, comprising 171 patients in the

training set, and 111 patients in the validation set. Compared to the Sag-T2WI

model (AUC, 95%CI, training set, 0.797, 0.722-0.782; validation set, 0.648, 0.521-

0.776) and the Sag-T1C model (AUC, 95%CI, training set, 0.802, 0.723-0.882;
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validation set, 0.630, 0.505-0.756), the Ax-DWI model exhibited the highest

diagnostic performance with AUCs of 0.855 (95%CI, 0.791-0.919) in training set,

and 0.753 (95%CI, 0.638-0.867) in validation set, respectively. The combined

model, integrating selected features from three sequences and FIGO stage,

surpassed predictive ability compared to the single-sequence models, with

AUC of 0.889 (95%CI, 0.833-0.945) and 0.859 (95%CI, 0.781-0.936) in the

training and validation sets, respectively.

Conclusions: The pretreatment MRI-based radiomics model, integrating

radiomics features from three sequences and clinical variables, exhibited

superior performance in predicting LNM following NACT in patients with LACC.
KEYWORDS

magnetic resonance imaging, radiomics, cervical cancer, neoadjuvant chemotherapy,
lymph node metastasis
1 Introduction

Cervical cancer remains the fourth most common cancer and

the fourth leading cause of cancer-related death among women

worldwide (1–3). Locally advanced cervical cancer (LACC) refers to

cervical cancer in stage IB3-IVA according to the 2018 International

Federation of Gynecology and Obstetrics (FIGO) stage system (4).

Lymph node metastasis (LNM) is an independent prognostic factor

in LACC and affects the therapeutic decision (5). Both imaging and

pathology findings can be utilized to assess pelvic and paraaortic

lymph nodes (LN). Neoadjuvant chemotherapy (NACT), also

referred to as early or prechemotherapy, serves the purpose of

diminishing tumor volume, pelvic LNM rates, and parametrial

infiltration rates before surgery or radiotherapy, thereby

mitigating the surgical challenges (6, 7). NACT followed by

radical hysterectomy has been proposed as an alternative

approach of cisplatin-based chemotherapy and radiotherapy

(CCRT) plus brachytherapy in patients with LACC (8, 9). It has

been demonstrated that LNM post-surgery is also a significant

factor for prognosis and treatment strategies in LACC patients who

underwent NACT (10–12). Postoperative LACC patients with

positive LN may necessitate adjuvant chemoradiotherapy (13).

Therefore, accurately assessing LNM preoperatively for LACC

patients is imperative for formulating effective treatment

strategies, potentially preventing unnecessary surgical procedures

and complications such as lymphatic exudation, lymphocele,

lymphedema, neurovascular injury, wound infection et al (14, 15).

Magnetic resonance imaging(MRI) is the preferred method for

pretreatment staging of cervical cancer (16). The diagnosis of LNM

on MRI relies on morphological criteria such as size, shape, and

texture. Nevertheless, the performance of direct MRI-based pelvic

nodal assessment is relatively poor, with high specificity but low

sensitivity (27%-45.7%) results in difficulty in detecting normal-

sized, but positive LNs (17–19). Under this circumstance,
02
radiomics, a form of image-based quantitative analysis, is

becoming a current research orientation of imaging diagnosis,

which can be used to quantify heterogeneity, predict outcome,

and longitudinally monitor treatment responses (20). Recent

evidence has shown that lesion-based radiomics features of

preoperative MRI in LACC can improve the sensitivity of

predicting LNM (21–24).

However, no studies have investigated the predictive value of

pretreatment MRI features for LNM in LACC patients who undergo

NACT. This study aims to create a model for predicting LNM after

NACT based on pretreatment MRI.
2 Materials and methods

2.1 Patients

This retrospective study was approved by the institutional

review board of center 1 (Henan Province People’s Hospital,

HPPH) and center 2 (Henan Cancer Hospital, HCH), and the

requirement for informed consent was waived.

We searched hospital information system with cervical cancer

between January 2013 and February 2022, and found 380 consecutive

cervical cancer patients who accepted a complete NACT regimen and

radical hysterectomy with definite pathological results in two hospitals.

According to postoperative pathological reports, patients were labeled

as LN positive [LN (+)] and negative [LN (-)] groups. The inclusion

criteria were as follows: (i) patients with FIGO stage IB3-IVA; (ii)

patients who underwent pelvic MRI for pretreatment evaluation before

NACT; (iii) Patients with a b-value of 800 s/mm2 on DWI; (iv) patients

who received 1 to 3 cycles of NACT followed by hysterectomy and

lymphadenectomy; (v) patients who had definite postoperative

pathological results. The exclusion criteria were as follows: (i)

patients with poor MRI quality; (ii)patients who were treated with
frontiersin.org
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NACT and brachytherapy or external beam radiotherapy

simultaneously; (iii) patients who were judged to be inoperable after

NACT and received CCRT; (iv) patients who underwent selective

lymphadenectomy without hysterectomy after NACT.

Clinicopathological characteristics of patients, such as age,

FIGO stage, NACT regimen, and tumor type were retrieved from

their medical records. The LN status was used to adjust FIGO stage

of the patients to conform with the 2018 staging system. Patients

with LN (+) in MR images were classified as IIIC no matter what the

original FIGO stage was (10). The LN was considered LN (+) if it

met one of the following criteria: (a) a shortest diameter of more

than 8mm; (b) ring enhancement showing necrosis inside the LN

(23). The patient recruitment flowchart is shown in Figure 1.
2.2 Neoadjuvant chemotherapy protocol
and follow-up

The NACT protocol included 1 to 3 cycles of platinum-based

intravenous chemotherapy administered at three-week intervals.

Gynecologists evaluated the feasibility of surgical resection and

performed radical hysterectomy and lymphadenectomy three weeks

after completion of NACT. If pelvic node disease was detected

during intraoperative examination or if bulky aortic nodes were

identified on preoperative imaging or during surgery, aortic

lymphadenectomy was performed.
2.3 Lymph node involvement evaluation

All the resected surgical samples including the uterus and LNs

were fo rma l in fixed , pa ra ffin embedded , and then
Frontiers in Oncology 03
histopathologically diagnosed by the pathologists of the two

hospitals. LN status was extracted from the pathological reports.
2.4 MRI acquisition and
image interpretation

Baseline MRI data (within 1 week before the NACT regimen

started) were collected from two 3.0-T MR Platforms from Siemens

Healthineers (MAGNETOM TrioTim 3.0 T, Skyra 3.0 T) and GE

healthcare (discovery MR 750 3.0 T, signa HDxt 1.5 T). The MRI

protocols of each hospital included sagittal T2-weighted imaging

(Sag-T2WI) sequence, axial diffusion-weighted imaging (Ax-DWI)

sequence, and the delayed phase of dynamic-contrasted-enhanced

sagittal T1-weighted imaging (Sag-T1C) sequence. The

comprehensive parameters of MR image acquisition of each

hospital are detailed in Supplementary Table S1.

All images were analyzed independently by two radiologists,

who were blinded to LNM results.
2.5 Tumor segmentation

The pretreatment MRI sequences were collated for tumor

segmentation and feature generation. The regions of interest

(ROI) were manually delineated on the cervical tumor slice by

slice using ITK-SNAP (version 3.8.0 software: www.itksnap.org)

containing the tumor mass on Sag-T2WI, Ax-DWI and Sag-T1C.

To ensure accurate tumor boundaries, ROIs on all slices were

carefully delineated manually by a radiologist with 13 years of

experience in abdomen and pelvis imaging, who was blinded to

the pathological findings.
FIGURE 1

The patient recruitment flowchart.
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Then, the ROI-based features of images from 30 randomly selected

patients were re-extracted to test the features’ reproducibility for

extraction in a blind fashion by the same radiologist. Only features

with ICCs >0.75 were considered stable and selected for

subsequent analysis.
2.6 Extraction and selection of
radiomics features

The process of feature extraction and selectionwas carried out using

the in-house software (PyRadiomics package version 2.3.0). First, all

images were normalized using the max–abs scaling algorithm. Second,

resampling and interpolation were also applied. The Sag-T1C images

were reconstructed to 1mm×1mm×1mm voxel size, the Ax-DWI and

Sag-T2WI images were reconstructed into 1mm×1mm×4mm image

voxel sizes using a neural network-based B-spline surface construction

approach to convert 2D ROI to 3D volume of interest (VOI). A total of

2264 features were extracted from each labeled ROI, including first

order statistics features, shape-based (2D and 3D) features, gray level

co-occurrence matrix (GLCM) features, gray level dependence matrix

(GLDM) features, neighborhood gray tone difference matrix

(NGTDM) features, gray level run-length matrix (GLRLM) features,

and gray level size zone matrix (GLSZM) features.

After 3 months, 40 patients [30 LN (-) and 10 LN (+)]

were randomly selected and resegmented by the same radiologist

(QW) to assess intra-observer reliability. Only features with intra-

observer ICCs > 0.75 were considered stable and selected for

subsequent analysis.

The z-score standardization method was used for feature

normalization. The K-Best method was first used to remove
Frontiers in Oncology 04
features with low correlation with classification labels in order to

reduce computational complexity and prevent overfitting. And then

LASSOwas used to remove redundant features. Finally, the radiomics

features significantly correlated with LNM of LACC were selected.
2.7 Model development and validation

The Sag-T2WI model, DWI model, and Sag-T1C model were

constructed based on the selected radiomics features from Sag-

T2WI, Ax-DWI, and Sag-T1C sequence, respectively. In order to

build a more individualized predictive model, the correlation

analysis was performed among all features of the three sequences,

and the highly correlated features (r >0.75) were excluded, then the

selected features were fused with clinical characteristics to construct

a combined model. All of the models were developed using random

forest classifier based on the training dataset, and the performance

of which were evaluated and compared in the validation dataset.

The development and validation of models were performed

with InferScholar platform version 3.5 (InferVision, Beijing, China).

The study framework is shown in Figure 2.
2.8 Statistics

Statistical analyses were performed using IBM SPSS software

(version 28.0, Chicago, IL, USA). The differences between

continuous clinical variables were evaluated by the Mann

Whitney U test. The spearman correlation analysis was used to

measure the correlation between arbitrary features. The

visualization of the features used to build the combined model is
FIGURE 2

Study framework, including ROI segmentation and processing, radiomics feature extraction, feature selection, prediction signature establishment, and
performance evaluation.
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illustrated using heatmap drawn by the R language with

“ComplexHeatmap” package. The ROC and DCA were plotted

using the R language with the “rms” package (version 4.2.1) and the

“rmda” package (version 1.6), respectively. Delong’s test was used to

compare the differences among AUCs of different models and

different MRI instruments. The Hosmer-Lemeshow test was used

to evaluate the consistency between the predicted and actual

positive rate of LN in the validation set. A two-sided P <0.05 was

considered statistically significant.
3 Results

3.1 Patient characteristics

The study included 282 patients diagnosed with LACC. The

training set comprised 171 patients from HPPH, consisting of 43

LN (+) and 128 LN (-) cases. Simultaneously, the validation set

involved 111 patients from HCH, with 28 LN (+) and 83 LN (-)

cases. Table 1 presents the clinical characteristics of the patients.

Importantly, only the FIGO stage showed statistical significance

between the LN (+) and LN (-) groups in both datasets (P < 0.001).
3.2 Selection of radiomics features and
clinical factors

A total of 5 Ax-DWI features (5 textural features), 4 Sag-T1C

features (4 textural features) and 4 Sag-T2WI features (1 first order

feature and 3 textural features) were selected (Table 2). And these

features were utilized to construct three single-sequence models,
Frontiers in Oncology 05
respectively. Spearman correlation analysis was used to eliminate

redundant features in the following way: when a pair of features

showed a coefficient >0.75, the feature with the lower P value was

remained. As a result, the Feature 13, wavelet_glcm_wavelet-LHL-

Autocorrelation, was excluded. Subsequently, 4 Ax-DWI features, 4

Sag-T1C textural features, 1 Sag-T2WI first order feature, and 3 Sag-

T2WI textural features were employed to construct the combined

model (Figure 3). According to Mann Whitney U test, only FIGO

stage (P <0.001) used for the construction of the combined model.
3.3 Comparison of performance
among models

Leveraging the remaining features, a combined model was

developed, incorporating the FIGO stage. The ROC curves

illustrating the performance are shown in Figure 4. The AUCs value,

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) of each model are summarized in Table 3.

Notably, among the single-sequence models, the Ax-DWI

model demonstrated the best predictive performance with AUCs

of 0.855 (95%CI: 0.791-0.919) in the training set and 0.753 (95%CI:

0.638-0.867) in the validation set. There were no significant

differences among AUCs of different single-sequence models in

both sets (training set, Ax-DWI vs Sag-T2WI P =0.238, Ax-DWI vs

Sag-T1C P=0.243, Sag-T2WI vs Sag-T1C P=0.921; validation set,

Ax-DWI vs Sag-T2WI P =0.236, Ax-DWI vs Sag-T1C P=0.200,

Sag-T2WI vs Sag-T1C P=0.838).

Furthermore, the diagnostic efficacy of the combined model,

integrating radiomics features and the FIGO stage for LNM in

LACC patients, surpassed that of among other models with AUCs
TABLE 1 Clinical characteristics.

Characteristics Training set Validation set

LN+
(n=43)

LN-
(n=128)

P value LN+
(n=28)

LN-
(n=83)

P-value

Age, n (%) 0.018 0.975

≤50 years 25 (14.6%) 48 (28.1%) 7 (6.3%) 21 (18.9%)

>50 years 18 (10.5%) 80 (46.8%) 21 (18.9%) 62 (55.9%)

NACT regimen, n (%) 0.688 0.593

1 cycle 12 (7%) 31 (18.1%) 4 (3.6%) 10 (9%)

2 cycles 27 (15.8%) 79 (46.2%) 22 (19.8%) 61 (55%)

3 cycles 4 (2.3%) 18 (10.5%) 2 (1.8%) 12 (10.8%)

Tumor type, n (%) 0.987 0.497

SCC 38 (22.2%) 113 (66.1%) 26 (23.4%) 71 (64%)

Non-SCC 5 (2.9%) 15 (8.8%) 2 (1.8%) 12 (10.8%)

FIGO stage < 0.001 < 0.001

IB-IIB 19 (11.1%) 107 (62.6%) 2 (1.8%) 55 (49.5%)

IIIA-IIIC 24 (14%) 21 (12.3%) 26 (23.4%) 28 (25.2%)
LN+, positive lymph node metastasis; LN-, negative lymph node metastasis; NACT, neoadjuvant chemotherapy NACT; SCC, squamous cell carcinoma; Non-SCC, Non-squamous cell
carcinoma; FIGO, International Federation of Gynecology and Obstetrics.
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of 0.889 (95%CI: 0.833-0.945) in the training set and 0.859 (95%CI:

0.781-0.936) in the validation set. However, according to the Delong

test, only the difference between the combined model and the DWI

model was not statistically significant in both the training

(P =0.268) and validation sets (P =0.059). As shown in Figure 4,

the model based on FIGO stage exhibited superior performance in

the validation set with AUC of 0.806 (95%CI: 0.742-0.870) and

displayed significant differences from the Sag-T2WI and Sag-T1C

models (P <0.05).

Detailed comparisons between different models are presented in

Supplementary Table S2. Additionally, no significant differences

were observed among different MR image instruments (all P >0.05)

(Supplementary Table S3).
Frontiers in Oncology 06
3.4 Clinical utilities

The DCA of the prediction model in the validation set is

depicted in Figure 5. If the threshold probability is below 80%,

the combination model exhibited a higher net benefit compare to

the FIGO stage and other single-sequence models in distinguishing

LN (+) from LN (-).
3.5 Consistency test

The Hosmer-Lemeshow test indicated that in the validation set,

all models showed good agreement between the predicted LNM
FIGURE 3

Heatmap of features included in combined model. The feature names represented by each serial number are annotated in Table 2.
TABLE 2 Radiomics features for prediction models.

Model Feature serial number Feature name

Sag-T2WI model Feature 1 additivegaussiannoise_firstorder_RootMeanSquared

Feature 2 additivegaussiannoise_glszm_GrayLevelNonUniformityNormalized

Feature 3 log_glrlm_log-sigma-4-0-mm-3D-LongRunEmphasis

Feature 4 wavelet_glrlm_wavelet-LLH-RunVariance

Sag-T1C model Feature 5 additivegaussiannoise_glrlm_LongRunLowGrayLevelEmphasis

Feature 6 additivegaussiannoise_gldm_LargeDependenceLowGrayLevelEmphasis

Feature 7 wavelet_glszm_wavelet-HLH-SmallAreaLowGrayLevelEmphasis

Feature 8 normalize_glszm_SmallAreaEmphasis

Ax-DWI model Feature 9 additivegaussiannoise_glszm_LargeAreaLowGrayLevelEmphasis

Feature 10 wavelet_glcm_wavelet-LHL-ClusterTendency

Feature 11 wavelet_glszm_wavelet-LHL-SmallAreaLowGrayLevelEmphasis

Feature 12 specklenoise_glrlm_ShortRunLowGrayLevelEmphasis

Feature 13 wavelet_glcm_wavelet-LHL-Autocorrelation

Combined model Feature 1-12 –
glszm: Gray Level Size Zone Matrix; glrlm: Gray Level Run Length Matrix; gldm: Gray Level Dependence Matrix; glcm: Gray Level Co-occurrence Matrix; H: high-pass wavelet filter; L: low-pass
wavelet filter.
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probability and the observed incidence (Sag-T1C model, P =0.904;

Ax-DWI model, P =0.078, Sag-T2WI model, P =0.127; Combined

model, P =0.720).
4 Discussion

This study developed and validated a combined model based on

three single-sequence MRI radiomic features in conjunction with the

FIGO stage for pretreatment prediction of LNM in patients with

LACC who underwent NACT. The combined model demonstrated

superior performance compared to single-sequence-based radiomics

with higher efficacy, which holds clinical significance for optimizing

therapeutic strategies by the stratifying patients according to the

benefit from NACT.

Radiomics features encompass first-order, shape-based, and

textural features. Each feature dimension signifies distinct tumor

information. The first order features describe the distribution of voxel

intensities within the image region defined by the mask. The textural

features show the gray value changes, which reflect the characteristics

of intra-tumoral heterogeneity (25, 26). Several studies predicting

LNM in malignant tumors, based on radiomics features, have
Frontiers in Oncology 07
screened out textural features (21, 22, 27, 28). A total of 12 textural

features and 1 first-order feature were finally selected in our study. It’s

noteworthy that in Hou L’s study on cervical cancer LNM using

preoperative radiomics features, shape-based features were not

screened out (21). Similarly, our study did not filter out shape-

based features. This implies that the tumor shape characteristics of

LACC may not exhibit a significant correlation with LNM.

In Hou L’s study on constructing cervical cancer LNM prediction

models using preoperative radiomics features, within the single-

sequence models, the DWI model demonstrated superior

performance in predicting LNM in cervical cancer compared to the

T2WI and enhanced T1WI models in the training set. However, this

advantage was not as evident in the validation set (21). In contrast, our

study revealed that the model based on Ax-DWI features exhibited

superior diagnostic performance compared to Sag-T2WI and Sag-T1C

models, achieving the highest AUCs in both sets. Although the

differences between the Ax-DWI model and Sag-T2WI and Sag-T1C

models were not statistically significant. The DWI sequence possess the

capability to depict crucial information such as water fluidity,

histiocytosis, and cell membrane integrity (29). The information can

be quantified through radiomics features extracted from the DWI

sequence (20), demonstrating a stronger correlation with LNM.
TABLE 3 Diagnostic efficacy of single models and combined model.

Set Model AUC (95%CI) Sensitivity Specificity PPV NPV Accuracy Youden index

Training set Sag-T1C model 0.802 (0.723-0.882) 0.882 0.628 0.876 0.643 0.819 0.573

Sag-T2WI model 0.797 (0.722-0.872) 0.859 0.605 0.866 0.591 0.795 0.464

Ax-DWI model 0.855 (0.791-0.919) 0.898 0.674 0.891 0.690 0.842 0.573

FIGO stage 0.697 (0.615-0.779) 0.835 0.744 0.849 0.533 0.766 0.394

Combined model 0.889 (0.833-0.945) 0.890 0.558 0.912 0.696 0.853 0.635

Validation set Sag-T1C model 0.630 (0.505-0.756) 0.709 0.560 0.847 0.359 0.676 0.327

Sag-T2WI model 0.648 (0.521-0.776) 0.872 0.440 0.843 0.500 0.775 0.312

Ax-DWI model 0.753 (0.638-0.867) 0.627 0.800 0.915 0.384 0.667 0.427

FIGO stage 0.806 (0.742-0.870) 0.651 0.880 0.982 0.444 0.811 0.611

Combined model 0.859 (0.781-0.936) 0.791 0.960 0.958 0.550 0.721 0.671
Sag-T1C, sagittal T1-weighted contrast-enhanced imaging model; Ax-DWI, axial diffusion-weighted imaging model; Sag-T2WI, sagittal T1-weighted imaging model. PPV, positive predictive
value; NPV, negative predictive value.
A B

FIGURE 4

ROC of models ((A) ROC of training set. (B) ROC of validation set.).
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Similar to other studies predicting LNMof cervical cancer based on

preoperative MRI radiomics features, the combinedmodel in our study

demonstrated significantly better performance for LNM in LACC

patients compared to the Sag-T2WI and Sag-T1C models (21, 22).

This may be related to the fact that the combined model covers more

comprehensive lesion characteristics compared to single-sequence

models. Furthermore, the DCA curve indicated that if the threshold

probability is below 80%, the combinedmodel exhibited the highest net

benefit compare to the other models in distinguishing LN (+) from LN

(-). This suggests that when the risk of LNM is low, radiomics can

enhance the detection rate of positive LN, thereby improving the

sensitivity of LN diagnosis and reducing the rate of missed diagnosis.

Song J’s study also confirmed the role of radiomics in distinguishing

positive or negative normal-sized LNs that are challenging to identify

using conventional MRI in patients with cervical cancer (22). However,

when the risk of LNM is high, multi-sequence MR can identify the

internal structural changes of LNs, and radiomics may not further

improve the accuracy of LN diagnosis anymore (30). Moreover, the

model based on FIGO stage exhibited the highest net benefit when the

threshold probability is over 80% in our study.

The study has several limitations. Firstly, a prospective study

from more centers with considerably large cohorts is necessary to

further confirm the performance of our combined model. Secondly,

the absence of MR imaging after NACT prevents us from assessing

changes in LNs between pre- and post- treatment. Thirdly, imaging

data of LACC patients receiving chemoradiotherapy were not

analyzed in this study, so the applicability of our model is limited.

Finally, this retrospective study may be subject to inevitable selection

bias. We aim to develop novel models utilizing LN radiomics features.
5 Conclusion

The present study applied radiomics features to predict LNM in

patients with LACC. The experimental findings demonstrate that the

model proposed in this study holds potential clinical value for

enhancing the diagnostic efficiency of LNM in LACC patients,
Frontiers in Oncology 08
thereby impacting early non-invasive diagnosis and treatment

planning for LNM in cervical cancer. It is anticipated to serve as an

adjunctive tool for assessing LNM in LACC patients prior to NACT.
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