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Clinical validation of commercial
deep-learning based auto-
segmentation models for organs
at risk in the head and neck
region: a single institution study
Casey L. Johnson1, Robert H. Press1, Charles B. Simone 2nd1,
Brian Shen1, Pingfang Tsai1, Lei Hu1, Francis Yu1,
Chavanon Apinorasethkul1, Christopher Ackerman1,
Huifang Zhai1, Haibo Lin1 and Sheng Huang1,2*

1New York Proton Center, New York, NY, United States, 2National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute &
Hospital, Tianjin, China
Purpose: To evaluate organ at risk (OAR) auto-segmentation in the head and

neck region of computed tomography images using two different commercially

available deep-learning-based auto-segmentation (DLAS) tools in a single

institutional clinical applications.

Methods: Twenty-twoOARs weremanually contoured by clinicians according to

published guidelines on planning computed tomography (pCT) images for 40

clinical head and neck cancer (HNC) cases. Automatic contours were generated

for each patient using two deep-learning-based auto-segmentation models—

Manteia AccuContour and MIM ProtégéAI. The accuracy and integrity of

autocontours (ACs) were then compared to expert contours (ECs) using the

Sørensen-Dice similarity coefficient (DSC) and Mean Distance (MD) metrics.

Results: ACs were generated for 22 OARs using AccuContour and 17 OARs using

ProtégéAI with average contour generation time of 1 min/patient and 5 min/

patient respectively. EC and AC agreement was highest for the mandible (DSC

0.90 ± 0.16) and (DSC 0.91 ± 0.03), and lowest for the chiasm (DSC 0.28 ± 0.14)

and (DSC 0.30 ± 0.14) for AccuContour and ProtégéAI respectively. Using

AccuContour, the average MD was<1mm for 10 of the 22 OARs contoured, 1-

2mm for 6 OARs, and 2-3mm for 6 OARs. For ProtégéAI, the average mean

distance was<1mm for 8 out of 17 OARs, 1-2mm for 6 OARs, and 2-3mm for

3 OARs.

Conclusions: Both DLAS programs were proven to be valuable tools to

significantly reduce the time required to generate large amounts of OAR

contours in the head and neck region, even though manual editing of ACs is

likely needed prior to implementation into treatment planning. The DSCs and
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MDs achieved were similar to those reported in other studies that evaluated

various other DLAS solutions. Still, small volume structures with nonideal contrast

in CT images, such as nerves, are very challenging and will require additional

solutions to achieve sufficient results.
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1 Introduction

The evolution of radiation therapy techniques in recent decades

has led to major improvements in dose conformality along with

precision in dose delivery. Modern methods of dose delivery such as

intensity-modulated radiation therapy, volumetric arc therapy, and

recently, intensity-modulated proton therapy all have proven to

improve local control as well as normal tissue sparing in various

tumor types (1–4).

However, to capitalize on the benefits of these treatment

modalities, target volumes and surrounding organs-at-risk

(OARs) must be carefully delineated on computed tomography

(CT) images. This is heavily demonstrated in the case of head and

neck cancer (HNC) that often lie in complex anatomical locations

surrounded by numerous OARs. The delineation of neighboring

structures is a time-consuming manual process, that mandates

experienced knowledge of the local anatomy. Furthermore,

manual delineation introduces inter-observer variability as

evidenced in several recent studies (5–7). OAR delineation

guidelines have been published by many authors to combat this

but vary widely causing difficulty when comparing dose-volume

relationships across studies (8). Consensus guidelines were

established in 2015 integrating advice and expertise from

radiation oncologists from across the world (9). However, even

with established evidence-based guidelines, inter-observer

variability still exists as shown in a study conducted by van der

Veen et al. (10)in which only around half of the participating

radiation oncologists utilized the standardized guidelines.

Methods of utilizing advancements in automatic segmentation

techniques have emerged to potentially combat lengthy processing

times and wide inter-observer variability. Atlas-based auto-

segmentation (ABAS) is one such method in which an ‘atlas’ of

OARs is established by training a software program with a dataset

that has OARs already labeled. An explanation of this process has

been published by Han et al. (11). This technique has been proven

to reduce processing time as well as generating appropriate

sedimentation for various OARs (12, 13). Another automated

segmentation method currently being investigated is deep-

learning-based auto-segmentation (DLAS). DLAS utilizes machine

learning to incorporate vast datasets and generate an automated

solution. This technique has shown promise in recent studies

assessing the efficiency in the head and neck region (14, 15).
02
There are several commercially available ABAS software

programs as well as in-house developed DLAS programs that

have been validated on HNC. A comparison study conducted by

La Macchia et al. (16) compared three auto-segmentation programs

and reported significant reductions in time to generate quality

contours when compared to manual processes. However, many

studies have shown the contours generated by either ABAS or

DLAS methods still require additional manual editing to be

clinically acceptable (16–18). In a study conducted by van Dijk

et al. (19), time to generate clinically acceptable contours still

proved to be significantly less when created using either ABAS or

DLAS. Even still, the authors noted that the DLAS method used

outperformed ABAS when evaluating on a cohort of HNC patients.

However, large cohorts of training data sets are required to train

and get an accurate DLAS model. It is not feasible for each center to

develop and train their own DLAS model, thus commercially

available models or shared DLAS packages would be

advantageous. Evidence from clinical validation of DLAS

packages will allow for centers to identify solutions that will

provide optimal performance for their particular needs. Thus, this

study aims to clinically validate the generic models for HNC OAR

autocontouring of two commercially available deep-learning-based

auto-segmentation software packages, AccuContour (version 3.1,

Manteia Medical Technologies, Wisconsin, MI) and ProtègèAI

(version 1.0, MIM Software Inc., Cleveland, OH), Both MIM and

Manteia’s solutions include a generic HNC autocontouring model.

Quantitative evaluation on a set of 40 clinical HNC patients will

be performed.
2 Materials and methods

2.1 Expert contour creation

To validate each DLAS model, a cohort of 40 HNC patients

were selected who previously received treatment at our institution.

All patient data in this retrospective study was approved under an

internal review board. All planning CT (pCT) images consisted of

512 pixels × 512 pixels in each slice with voxel size of

0.98mm×0.98mm×1.50mm. All the CT data were acquired on the

same version of CT scanner (Somatom Definition AS, Siemens,

Forchheim, Germany) without contrast enhancement. In total, 22
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OARs were manually contoured to establish the expert contours

(ECs) on the pCT images by expert radiation oncologists at our

institution according to international consensus guidelines. These

OARs were divided into five groups: 1) Glandular: submandibular

and parotid glands; 2) Aerodigestive Tract: oral cavity, larynx,

esophagus, constrictor muscle; 3) Ocular and Aural: cochlea, lens,

eye; 4) Neural: brainstem, chiasm, spinal cord, optic nerves,

temporal lobes; 5) Other: mandible.
2.2 DLAS contour creation

In contrast to atlas model-based auto-segmentation which

utilizes a trained model of shape and appearance characteristics

of anatomy structures and then project onto a new image set

through deformable imaging registration, DLAS uses deep neural

network architectures with multiple (2 or more) hidden layers to

learn features from a dataset by modeling complex nonlinear

relationships. These architectures are usually formed by stacking

several different-type layers that transform input images to the

desired output. The transformation through convolution filters, or

kernels, reveals local connectivity between neurons of adjacent

layers exploiting spatially local correlation. This permits the

networks to learn features both globally and locally allowing the

network to detect subtle variations in the input data, which here

mean the features of different OARs. The training processes

generally utilize supervised learning by back-propagation

algorithms, which optimize the node weights to minimize the loss

between the predicted and known output through each training

iteration to a satisfactory level of accuracy. It remains to be

unanswered how many patient scans are optimal to produce

clinically acceptable results. One would agree that a robust dataset

that includes a large variability of patient anatomies would achieve

reasonable and robust model. During past years, more and more

commercial DLAS software have emerged and become clinically

available. The following two different DLAS packages were

implemented in our clinic and assessed in this study:

Manteia AccuContour is a commercial deep-learning-based

auto-segmentation software using deep convolutional neural

network models based on a U-Net architecture, the design of

which follows the work of Ronneberg et al. (20). The training

data included in the model consists of 100 HNC image sets acquired

from GE, Philips, and Siemens CT scanners. The HNC model was

then applied to the same 40 pCTs used in the expert contour

creation. As with the expert contour creation, a unique set of

autocontours (ACs) was generated for each patient case.

The MIM ProtégéAI generic HNC model is a cloud-based deep

learning segmentation model with a similar structure to U-Net. The

training data included in the model consists of about 400 HNC

images gathered from 31 institutions mainly across the US, but with

a few additional institutions located in Europe, Hong Kong, and

Australia. MIM’s HNC model was also applied to the 40 pCTs used

in the expert contour creation. No post-processing was completed

after the 3D volume generation for each contour. Again, a unique

set of ACs was generated for each patient case. The MIM ProtégéAI

autocontour model did not provide contours for temporal lobes,
Frontiers in Oncology 03
cochlea, or the constrictor muscle. Thus, only 17 OAR contours

were generated for each patient.
2.3 Evaluation metrics

For performance evaluation, the Sørensen-Dice similarity

coefficient (DSC) (21), and the mean distance (MD) between the

ECs and ACs for the OARs of each patient were calculated as a

comparison metric. The DSC is defined as:

DSC(A,B) =  
2 A ∩ Bj j
jjA +j jBjj (1)

Which describes the overlapping volume between two

structures A and B. A value of 0 indicates no overlap; a value of 1

indicates complete overlap. The MD is a bi-directional measure of

the distance between the surface of two contours and is defined as:

MD(A,  B)  =  
1

N(A)o
N(A)
i=1 min d(ai, b ∈ SB)   (2)

Where N(A) is the total nodes on the surface of A structure, min

d(a, b ∈ SB) is the minimum Euclidean distance of node ai   to any

point b on surface of B. The smaller mean distance indicates the

surfaces of A and B are closer to each other. For every clinical case,

each OAR delineated on the ECs and ACs was compared,

generating a DSC and MD value. Results are presented as

averages across the patient cohort for each OAR with ranges

describing the performance of grouped OARs and mean ±

standard deviation describing the performance of specific OARs.
3 Results

3.1 Manteia AccuContour evaluation

The time to autocontour all 22OARs usingManteiaAccuContour

was 1min/patient. Table 1 lists the average DSC and MD values

between ECs and Manteia AccuContour ACs for each OAR.
○ GlandularOARs: the AccuContour model showed high DSCs

and contour agreement (0.73-0.78). The MDs were similarly

acceptable for both left and right parotid glands (1.75 ± 1.13,

1.88 ± 1.15mm, respectively). The left submandibular gland

MDs were slightly larger than the right submandibular gland

(2.05 ± 5.67, 1.72 ± 3.63mm, respectively).

○ Aerodigestive TractOARs: the AccuContour model generated

the best DSCs for the oral cavity (see Figure 1B) and

esophagus (0.80 ± 0.09, 0.75 ± 0.11, respectively), while

generating lower DSCs for the constrictor muscle and

larynx (0.55 ± 0.08, 0.42 ± 0.10, respectively). The MDs for

these OARs were relatively large (1.79-2.65mm).

○ Ocular and Aural OARs: AccuContour ACs resulted in high

DSCs for both eyes (0.83 ± 0.05) (see Figure 1A), and

moderate DSCs for the left and right lens and cochlea (0.68-

0.70). The MDs for all these OARs were low (0.16-0.70mm).
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○ Neural OARs: the AccuContour model showed high DSCs

for the brainstem and spinal cord (0.84 ± 0.05, 0.78 ± 0.06,

respectively). Both the right and left optic nerve were lower

(0.62 ± 0.10, 0.64 ± 0.08, respectively), and the chiasm

performed the lowest (0.28 ± 0.14) (see Figure 1A). The

resulting MDs were low for the brainstem and right and left

optic nerve (0.47-0.88mm) but were higher for the spinal

cord and chiasm (1.80-2.20mm).

○ Mandible OAR: ACs generated by AccuContour resulted in high

DSCs(0.90±0.07)andasimilarlyacceptableMD(0.43±0.15mm).
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3.2 MIM ProtègèAI evaluation

The average time to autocontour all 17 OARs using MIM

ProtègèAI was 5min/patient. Table 2 lists the average DSC and

MD values between ECs and MIM ProtègèAI ACs for each OAR.
o Glandular OARs: the ProtégéAI model showed high DSCs

for both left and right parotid glands (0.77 ± 0.13, 0.79 ±

0.09, respectively) (Figure 1B). The MDs were similarly
FIGURE 1

Comparison of ACs and ECs for, (A) Brainstem, Temporal Lobes, Eyes, Lenses; (B) Spinal Cord, Constrictor Muscle, Submandibular Glands, Parotid
Glands, Oral Cavity, Mandible.
TABLE 1 DSCs and MDs for multiple-subject Manteia AccuContour ACs vs. ECs.

Variable* OAR

Brainstem Chiasm Cochlea L Cochlea R
Constrictor
Muscle Esophagus

DSC 0.84 ± 0.05 0.28 ± 0.14 0.68 ± 0.13 0.68 ± 0.10 0.55 ± 0.08 0.75 ± 0.11

MD (mm) 0.88 ± 0.32 2.20 ± 1.28 0.24 ± 0.14 0.26 ± 0.12 1.98 ± 2.81 1.79 ± 6.74

Eye L Eye R Larynx Lens L Lens R Mandible

DSC 0.83 ± 0.05 0.83 ± 0.05 0.42 ± 0.10 0.68 ± 0.11 0.70 ± 0.10 0.90 ± 0.07

MD (mm) 0.70 ± 0.26 0.67 ± 0.27 2.65 ± 0.79 0.19 ± 0.15 0.16 ± 0.11 0.43 ± 0.15

Optic Nerve L Optic Nerve R Oral Cavity Parotid L Parotid R Spinal Cord

DSC 0.64 ± 0.08 0.62 ± 0.10 0.80 ± 0.09 0.78 ± 0.10 0.77 ± 0.11 0.78 ± 0.06

MD (mm) 0.47 ± 0.30 0.96 ± 0.61 2.31 ± 0.91 1.75 ± 1.13 1.88 ± 1.15 1.80 ± 5.43

Submandibular L Submandibular R Temporal Lobe L Temporal Lobe R

DSC 0.73 ± 0.19 0.73 ± 0.17 0.78 ± 0.09 0.78 ± 0.09

MD (mm) 2.05 ± 5.67 1.72 ± 3.63 2.78 ± 1.95 2.80 ± 2.02
*Mean ± Standard Deviation.
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acceptable for both the left and right parotid glands (1.31 ±

0.74, 1.44 ± 1.57mm, respectively).

o Aerodigestive TractOARs: the ProtégéAI model produced the

best DSCs for the oral cavity (Figure 1B) and esophagus

(0.82 ± 0.06, 0.75 ± 0.11, respectively), but resulted in lower

DSCs for the larynx (0.65 ± 0.09). The MDs for the

esophagus were relatively low (0.76 ± 0.50mm) but were

higher for the oral cavity and larynx (2.04 ± 0.71, 2.51 ±

0.97mm respectively).

o Ocular and Aural OARs: ProtégéAI ACs resulted in high

DSCs for both right and left eyes (0.89 ± 0.02, 0.89 ± 0.03,

respectively) (Figure 1A), but performed less effectively for

the left and right lenses (0.55 ± 0.27, 0.54 ± 0.29,

respectively). However, the MDs for these OARs were low

(0.43-0.62mm).

o Neural OARs: the ProtégéAI model showed high DSCs for

the brainstem and spinal cord (0.81 ± 0.04, 0.79 ± 0.05,

respectively). Like AccuContour, the right and left optic

nerve DSCs were lower (0.63 ± 0.13, 0.53 ± 0.09,

respectively), and again, the chiasm performed the lowest

(0.30 ± 0.14) (Figure 1A). The resulting MDs were low for

the left and right optic nerves (0.54 ± 0.34, 0.40 ± 0.22mm,

respectively), but were slightly higher for the brainstem,

chiasm, and spinal cord (1.04-1.49mm).

oMandible OAR: ACs generated by ProtégéAI resulted in high

DSCs (0.91 ± 0.03) and similarly acceptable MDs (0.62

± 0.32mm).
4 Discussion

Both ABAS and DLAS methods have shown promise in

reducing variability and time required to establish contours (22–

25). This study aimed to clinically validate two DLAS commercial

software programs by comparing automatically-generated OAR

contours with those created manually for a cohort of 40 HNC

patients. DLAS contours were evaluated with two gold-standard
tiers in Oncology 05
geometric measures. Reasonable agreement was shown for the

glandular OARs, eyes, brainstem, spinal cord, oral cavity,

esophagus, and mandible across both autocontour programs.

Moderate agreement was shown for the optic nerves and lenses,

constrictor muscle, and larynx (ProtégéAI specifically). There was

poor agreement for the larynx (AccuContour specifically) and

chiasm. The results demonstrate that each DLAS package can

adequately contour most HNC OARs efficiently in an

independent cohort of patients.

We were able to provide results that closely resemble those

reported in other DLAS studies in the head and neck region. There

is a consensus on the efficiency of DLAS programs to contour the

mandible and brainstem as reported by Brunenberg et al. (26) (DSC

0.95 and 0.87, respectively) validating another commercially-

available DLAS program, DLCExpert™. The results for the

glandular OARs and optic nerves in this study resemble those

reported by Ibragimov and Xing (15) (DSC parotid gland 0.78,

submandibular gland 0.73, optic nerve 0.65) using a convolutional

neural network (CNN) approach. Willems et al. (27) reported

pharyngeal constrictor muscle results (inferior, middle, and

superior constrictor muscle average DSC 0.55) that closely

resemble the overall constrictor muscle ACs generated in this

study. Overall, structures with larger volumes appeared to be

easier for the DLAS models to contour as given by the larger DSCs.

Figure 2 shows that all the ACs generated by MIM ProtégéAI

and Manteia AccuContour were comparable except for the larynx.

The average DSC for the larynx contoured by AccuContour was

noticeably lower than that of the larynx contoured using ProtégéAI.

When investigated further, it was noted that the larynx AC within

AccuContour was consistently omitting the airspace within the

larynx when generating a contour (Figure 3). Our institution’s

standard of practice for contouring the larynx is to include the

entire structure as well as the airspace within. This apparent

discrepancy led to less agreement between the EC and AC for the

larynx using AccuContour, while ProtégéAI was able to contour in a

similar fashion to our experts. Fortunately, Mantiea’s AccuLearning

software allows for the creation of in-house models. Should we want

to establish a DLAS model using our institution’s method of

contouring the larynx, we would be able to do so in the future.
TABLE 2 DSCs and MDs for multiple-subject MIM ProtégéAI ACs vs. ECs.

Variable* OAR

Brainstem Chiasm Eye L Eye R Larynx Lens L

DSC 0.81 ± 0.04 0.30 ± 0.14 0.89 ± 0.03 0.89 ± 0.02 0.65 ± 0.09 0.55 ± 0.27

MDs (mm) 1.04 ± 0.29 1.33 ± 0.95 0.47 ± 0.20 0.44 ± 0.19 2.51 ± 0.97 0.38 ± 0.17

Lens R Mandible Optic Nerve L Optic Nerve R Oral Cavity Parotid L

DSC 0.54 ± 0.29 0.91 ± 0.03 0.53 ± 0.09 0.63 ± 0.13 0.82 ± 0.06 0.77 ± 0.13

MDs (mm) 0.43 ± 0.40 0.62 ± 0.32 0.54 ± 0.34 0.40 ± 0.22 2.04 ± 0.71 1.31 ± 0.74

Parotid R Spinal Cord Submandibular L Submandibular R Esophagus

DSC 0.79 ± 0.09 0.79 ± 0.05 0.68 ± 0.23 0.70 ± 0.28 0.75 ± 0.11

MDs (mm) 1.44 ± 1.57 1.49 ± 4.55 2.41 ± 5.42 1.91 ± 3.36 0.76 ± 0.50
*Mean ± Standard Deviation.
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The OAR contours from each DLAS model which suffered the

most were the chiasm and optic nerves (Figure 4). The low average

DSCs of these structures do not appear unique to our study, as

several other papers have reported low values for the chiasm and

optic nerves (28–30). This can likely be attributed to small volumes

of these structures as well as low contrast to the surrounding brain

tissue in CT, making it difficult to accurately segment the structures

as noted by a study from Ren et al (31). In this study, investigators

were able to improve small structure DSCs (including the chiasm

and optic nerves) using a specialized 3D CNN approach. In a 2018

study aiming to improve segmentation for small volume structures

in the head and neck region, Tong et al. (28) were able to rescue the

low DSC of the chiasm and optic nerves to an extent by employing a

Shape Representation Model (SRM) to a Fully Convolutional

Neural Network (FCNN), improving the average DSC for these

small structures. Thus, further effort to adjust autocontouring
A

B

FIGURE 2

Comparison of Manteia AccuContour and MIM ProtègèAI for various OARs Sørensen-Dice similarity coefficients (A), and Mean Distances (B).
FIGURE 3

Comparison of AC and EC Larynx contour.
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solutions to accurately contour structures with small volumens

appears advantageous.

Our study does have potential limitations. First, the generic HNC

model withinMIM ProtégéAI does not currently contain the temporal

lobes, constrictor muscle, or cochlea. However, MIM’s research &

development team has confirmed that these structures will be included

in future updates and can be clinically validated at that time. We also

only validated each model on 40 pCTs from one institution, thus

limiting the power and generalizability of our results. Lastly, additional

manual editing of ACs after creation was not performed, and only the

first iteration of ACs generated was compared.

Thus, one consideration for future use is the practice of assessing

ACs with additional manual editing where needed. This practice has

proved useful in improving contour acceptability in previous studies.

Willems et al. (27) recorded the time required to correct ACs as well

as resulting DSCs and found that only an additional 15 minutes total

were required to improve the ACs. This was also confirmed in a study

by Teguh et al. (22), where the ACs were edited, improving similarity

metrics while still requiring less time thanmanually creating contours

from scratch. We did not routinely edit the contours generated by

ProtégéAI or AccuContour, but future work could include this

practice to assess time sparing and contour improvements.

While the auto-segmentation similarity metrics investigated in

this study are commonly used, future research should incorporate

advanced comparison metrics such as the surface DSC, as described

by Vaassen et al. (32). A comprehensive overview of additional

metrics is provided by Kiser et al. (33), who corroborate previous

findings that surface DSC may better correlate with clinical

applicability. Additionally, this study focused on the performance

of commercially available auto-segmentation solutions; however,

there is a growing trend of research teams developing open-source

solutions, available on platforms like GitHub (34, 35). These open-

source solutions often yield competitive results, rivalling

commercial software and may be of particularly beneficial for

research studies with limited funding or in clinics with

constrained resources. Beyond the two commercial artificial

intelligence based auto-segmentation software evaluated in this

study, other options such Mirada, MVsision, Radformation,
Frontiers in Oncology 07
Raystation and TheraPanacea also provide contours of

comparable quality for the organs at risk (OARs) in the head and

neck region (36). The structures covered by each system are

adequate for clinical application and can be customized for

specific anatomical sites. The reported accuracy metrics of each

system should be considered as one of the critical factors in the

decision-making process. Additionally, institutions should evaluate

the cost, service quality, and integration capability with existing

clinical workflows when selecting an auto-segmentation solution.
5 Conclusion

Both commercially available DLAS programs were able to

significantly reduce the time required to generate OAR contours,

even though manual editing of ACs is likely needed prior to

implementation into the clinic. The DSCs and MDs achieved

were similar to those reported in other studies that evaluated

various other DLAS solutions. Still, structures with small volumes

are difficult to generate accurate ACs for and will require additional

solutions to achieve sufficient contours.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

CJ:Data curation,Formalanalysis,Writing–originaldraft.RP:Data

curation, Validation, Visualization, Writing – review & editing. CS:

Supervision, Validation, Visualization, Writing – review & editing. BS:

Data curation, Formal analysis, Visualization, Writing – review &

editing. PT: Formal analysis, Validation, Writing – review & editing.

LH: Data curation, Formal analysis, Validation, Writing – review &
FIGURE 4

Comparison of EC and AC of Chiasm (A) and Optic Nerves (B) EC.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1375096
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Johnson et al. 10.3389/fonc.2024.1375096
editing. FY:Data curation, Formal analysis,Writing– review&editing.

CAp:Data curation, Formal analysis,Writing – review& editing. CAc:

Data curation, Formal analysis, Writing – review & editing. HZ: Data

curation,Formal analysis,Writing– review&editing.HL: Supervision,

Writing – original draft, Writing – review & editing. SH:

Conceptualization, Supervision, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Tianjin Municipal Education Commission

Research Development Program 2022KJ222.
Frontiers in Oncology 08
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Clark CH, Bidmead Am, Mubata CD, Harrington KJ, Nutting CM. Intensity-
modulated radiotherapy improves target coverage, spinal cord sparing and allows dose
escalation in patients with locally advanced cancer of the larynx. Radiotherapy Oncol.
(2004). 0167-8140 (Print). doi: 10.1016/j.radonc.2003.10.012

2. Chao C-J, Kato N, Scott CG, Lopez-Jimenez F, Lin G, Kane GC, et al.
Unsupervised machine learning for assessment of left ventricular diastolic function
and risk stratification. J Am Soc Echocardiography. (2022) 35:1214–25.e8. doi: 10.1016/
j.echo.2022.06.013

3. Quan EM, Li X, Li Y, Wang X, Kudchadker RJ, Johnson JL, et al. A comprehensive
comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int J
Radiat Oncology Biology Phys. (2012). 1879-355X (Electronic).

4. Tran A, Zhang J, Woods K, Yu V, Nguyen D, Gustafson G, et al. Treatment
planning comparison of IMPT, VMAT and 4p radiotherapy for prostate cases. Radiat
Oncol. (2017) 12:10–0. doi: 10.1186/s13014-016-0761-0

5. Brouwer CL, Steenbakkers Rj, van den Heuvel E, Duppen JC, Navran A, Bijl HP,
et al. 3D Variation in delineation of head and neck organs at risk. Radiat Oncol. (2012).
1748-717X (Electronic). doi: 10.1186/1748-717X-7-32
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