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Department of Gastroenterology, Second Hospital of Lanzhou University, Lanzhou, China
Cancer immunotherapy has recently emerged as a key strategy for cancer

treatment. TREM2, a key target for regulating the tumor immune

microenvironment, is important in cancer treatment and progression. TREM2 is

an immune signaling hub that regulates multiple pathological pathways. It not only

suppresses anti-tumor immune responses by inhibiting T cell-mediated immune

responses, but it also influences tumorigenesis by affecting NK cell-mediated anti-

tumor immunity. Noticeably, TREM2 expression levels also vary significantly

among different tumor cells, and it can regulate tumor progression by

modulating various signaling pathways. Above all, by summarizing the role of

TREM2 in cancer immunotherapy and the mechanism by which TREM2 regulates

tumor progression, this paper clarifies TREM2’s role in both tumor progression and

cancer therapy, identifying a new therapeutic target for oncology diseases.
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1 Introduction

Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane

immunoglobulin superfamily receptor that is primarily expressed in brain microglia and

peripheral macrophages (1, 2) and serves as a central immune signaling hub for a variety of

pathological pathways. TREM2 lacks signaling capacity and instead propagates signals

intracellularly by interacting with ligands, binding to, and phosphorylating the adaptor

proteins DNAX activation protein (DAP) 12 and DAP 10. DAP12, also known as tyrosine

kinase binding protein (TYROBP), and DAP10 can activate spleen tyrosine kinase (Syk) and

phosphatidylinositol 3-kinase (PI3K), respectively (2), which mediate downstream signaling

and are involved in immunoinflammatory responses in the pathophysiology of various

diseases. Previously, TREM2 was extensively studied and identified as a surface receptor

required for microglia response to neurodegenerative changes, which has been associated

with the pathogenesis of Alzheimer’s disease (AD) and other neurodegenerative diseases

(NDDs) (3). Mutations or deletions of the TREM2 gene reduce microglia’s ability to clear

AD-related b-amyloid and tau proteins, increase the diffusion of neuroinflammatory

dystrophies and tau proteins around plaques, and shift microglia from a homeostatic to a
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pathological state that promotes the onset of AD (4). Furthermore,

TREM2 is also linked to the development of metabolic diseases, and

TREM2 deficiency inhibits the downstream pathway of lipid-

associated macrophages (LAMs) (5), which plays an important role

in the onset and progression of hypercholesterolemia, atherosclerosis,

and nonalcoholic fatty liver disease (6–8).

In recent years, TREM2 has been discovered to be widely

expressed on the surface of monocyte-macrophage lineage cells as

well, and it is a marker for tumor-associated macrophages (TAMs) in

a variety of tumor types (9). Besides, TREM2 is widely expressed on

tumor cells and can regulate tumor cell proliferation and metastasis

through various signaling pathways, thereby influencing tumor

progression (10). Moreover, TREM2 plays an immunosuppressive

role in tumor microenvironment (TME), which can negatively

regulate anti-tumor immune response and assist tumor cell

immune escape (11). Blocking the specific ligands of TREM2 may

be a major advancement in cancer immunotherapy and is expected to

be a new target for tumor immunotherapy.

In conclusion, in this review, we evaluate the research progress of

TREM2 in immunotherapy, with a focus on its effects on T cells,

macrophages and NK cells. In addition to this, we also specifically

highlight the expression levels of TREM2 in different tumor tissues, as

well as the pathways by which TREM2 promotes or inhibits cancer

progression. These findings provide a strong theoretical foundation

for TREM2’s emergence as a new target for tumor immunotherapy,

and targeting TREM2 could be a new way to treat tumor diseases.
2 TREM2 and immunotherapy

2.1 TREM2 and T cell

T cell-mediated immune response plays a crucial role in anti-

tumor immunity (12). Immune checkpoints such as cytotoxic T-

lymphocyte associated antigen-4 (CTLA-4) and programmed
Frontiers in Oncology 02
dea th-1 (PD-1) can induce an immunosuppre s s i v e

microenvironment by negatively regulating T-cell-mediated

immune responses (11). Among them, the PD-L1/PD-1 axis plays

a key role in tumor immune escape. Programmed death ligand 1

(PD-L1) is highly expressed on the surface of malignant tumor cells.

It can inhibit T cell response by binding to PD-1 expressed on the

surface of T cells, leading to tumor evasion of T cell immunity (13).

With the use of immune checkpoint inhibitors (ICIs), PD-1

inhibitors (PD-1/PD-L1 inhibitors), blocks the interaction

between PD-L1 and PD-1, removes the inhibitory effect on T-

cells, and controls tumor growth (14). Yet, ICIs are not entirely

effective in antitumor therapy (Figure 1).

In recent years, TREM2, a myeloid receptor, has been found to

play an important role in altering tumor myeloid infiltrates as well

as decreasing the efficacy of immunotherapy (15). In a variety of

cancers, infiltration of TREM2+ myeloid cells is associated with the

formation of an immunosuppressive microenvironment (16).

TREM2+ TAMs can inhibit the proliferation of CD8+ T cells by

expressing CD107a, perforin 1, and tumor necrosis factor alpha

(TNF-a), and suppress the effector function of CD8+ T cells (17). In

addition, TREM2+ LAMs can also interact with Treg cells via the

CCL20/CXCL9/CXCL10/CXCL12-CXCR3 axis, recruiting

suppressor Treg cells, inhibiting the function of effector T cells,

and promoting tumor microenvironment remodeling (18). These

findings provide a mechanistic link for TREM2 to promote the

formation of an immunosuppressive microenvironment. Blocking

or targeting TREM2 gene can change the tumor immune

environment by enhancing T-cell effector function, enhancing the

effect of anti-PD-1 immunotherapy (19).

In uroepithelial carcinoma (UC), the abundance of TREM2+

macrophages is significantly higher and associated with a lower

overall survival rate (20). And, TREM2+ macrophages inhibit T cell

function and reduce the anti-tumor capacity of CD8+ T cells, which

leads to poor response of UC to ICIs treatment (20). Similarly,

TREM2 is highly expressed in glioblastoma (GBM), and its
FIGURE 1

TREM2+ TAMs and TREM2+ DCs can inhibit T cell function by direct or indirect means, which in turn promotes immune escape and tumor growth.
Conversely, Anti-PD-1 and Anti-TREM2 can promote T cell-mediated immune response, inhibit immune escape of tumor cells, and suppress tumor growth.
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expression is consistent with the expression of inhibitory immune

checkpoints such as PD-L1, PD-L2, and Galectin-9, suggesting that

TREM2 may inhibit T cell-mediated immune responses by

regulating the expression of immune checkpoints, thereby

promoting glioma cell immune escape (21). Inhibiting TREM2

function can promote T cell infiltration and activation, increase

PD-1+ CD8+ T cells in the TME, and thus improve the efficacy of

anti-PD-I therapy (22).

Tumor-induced dendritic cells (DCs) can also directly inhibit

T-cell proliferation by secreting immunosuppressive cytokines such

as IL-10 or TGF-b (23). In non-small cell lung cancer (NSCLC)

cells, TREM2+ DCs are heavily infiltrated in cancerous tissues and

can inhibit T cell proliferation by secreting large amounts of IL-10

(24), promoting tumor growth (Figure 1). Mechanistically, TREM2

can recruit Syk and initiate signaling cascades by binding to DAP12

(25), leading to IL-10 secretion. The use of Syk inhibitors can inhibit

IL-10 production by TREM2+ DCs suggesting that TREM2 acts as a

negative immunomodulator through the Syk pathway in an IL-10-

dependent manner. All in all, TREM2 can promote tumor growth

by promoting T-cell dysfunction and tumor immune escape, and is

an important pathology-inducing immune signaling hub (26).

Although ICIs are an effective immunotherapy, identifying the

underlying causes of ICI resistance remains a challenge. According

to studies, overexpression of TREM2 in macrophages may be

associated with ICIs resistance. In ICIs non-responders,

macrophages overexpressing TREM2 show a unique gene

expression pattern and overexpress key genes of the complement

system (C3, C1QA, C1QB, and C1QC) and M2 polarization genes,

which block the anti-tumor activity of ICIs, leading to ICIs

resistance (27). Cystatin C (CyC), a secreted cysteine protease

inhibitor, is associated with the recruitment of TREM2+

macrophages. Increasing CyC can promote the migration or

expansion of TREM2+ macrophages, thereby reducing the efficacy

of ICIs. Targeting CyC may be an effective target to enhance the

efficacy of cancer immunotherapy (28).
2.2 TREM2 and macrophage

Macrophage reprogramming is also one of the promising

therapeutic strategies in current cancer treatment. Under the

influence of TME cytokines, macrophages can also differentiate

into different subtypes of TAMs, which are mainly classified into

M1 and M2 types. Many studies have found that TREM2 is highly

expressed on TAMs, and that M2 polarization genes such as

MMP14, CD276 are also overexpressed in TREM2+ macrophages

(27). This makes it possible that TREM2+ macrophages are

functionally similar to M2 polarized macrophages, which may

have pro-tumorigenic effects (27). Targeted inhibition of TREM2

can affect the phenotype and function of TAMs (29) and enhance

the efficacy of tumor immunotherapy. In NSCLC, TREM2+ TAMs

exhibit immunosuppressive effects. NSCLC patients with high

TREM2+ TAMs infiltration exhibit late staging, poor prognosis,

and unique NSCLC molecular features, especially EGFR mutations

(17). Knockdown of TREM2 can reduce the polarization of M2

phenotype, causing TAMs to remodel into the M1 type, which
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exhibits a pro-inflammatory and immunostimulatory state, inhibits

the growth as well as invasiveness of hepatic cell carcinoma (HCC)

(30) and glioma cells (21), and suppresses tumor progression.

TAMs, as a major component of TME, can also play a

tumorigenic role by promoting angiogenesis, secreting tumor

growth factors, and promoting tumor invasion and metastasis

(31). TREM2 is highly expressed on TAMs in a variety of

cancers, including colorectal, triple-negative breast, and

pancreatic cancers (15, 32–34), and is negatively correlated with

survival, and is a pro-tumorigenic marker for TAMs in mouse

models and human tumors. In bladder cancer (BLCA), TREM2

expression is also associated with tumor progression and decreased

immunotherapy efficacy, and TREM2 may play a role by promoting

epithelial mesenchymal transition (EMT) and T-cell exhaustion

(35). In addition, TREM2+ TAMs are enriched and infiltrated in the

invasive margin of early lung metastasis of breast cancer. They can

inhibit anti-tumor immunity in metastatic foci and alter TME at the

invasive margin by inhibiting T cell activation and IFN-g secretion,
thereby promoting tumor growth and progression (34).

Notably, TREM2, as a major immune checkpoint on TAMs

(36), has also been linked to depletion of CD8+ tumor-infiltrating

lymphocytes (TILs) and anti-PD-1 resistance in human cancers (17,

32, 37). This is true for patients with esophageal squamous cell

carcinoma (ESCC) (38) and melanoma (39). Higher TREM2+

TAMs infiltration is associated with poor overall survival and

insensitivity to anti-PD-1 monoclonal antibody immunotherapy.

By using anti-TREM2 monoclonal antibody treatment, tumor

growth can be inhibited and a strong anti-tumor immune effect

can be produced, which enhances the activation function of CD8+

TIL and anti-PD-1 immunotherapeutic response (15). This suggests

that TREM2 could be a very attractive target for immunotherapy

modulation. Furthermore, in mesothelioma, TREM2 deficiency can

lead to a decrease in monocyte-derived small peritoneal/pleural

macrophages (SPM) and a compensatory increase in tissue-resident

large peritoneal/pleural macrophages (LPM) (40). Considering that

SPM preferentially promotes an M2-like phenotype, whereas LPM

more specifically promotes the immune response and activates the

IFN-g response, making it more effective in activating the T cell

response (40). Thus, the compensatory increase in LPM due to

TREM2 deletion can explain in a side-by-side manner why TREM2

deletion is associated with enhanced CD8+ T-cell infiltration in

tumors and more effective anti-PD-1 therapy (Figure 1).
2.3 TREM2 and NK cell

TREM2 can also modulate tumorigenesis by affecting NK cell-

mediated anti-tumor immunity. Deletion of the TREM2 gene

significantly reduces immunosuppression in TME in vivo,

including a decrease in dysfunctional CD8+ T cells (expressing

PD-1 and Tim-3) and an increase in NK cells and cytotoxic T cells

(41). And the lack of cytotoxic NK cells in tumors is a feature of

TME, which allows many cells to escape surveillance, and in various

cancers, the reduction of NK cells can promote tumor growth (42–

44). In non-small cell lung cancer (NSCLC), TREM2 expressed on

monocyte-macrophages can not only block IL-18 production and
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signaling by enhancing interleukin (IL)-18/IL- 18bp decoy

interactions, but also inhibit IL-15 production by DCs, which in

turn inhibits NK cell recruitment and activation, suppresses NK

cell-mediated anti-tumor immunity, and prevents NK cells from

effectively killing tumor cells (36). Conversely, combining TREM2

blockers with exogenous NK cell enhancers will further enhance the

anti-tumor response and enhance the therapeutic effect of anti-

tumor immunity. In contrast to the above studies, TREM2 has been

shown to play an important role in the differentiation and effector

function of NK cells. Overexpression of TREM2 promotes the

differentiation of NK cells and enhances their killing activity

against tumor cells by activating the PI3K/Akt signaling pathway

(45, 46). This difference in outcome may be due to the alteration of

different signaling pathways by TREM2 and the exact mechanism

remains to be further explored.
3 TREM2 and cancer

3.1 As a tumor promoter

The expression level of TREM2 is significantly upregulated in

tumor tissues of patients with gastric cancer (GC) (47), oral

squamous cell carcinoma (OSCC) (48), lung cancer (49), papillary

thyroid carcinoma (PTC) (50), renal cell carcinoma (RCC) (51),

and prostate cancer (PRAD) (52). Moreover, high levels of TREM2

are significantly correlated with the extent of tumor invasion,

tumor-node-metastasis (TNM) stage, and histological grading.

Highly expressed TREM2 promotes the proliferation, migration,

and invasion of GC (53), PRAD (52) and RCC (51) through
Frontiers in Oncology 04
activation of the PI3K/Akt signaling pathway. It also activates the

NF-kB pathway, promoting the onset and development of PTC

(50). In addition to this, in basal cell carcinoma (BCC) of the skin, a

large number of TREM2+ skin cancer-associated macrophages

(SCAMs) are enriched and infiltrated (54). SCAMs can also

promote tumor epithelial cell proliferation and tumor growth in

an immunosuppressive non-dependent manner by secreting the

ligand oncostatin-M (OSM), which induces JAK/STAT3 signaling.

Similarly, in esophageal adenocarcinoma (EAC), TREM2

overexpression can promote the growth of EAC cells by activating

DAP12/Syk/AKT or JAK/STAT3 signaling pathways (55). These

findings suggest that TREM2 can promote tumorigenesis and

progression by activating different signaling pathways, indicating

that it is an important oncogene (Figure 2).
3.2 As a tumor suppressor

However, in colorectal cancer (CRC) tissues, TREM2

expression decreases progressively with increasing tumor stage

and plays a tumor-suppressive role in CRC. Overexpression of

TREM2 inhibits CRC progression by negatively regulating the Wnt/

ERK/GSK-3b signaling pathway (Figure 3), as well as inhibiting

CRC cell proliferation, invasion, and metastasis by down-regulating

the expression of cyclin D1 and MMP9 (matrix metalloproteinase

9) (56). Notably, TREM2 can also act as a b-catenin regulator by

promoting the proteasomal degradation of b-catenin in the

cytoplasm (57) and negatively regulating the Wnt/b-catenin
signaling pathway, which in turn inhibits CRC tumor progression

in vivo and in vitro (58). Similarly, the expression level of TREM2 is
FIGURE 2

TREM2, as an oncogene, promotes the progression of PTC, GC, PRAD, RCC, EAC, and BCC by activating the PI3K/Akt, NF-kB, and JAK/STAT3
signaling pathways, respectively. PTC, papillary thyroid carcinoma; PRAD, prostate cancer; RCC, renal cell carcinoma; GC, gastric cancer; EAC,
esophageal adenocarcinoma; BCC, basal cell carcinoma; SCAMs, skin cancer-associated macrophages.
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upregulated in skin cutaneous melanoma tissues. And, high

expression of TREM2 is associated with tumor-infiltrating

immune cells (e.g., macrophages, B cells, CD8+ T cells, CD4+ T

cells, DCs, etc.) and longer cumulative survival, playing a protective

role in skin cutaneous melanoma (39). Besides, in acute myeloid

leukemia (AML), TREM2, as a novel receptor for IL-34, can induce

myeloid differentiation and inhibit AML progression by inhibiting

the ERK1/2/Rasal3 signaling pathway. On the contrary, TREM2

gene-deficient AML cells and normal myeloid cells exhibit

resistance to IL-34 treatment and are associated with poor

prognosis (59). These findings suggest that TREM2 can inhibit

tumorigenesis and development by activating different signaling

pathways and plays an important tumor suppressor role.
3.3 Dual role

3.3.1 HCC
TREM2 is predominantly expressed on non-substantial

hepatocytes in liver tissues, and it is significantly upregulated in

HCC tissues (60). However, TREM2 expression is significantly

reduced with tumor progression, especially in metastatic HCC,

and such reduction is associated with a poorer prognosis as well

as aggressive pathological features (61). Furthermore, TREM2 can

also play a protective role in HCC by inhibiting toll-like receptor 4

(TLR4)-induced inflammatory responses (62, 63), reducing

activated proteins downstream of TLR4 (such as p38-MAPK and

ERK) to reduce inflammation levels and suppress chronic
Frontiers in Oncology 05
inflammation (60). Similar to the above findings, in a study by

Tang W et al (61), TREM2 also acted as a tumor suppressor.

Overexpression of TREM2 can inhibit the occurrence of EMT by

targeting the PI3K/Akt/b-Catenin pathway, thereby inhibiting the

invasion and metastasis of tumor cells (Figure 4A).

However, some studies have presented a different viewpoint,

suggesting that TREM2 is highly expressed in cancerous tissues (64)

and plays a promotional role in the development and progression of

HCC. Overexpression of TREM2 promotes tumorigenesis by

activating the PI3K/AKT signaling pathway (65). Knockdown of

TREM2 gene can inhibit the proliferation of HCC cells by targeting

caspase/Bcl and CDK1 signaling pathways (64). Besides, TREM2 is

also highly expressed on LAMs (18) and is enriched and infiltrated

in HCC. TREM2+ LAMs not only promote tumor angiogenesis by

facilitating VEGF signaling, but also promote cancer progression by

suppressing anti-tumor immune responses, correlating with poor

clinical outcomes in HCC patients (18) (Figure 4B).

In conjunction with the above research, we hypothesized that

these two different roles of TREM2 may be complementary and

coordinated in HCC tissues. They limit inflammatory damage and

tumorigenesis in the early stages, but suppress anti-tumor immune

responses and promote cancer progression later on. In conclusion,

the mechanism of TREM2’s role in HCC still needs to be

further explored.

3.3.2 Glioma
TREM2 also plays a dual role in gliomas. Gliomas are the most

common adult primary brain tumors, accounting for more than 80%
FIGURE 3

Overexpression of TREM2 not only inhibits CRC progression by negatively regulating the Wnt/ERK/GSK-3b signaling pathway, but also acts as a b-
catenin regulator to inhibit CRC tumor progression by promoting the proteasomal degradation of b-catenin in the cytoplasm and negatively
regulating the Wnt/b-catenin signaling pathway.
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of central nervous system (CNS) malignancies. Among them,

glioblastoma (GBM) is the highest-grade glioma with the worst

clinical prognosis. Several studies have shown that the expression

levels of TREM2 in glioma tissues are significantly increased, and it is

an oncogene. Increased expression of TREM2 can promote cell

proliferation, migration, and invasion, and it is strongly related to

pathological grade and negatively related to overall survival of

glioma patients (66). Remarkably, GBM tumors are also infiltrated

with a large number of TREM2+ myeloid cells (56). Inhibiting the

TREM2 gene can trigger the anti-tumor activity of GBM myeloid

cells, increase interferon-g induced immune activation, and promote

pro-inflammatory phenotypes, ultimately inhibiting tumor growth

and prolonging survival (22). In addition, TREM2 was found to be

highly expressed in glioma-associated microglia/macrophages

(GAMs) in glioma tissues and had a negative correlation with

patient survival time (67). However, interestingly, TREM2 gene

deficiency can, on one hand, inhibit genes in MHC I and II

clusters (MHC I cluster: H2-D1, H2-M3, H2-Q4, etc.; MHC II

cluster: H2-Ab1, H2-DMb1, H2-Eb1), inhibit antigen presentation,

which in turn may lead to immune escape and impaired function of

CD4+/CD8+ cells and NK cells, and on the other hand, TREM2 gene

deficiency can also inhibit the expression of immune genes with pro-

angiogenic functions, such as Ccl5, Ccr5, Ccl12, Icam1, and Itgal, in

glioma tissues, thereby inhibiting angiogenesis in glioma tissues and

suppressing tumor growth and progression (67).

Besides, it has also been shown that, unlike in other cancers,

TREM2 expression is not associated with immunosuppressive

pathways in glioma TME, but rather with phagocytosis and is an

important immunomodulator (68). High levels of TREM2+

monocytes can reduce tumor load by enhancing tumor

phagocytosis and inhibiting inflammatory responses, and exhibit

longer survival (69, 70). It is suggested that TREM2+ monocytes

play a protective role in gliomas. Therefore, enhancing the potential

of myeloid cells in TME to phagocytose tumor cells by inducing

TREM2-mediated phagocytos i s cou ld be a potent ia l

immunotherapeutic strategy for the treatment of brain tumors.
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4 Conclusion and outlook

Nowadays, as people’s lifestyles change, the incidence of cancer

rises, making it difficult to find an effective target for cancer therapy.

TREM2, as an immune signaling hub mediating multiple

pathological pathways, is widely expressed on immune cells with

important pro-immunosuppressive effects, and plays a great role in

cancer immunotherapy. In TME, the expression of TREM2 on

TAMs as well as DCs can promote tumor growth by influencing the

T cell-mediated immune response and facilitating immune escape

from tumors. Targeted treatment with anti-TREM2 monoclonal

antibody can produce potent anti-tumor immune effects, inhibit

tumor growth, and also enhance the anti-PD-1 immunotherapeutic

response and improve the therapeutic effect of ICIs, making it an

effective target for cancer immunotherapy.

Furthermore, the expression level of TREM2 in tumor cells is

also closely related to tumor progression. In different tumor cells,

TREM2 expression levels vary significantly and can promote or

inhibit tumor progression through different signaling pathways,

such as NF-kB, JAK/STAT3 and PI3K/Akt signaling pathways.

Among them, the PI3K/Akt signaling pathway is an important

signaling pathway for TREM2 to regulate tumorigenesis. Highly

expressed TREM2 can activate or inhibit the PI3K/Akt signaling

pathway to regulate the occurrence and development of tumors. In

GC, PRAD, and RCC tissues, TREM2 can promote tumor cell

progression by activating the PI3K/Akt signaling pathway. In

contrast, in CRC tissues, TREM2 inhibits the proliferation and

metastasis of CRC tumor cells by inhibiting the PI3K/Akt signaling

pathway. It is noteworthy that, in HCC tissues, TREM2 can both

activate the PI3K/Akt signaling pathway to promote tumor

progression and inhibit tumor progression by inhibiting the

PI3K/Akt/b-Catenin pathway. These two different effects

exhibited by TREM2 on the PI3K/Akt signaling pathway may be

related to different cell types and cell states. Therefore, more studies

are needed in the future to verify the mechanism of TREM2’s

regulatory effects on different tumor cells.
A

B

FIGURE 4

Dual role of TREM2 in HCC. (A) Highly expressed TREM2 inhibits tumor progression and inflammatory response through inhibition of the PI3K/Akt
signaling pathway and TLR. (B) TREM2+ LAM-like promotes cancer progression by promoting tumor angiogenesis and suppressing anti-tumor
immune responses, and knockdown of TREM2 inhibits Tumor progression.
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To summarize, TREM2 plays an important role in tumor

progression and cancer immunotherapy, and targeting TREM2

may be an appealing target for immunotherapy. Because of the

tissue variability of TREM2 expression, more studies are needed in

the future to explore the expression of TREM2 in different cancers

as a way to better improve the efficacy of cancer therapy and control

tumor progression.
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