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Development and validation of a
CT-based nomogram for
accurate hepatocellular
carcinoma detection in
high risk patients
Yingying Liang 1,2, Hongzhen Wu 2*† and Xinhua Wei 1,2*†

1The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China, 2Department of
Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of
Technology, Guangzhou, Guangdong, China
Purpose: To establish and validate a CT-based nomogram for accurately

detecting HCC in patients at high risk for the disease.

Methods: A total of 223 patients were divided into training (n=161) and validation

(n=62) cohorts between January of 2017 and May of 2022. Logistic analysis was

performed, and clinical model and radiological model were developed

separately. Finally, a nomogram was established based on clinical and

radiological features. All models were evaluated using the area under the curve

(AUC). DeLong’s test was used to evaluate the differences among these models.

Results: In the multivariate analysis, gender (p = 0.014), increased Alpha-

fetoprotein (AFP) (p = 0.017), non-rim arterial phase hyperenhancement

(APHE) (p = 0.011), washout (p = 0.011), and enhancing capsule (p = 0.001)

were the independent differential predictors of HCC. A nomogram was formed

with well-fitted calibration curves based on these five factors. The area under the

curve (AUC) of the nomogram in the training and validation cohorts was 0.961

(95%CI: 0.935~0.986) and 0.979 (95% CI: 0.949~1), respectively. The nomogram

outperformed the clinical and the radiological models in training and

validation cohorts.

Conclusion: The nomogram incorporating clinical and CT features can be a

simple and reliable tool for detecting HCC and achieving risk stratification in

patients at high risk for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

cancer and the second leading cause of cancer-related mortality

worldwide (1, 2). The majority of HCCs occur in patients with

hepatitis viruses, alcohol abuse, non-alcoholic fatty liver disease and

liver cirrhosis, which are considered as high-risk factors for

developing HCC (3, 4). The prognosis of patients with advanced

HCC is poor, while the prognosis of patients with early-stage HCC is

much better due to effective and curative treatment options, such as

resection, percutaneous ablation, or orthotopic liver transplantation

(5). Therefore, early detection and accurate diagnosis are important

in managing patients with early-stage HCC.

HCC is a unique malignancy that can be diagnosed noninvasively

with imaging (6). Once a definitive diagnosis is established, patients

may receive priority on the liver transplantation waiting list without

mandated pathologic confirmation (7). Although ultrasound (US) is

recommended as the main surveillance tool for HCC by most clinical

guidelines, its sensitivity for early-stage HCC ranges from 45% to

63%, especially in patients with advanced cirrhosis (8).

Magnetic resonance imaging (MRI) is crucial for the routine

diagnosis and evaluation of HCC, however, their wide use may be

limited due to the higher cost than that of computed tomography

(CT). Thus, CT forms the keystone in the diagnosis of HCC and is

recommended as a first-line diagnostic tool for HCC due to its short

acquisition time and high spatial resolution. In cirrhotic livers,

alterations in hepatic blood flow may cause atypical enhancement

patterns (9). Currently, it remains extremely challenging to

distinguish HCC from non-HCC lesions because some HCCs show

atypical imaging features and some non-HCC lesions may mimic

HCC in imaging in patients at high risk of HCC, which may lead to

inappropriate treatment (10, 11). In recent years, radiomics, as an

emerging methodology in medicine, has shown promising results in
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detecting HCC in patients at high risk (12, 13). However, the clinical

promotion has been limited because it requires special commercial

software (14, 15). Thus, there is a need for a simple and precise

preoperative approach to detect HCC in patients at high risk.

Our study aimed to identify objective clinical factors and

radiological features associated with HCC diagnosis and to

develop a new CT-based nomogram that accurately predicts risk

in high-HCC risk patients.
Materials and methods

This retrospective study was approved by the Institutional

Review Board with waived requirement for informed consent

(Ethical Board Approval Number: “K-2022–004-01”).

A total of 649 patients with liver lesions were enrolled in the study

between January of 2017 and May of 2022. Inclusion criteria

included: (a) patients who had CT examinations; (b) patients with

hepatitis B virus infection, or liver cirrhosis of any cause confirmed

histologically or typical radiologically; and (c) those with a

pathological diagnosis confirmed within ten days after CT

by biopsy or surgical diagnosis. Exclusion criteria included:

(a) inadequate confirmation of pathological findings or biopsy

(n = 342); (b) treatment given before imaging or surgery (n = 46);

(c) inadequate serological markers (n = 20); and (d) inadequate CT

data or poor image quality due to movement during the examination

(n = 18). Finally, 223 patients were enrolled and randomly assigned to

either the training cohort (n = 161) or the validation cohort (n = 62)

at a ratio of 7:3 (Figure 1).

Baseline demographic data, including age, gender, and

laboratory parameters, including Alpha-fetoprotein (AFP), serum

total bilirubin, total plasma protein, prothrombin time, and blood

platelet levels were collected from each patient’s medical records.
FIGURE 1

Flowchart of the study population.
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CT technique

All dynamic acquisition of contrast-enhanced CT exams were

performed on a 16-detector CT scanner (Toshiba Aquilion One),

64-detector CT systems (Philips Brilliance), and a 320-detecter CT

scanner (Toshiba Aquilion One). The scanning parameters were as

follows: 5 mm section thickness, 0.5 s rotation time, 0.9 pitch, 200

mAs tube current, 120 kVP tube voltage, and a 512 × 512 matrix.

After an unenhanced CT scan, contrast agent (iodipamide, 370 mg

I/mL, Bracco) was injected into the antecubital vein at a rate of 3.5–

4.0 mL/s based on their weight (2.0 mL/kg body weight, with a

maximal dose of 180ml), followed by 20 mL of saline solution using

a power injector. We then obtained the arterial phase (AP, 35–40

seconds), portal venous phase (PVP, 50–60 seconds), and

equilibrium phase (EP, 120–250 seconds), respectively.
CT image analysis

Two abdominal radiologists (who had 6 and 15 years of

experience, respectively) retrospectively and independently

reviewed the CT images. The readers were blinded to the final

pathological diagnoses of the lesions. They assessed the presence of

major features of HCC, including non-rim arterial phase

hyperenhancement (APHE), non-peripheral washout, and

enhancing capsule according to the Liver Imaging Reporting and

Data System (LI-RADS) version 2018 (16). They also evaluated the

number of lesions, size of the largest lesion, and the presence or

absence of necrosis, satellite lesions, internal arteries, and non-

enhancing capsules. In addition, tumor with pathological result was

evaluated if the liver has different or multiple lesions.
Statistical analysis

Continuous variables were expressed as the mean ± standard

deviation or median, and compared using the Mann–Whitney U

test. Categorical variables were expressed as numbers (percentages)

and compared using the chi-square test. Clinical and imaging factors,

including age, gender, AFP, serum total bilirubin, total plasma protein,

prothrombin time, blood platelet levels, tumor size, non-rim arterial

phase hyperenhancement (APHE), non-peripheral washout,

enhancing and non-enhancing capsule, necrosis, satellite lesions, and

internal arteries, were analyzed using the stepwise regression forward

method to select the significant independent predictors in the training

cohort. Factors whose P values were less than 0.05 in the univariable

analysis were inputted into the multivariable logistic regression analysis

to identify the independent predictors of HCC. The clinical model

(model 1), radiological model (model 2) and clinical-radiologic

nomogram (model 3) were constructed by integrating significant

clinical factors, significant radiological factors, combined clinical and

radiological factors, respectively. The nomogram is based on

proportionally converting each regression coefficient in multivariate

logistic regression to a 0- to 100-point scale. The points, according to

the b coefficient (absolute value) in different variables, are converted to

predicted probabilities. The discrimination power of the nomogram
Frontiers in Oncology 03
was assessed by calibration curves which were assessed with a 1,000

bootstrap resample to measure the accuracy of the nomogram in the

training and validation cohorts. A receive operating characteristic

(ROC) curve was conducted to evaluate the performance of the

different prediction models using area under the curve (AUC).

Sensitivity, specificity and accuracy, were then calculated and the

DeLong test was used to compare the models’ performances.

A decision curve analysis (DCA) was applied to explore

clinical usefulness.

The interobserver agreement was analyzed for each feature by

using kappa (k) statistics. All statistical analyses were performed

using SPSS software (Version 25.0, Chicago, IL, USA) and R

software (version 3.6.1). A two-sided p-value of < 0.05 was

considered significant in all statistical tests.
Results

Demographic data and
laboratory parameters

The baseline demographic characteristics of the training and

validation cohorts are summarized in Table 1. Among the 161

patients in the training cohort, the mean age was 55.28 years, with a

range of 20–87 years, and 115 patients (71.4%) were men. Pathologic

assessment revealed 84 and 77 cases of HCC and non-HCC lesions,

respectively. The malignant non-HCC lesions included

cholangiocarcinoma (n = 51), metastasis (n = 2), combined

hepatocellular-cholangiocarcinoma (n =1), and epithelioid

angiomyolipoma (n =1). The benign non-HCC lesions included focal

nodular hyperplasia (n = 12), dysplastic nodules (n =7), and

hepatocellular adenoma (n =3). Most lesions were surgically

diagnosed, although 16.8% (27/161) lesions were diagnosed after a

biopsy. Among the 62 patients in the validation cohort, the mean age

was 51.10 years, with a range of 21–82 years, and 44 patients (71.0%)

were men. Pathologic assessment revealed 37 and 25 cases of HCC and

non-HCC lesions, respectively. The malignant non-HCC lesions

included cholangiocarcinoma (n = 13), and metastasis (n = 1). The

benign non-HCC lesions included focal nodular hyperplasia (n =8),

dysplastic nodules (n =2), and hepatocellular adenoma (n =1). There

were 16.1% (10/62) lesions confirmed by biopsy, and the remaining

lesions were confirmed by surgery.
Interobserver agreement for CT features

The CT features of all patients are shown in Table 2. Patients with

HCC were more likely to have non-rim APHE (p < 0.001), washout

(p < 0.001), enhancing capsules (p < 0.001), necrosis (p < 0.001), and

internal arteries (p < 0.001) in the training cohort.

The interobserver agreement for CT features was fair for the

maximum dimension (k = 0.43), substantial for the nonenhancing

capsule (k = 0.75) and almost perfect for non-rim APHE (k = 0.89),

washout (k = 0.90), necrosis (k = 0.90), internal arteries (k = 0.90),

enhancing capsules (k = 0.95), and satellite lesions (k = 0.95).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1374373
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liang et al. 10.3389/fonc.2024.1374373
TABLE 2 CT features in the training and validation cohorts.

Training dataset (n=161) Validation dataset (n =62)

Non-HCC
(n=77)

HCC
(n=84)

P
Non-HCC
(n=25)

HCC
(n=37)

P

Non-rim APHE

<0.001* 0.007*Negative 43(55.8%) 7(8.3) 11(44.0%) 5(13.5%)

Positive 34(44.2%) 77(91.7%) 14(56.0%) 32(86.5%)

Washout

<0.001* 0.001*Negative 67(87.0%) 18(21.4%) 19(76.0%) 12(32.4%)

Positive 10(13.0%) 66(78.6%) 6(24.0%) 25(67.6%)

Enhancing capsule

<0.001* <0.001*Negative 69(89.6%) 29(34.5%) 25(100.0%) 7(18.9%)

Positive 8(10.4%) 55(65.5%) 0(0.00) 30(81.1%)

Necrosis

<0.001* <0.001*Negative 27(35.1%) 5(6.0%) 13(52.0%) 2(5.4%)

Positive 50(64.9%) 79(94.0%) 12(48.0%) 35(94.6%)

Satellite lesions

0.431 0.351Negative 54(70.1%) 54(64.3%) 19(76.0%) 24(64.9%)

Positive 23(29.9%) 30(35.7%) 6(24.0%) 13(35.1%)

Internal artery

<0.001* 0.162Negative 37(48.1%) 7(8.3%) 7(28.0%) 4(10.8%)

Positive 40(51.9%) 77(91.7%) 18(72.0%) 33(89.2%)

(Continued)
F
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TABLE 1 Patient characteristics in the training and validation cohorts.

Training dataset (n=161) Validation dataset (n =62)

Non-HCC
(n=77)

HCC
(n=84)

P
Non-HCC
(n=25)

HCC
(n=37)

P

Gender(n)

<0.001* <0.001*Male 41(53.2%) 74(88.1%) 11(44.0%) 33(89.2%)

Female 36(46.8%) 10(11.9) 14(56.0%) 4(10.8%)

Age(years) 55(42,64) 57(50,63.5) 0.509 42(32,60) 57(45,65) 0.045

Serum total bilirubin(g/L) 15.7(11.1,25) 34.5(19.25,67.1) <0.001* 16.1(11.8,72.2) 24(17.7,35) 0.134

Total plasma protein(g/L) 67.1(60.6,73.4) 52.9(17.7,65) <0.001* 72.8(40.2,77.7) 64.4(43,71.7) 0.166

Prothrombin time(s) 13.6(13,14.2) 13.6(12.7,14.6) 0.755 13.2(12.8,14) 14(12.8,14.8) 0.175

Blood platelet(10g/L) 245(196,290) 171(135.5,229.5) <0.001* 258(205,341) 172(117,210) <0.001*

AFP(ng/ml)

<0.001* <0.001*Negative 62(80.5%) 18(21.4%) 21(84.0%) 7(18.9%)

Positive 15(19.5%) 66(78.6%) 4(16.0%) 30(81.1%)

Maximum
dimension (cm)

5.6(3.4,8.4) 5.15(3.5,7.7)
0.907 6.8(4.7,10.8) 6.8(4.5,8.7) 0.434
AFP, Alpha-fetoprotein; HCC, hepatocellular carcinoma. * P<0.05, significant difference between both groups.
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Development of the prediction model

Multiple logistic regression analysis revealed that gender

(OR = 0.095, 95% CI = 0.015–0.615, p = 0.014), increased AFP

(OR = 5.683, 95% CI = 1.358–23.778, p = 0.017), non-rim

APHE (OR = 9.619, 95% CI = 1.683–54.971, p = 0.011), washout

(OR = 8.231, 95% CI = 1.614–41.978, p = 0.011), and enhancing

capsules (OR = 19.136, 95% CI = 3.478–105.291, p = 0.001) were HCC

predictors (Table 3). A nomogram was constructed from these

variables to construct a quantitative and predictive tool (Figure 2).

Among these significant features, enhancing capsule showed the

highest OR and was the best predictor of HCC according to

the nomogram.
Predictive performance and validation of
the prediction model

The independent risk factors (including gender and increased

AFP) for HCC were used to construct the clinical model. The clinical

model predicted HCC with an AUC of 0.838 (95% CI, 0.778–0.897)

in the training cohort, and 0.873 (95% CI, 0.782–0.964) in the
Frontiers in Oncology 05
validation cohort (Figure 3). The sensitivity, specificity, and

accuracy of the model for the training cohort were 80.5%, 78.6%,

and 0.795, respectively, whereas those of the validation cohort were

84.0%, 81.1%, and 0.823, respectively (Table 4).

Three radiological characteristics, including non-rim APHE,

washout, and enhancing capsules, were used to construct the

radiological model. The model yielded AUC of 0.917 (95% CI,

0.874–0.961) and 0.918 (95% CI, 0.854–0.983) in the training and

validation cohort, respectively (Figure 3). The sensitivity, specificity,

and accuracy of the model for the training cohort were 87.0%,

86.9%, and 0.870, respectively, whereas those of the validation

cohort were 76.0%, 81.1%, and 0.790, respectively (Table 4).

The clinical-radiologic nomogram was constructed which

combined the two clinical and three radiological characteristics with

different score based on their b coefficient, yielded the AUC values of

0.961 (95% CI: 0.935–0.986) with a sensitivity of 97.4%, a specificity of

81.0%, and 0.979 (95% CI: 0.949–1) with a sensitivity of 100.0%, a

specificity of 91.9%, in the training and validation cohorts (Figure 3).

The clinical-radiologic nomogram showed the highest AUC than in the

clinical and radiological model in the training cohort (p = 0.041

[clinical vs. radiological model], 0.001[clinical vs. clinical-radiologic

nomogram], 0.005 [radiological vs. clinical-radiologic nomogram],

respectively), and validation cohort (p = 0.421 [clinical vs.

radiological model], 0.010 [clinical vs. clinical-radiologic

nomogram], 0.012 [radiological model vs. clinical-radiologic

nomogram], respectively).

The calibration curve of the prediction model is shown in

Figure 4 indicating that the nomogram is in good agreement with

the observations of HCC diagnosis in patients at high risk for HCC.
Decision curve analysis

The decision curve analysis (DCA) for the nomogram revealed

that our prediction nomogram was better able to predict HCC

potential than either the treatment or no treatment schemes with

the threshold probability >0.1 in the training cohort and in the

range between 0 to 1.0 in the validation cohort (Figure 4).
Discussion

In the present study, it showed that gender, elevated AFP level,

positive non-rim APHE, washout, and enhancing capsule were

independent, significant parameters predicting HCC. Based on
TABLE 2 Continued

Training dataset (n=161) Validation dataset (n =62)

Non-HCC
(n=77)

HCC
(n=84)

P
Non-HCC
(n=25)

HCC
(n=37)

P

Nonenhancing “capsule”

0.426 1.000Negative 71(92.2%) 80(95.2%) 24(96.0%) 36(97.3%)

Positive 6(7.8%) 4(4.8%) 1(4.0%) 1(2.7%)
HCC, hepatocellular carcinoma; APHE, arterial phase hyperenhancement. *P<0.05, significant difference between both groups.
TABLE 3 Multivariable analysis with logistic regression in the training
cohort including clinical and radiological variables.

B P value OR
95% CI

Lower Upper

Serum total
bilirubin

0.015
0.185

1.016 0.993 1.039

Total plasma
protein

-0.012
0.439 0.988

0.959 1.018

Blood platelet -0.009 0.065 0.991 0.981 1.001

Gender -2.357 0.014* 0.095 0.015 0.615

AFP 1.737 0.017* 5.683 1.358 23.778

Non-rim APHE 2.264 0.011* 9.619 1.683 54.971

Washout 2.108 0.011* 8.231 1.614 41.978

Enhancing
capsule

2.952
0.001* 19.136

3.478 105.291

Necrosis 2.052 0.051 7.784 0.991 61.176

Internal artery 1.569 0.096 4.801 0.756 30.485
CI, confidence interval; OR, odds ratio.
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these significant clinical factors and radiological features, we

constructed and validated a noninvasive nomogram to accurately

identify HCC from other hepatic lesions in patients at high risk of

HCC. This nomogram showed good predictive ability of HCC in

both training (AUC = 0.961) and validation cohorts (AUC = 0.979),

which outperformed the clinical and radiological model with a good

calibration and clinical applicability. This nomogram was easy to

use and facilitated the preoperative detection of HCC for clinicians

in order to avoid overdiagnosis and overtreatment.

Our study indicated that enhancing capsule was the best single

predictor for diagnosing HCC according to the nomogram,

consistent with previous reports (17, 18). Enhancing capsule

reportedly has the highest specificity (88%–96%) for diagnosing

HCC (17–19). Although enhancing capsule is not evaluated

according to the American Association for the Study of Liver

Diseases (AASLD) (20) and European Association for the Study
Frontiers in Oncology 06
of the Liver (EASL) (21) guidelines, it is recognized as a major

feature in the LI-RADS algorithm, which could increase the

sensitivity (18, 22) and specificity (23) of diagnosing HCC.

Among the three CT features, non-rim APHE had the highest

sensitivity (91.7%, 77/84) for diagnosing HCC, which reflects the

neoangiogenesis and accelerates the carcinogenesis (24). Although

non-rim APHE is considered a crucial imaging feature for

diagnosing HCC (24), it is non-specific because it could also be

detected in other malignant or benign lesions (25). Recent research

has reported that non-rim APHE had the highest sensitivity (85%–

94%) (17, 18) but lower specificity (58%–64%) (17, 26) for

diagnosing HCC, which was consistent with our results.

Meanwhile, Granata et al. confirmed that non-rim APHE could

be found in most of the dysplastic nodules (70% [17/24]) in their

study population (25). Therefore, attention should be taken in using

this feature alone which should lead to false HCC diagnosis.
BA

FIGURE 3

Area under the receiver operating characteristic curve (AUC) analysis shows better performance for detecting HCC using the clinical-radiologic
nomogram (model 3) compared with the clinical model (model 1) and radiologic model (model 2) on training cohort (A) and testing cohorts (B).
FIGURE 2

Nomogram for estimating the probabilities of HCC.
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Washout is the third independent CT feature for diagnosing

HCC. There is a discrepancy in washout performance. De Gaetano

et al. (17) reported that washout had a high sensitivity (88.2%), but a

low specificity (42.3%) for diagnosing HCCs. However, Sangiovanni

et al. (26) reported that washout was an effective means of

distinguishing HCC from other liver lesions, with a high

specificity (100.0%) but a low sensitivity (53.0%). Interestingly, we

found that washout was an important independent risk factor of

HCC, with a high specificity (87.0%) but a moderate sensitivity

(78.6%). Many recent studies have demonstrated that washout

combined with non-rim APHE could increase specificity and

positive predictability for early HCC diagnosis (18).

AFP is the most widely used tumor marker for diagnosis and

evaluation of HCC in clinical practice (27). However, the AASLD
Frontiers in Oncology 07
does not recommend AFP for the early detection of HCC (20).

Previous research has reported that elevated AFP occurred in only

40–65% of HCC patients, while others had normal AFP levels,

particularly during the early stages of the disease (28). In addition,

many other studies found that an elevated AFP level also occurred

in other malignancies or benign liver lesions (29). In our study,

gender also had a detrimental effect on HCC diagnosis. Males were

more prone to hepatocarcinogenesis, with a prognosis that is worse

than in females.

Currently, various imaging models for HCC detection have been

described in the literature, especially radiomics models. A study

involving 102 patients with liver tumors defined as LR-M based on

LI-RADS developed a MRI-based radiomics model to classify HCC

and non-HCC tumors with AUC of 0.884 and 0.873, respectively in
FIGURE 4

Calibration curve demonstrating how predictions from the model to the actual observed probability on training cohort (A) and testing cohort (B).
Decision curve analysis (DCA) for the nomogram on training (C) and validation cohort (D).
TABLE 4 The specific predictive performances of models for HCC.

Model Cohort Criterion

AUC (95% CI) Sensitivity Specificity Accuracy

Clinical Training 0.838
(0.778~0.897)

0.805
(0.717~0.894)

0.786
(0.698~0.873)

0.795
(0.793~0.797)

Testing 0.873
(0.782~0.964)

0.840
(0.696~0.984)

0.811
(0.685~0.937)

0.823
(0.818~0.827)

Radiological Training 0.917
(0.874~0.961)

0.870
(0.795~0.945)

0.869
(0.797~0.941)

0.870
(0.868~0.871)

Testing 0.918
(0.854~0.983)

0.760
(0.593~0.927)

0.811
(0.685~0.937)

0.790
(0.785~0.796)

Clinical-
radiologic nomogram

Training 0.961
(0.935~0.986)

0.974
(0.938~1)

0.810
(0.726~0.893)

0.888
(0.887~0.889)

Testing 0.979
(0.949~1)

1.000
(1~1)

0.919
(0.831~1)

0.952
(0.95~0.953)
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the training and validation sets (10). Xu et al. found that the deep

learning model based on multiphase CT has the potential in

accurately classifying HCC from non-HCC from high-risk liver

lesions (LI-4/5/M) with AUC of 0.887 and 0.808 (30). Another

previous study developed a deep convolutional neural network-

ultrasound (DCNN-US) model to classify HCC from focal hepatic

lesions, which exhibited high sensitivity and specificity and

outperformed radiologists’ visual assessments (31). Undoubtedly,

radiomics is important for the diagnosis of HCC with satisfactory

model performance. However, it is time-consuming and requires

large sample sizes to validate their generalizability. Therefore, to

develop a simple and practical model is urgent for radiologists to

detect HCC. Our study demonstrated significantly higher

performance of the clinical-radiologic nomogram than the clinical

or radiological model in detecting HCC without the use of complex

software and postprocessing techniques. The AUCs of the training

and validation sets were 0.961 and 0.979, respectively, indicating that

the nomogram showed good discrimination capability which may aid

in the risk stratification and treatment of HCC patients.

There are some limitations to our study. First, it was a

retrospective study with a small sample size, especially benign

lesions including limited number of regenerative/dysplastic nodules,

which may cause potential selection bias. Our work must be validated

via prospective studies with larger sample sizes. Second, this was a

single-center study, and multi-center validation is required to

confirm the nomogram’s reproducibility. Third, a selection bias

may affect the validity of the study because biopsy may exclude the

possibility of combined hepatocellular-cholangiocarcinomas due to

sampling error only the cholangiocarcinoma portion was sampled.

Fourth, noisy labels exist widely in CT images which may be

contributed to statistical noise, structure noise, artifact noise, and

various scanned parameters. The suspected HCC was detected and

characterized relying on contrast between liver lesion and

background seen in different phases of CT (32–34). Some tumors

with variable vascular dynamics may be challenging to detect

regardless of the phase due to the different noise levels. Thus, it

would be of interest to assess the performance of our nomogram

using different noisy labels in real practice. Finally, including only

patients with a pathologic diagnosis is a design flaw because most

HCC patients end up being diagnosed without recourse to a

pathological diagnosis. This is very well illustrated by the larger size

of the included tumors.

In conclusion, our study presented a nomogram based on

gender, increased AFP, positive non-rim APHE, washout, and

enhancing capsule to easily and effectively detect HCC at high

risk for this disease, allowing clinicians to rapidly evaluate the risk

of HCC and reduce unnecessary surgery. Future studies are needed

to externally validate the current model.
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