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Sichuan, China, 2Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province,
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Prostate cancer(PCa), a leading global health concern, profoundly impacts

millions of men worldwide. Progressing through two stages, it initially develops

within the prostate and subsequently extends to vital organs such as lymph

nodes, bones, lungs, and the liver. In the early phases, castration therapy is often

employed to mitigate androgen effects. However, when prostate cancer

becomes resistant to this treatment, alternative strategies become imperative.

As diagnostic and treatment methodologies for prostate cancer continually

advance, radioligand therapy (RLT) has emerged as a promising avenue,

yielding noteworthy outcomes. The fundamental principle of RLT involves

delivering radionuclide drugs to cancerous lesions through specific carriers or

technologies. Subsequently, these radionuclide drugs release radioactive energy,

facilitating the destruction of cancer cell tissues. At present, the positron

emission tomography (PET) targeting PSMA has been widely developed for the

use of diagnosis and staging of PCa. Notably, FDA-approved prostate-specific

membrane antigen (PSMA) targeting agents, such as 68Ga-PSMA-11 and 177Lu-

PSMA-617, represent significant milestones in enhancing diagnostic precision

and therapeutic efficacy. This review emphasizes the current research status and

outcomes of various radionuclide-labeled PSMA ligands. The objective is to

provide valuable insights for the continued advancement of diagnostic and

therapeutic approaches in the realm of prostate cancer.
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1 Introduction

As of 2020, the global landscape of cancer incidence and

mortality reveals a staggering burden, with around 19.3 million

new cancer cases reported worldwide (excluding non-melanoma

skin cancer). Unfortunately, approximately 10 million cancer

patients succumbed to the disease (excluding non-melanoma skin

cancer). Prostate cancer constituted a significant portion of these

cases, with approximately 1.4 million new diagnoses globally,

accounting for 7.3% of all cancer cases. Regrettably, there were

approximately 375,000 deaths attributed to prostate cancer, making

it the second most common cancer and the fifth leading cause of

death among men in 2020 (1). The anticipated cancer burden in

2022 underscores the significant impact on public health in both

China and the United States. It is projected that China will

experience around 4.82 million new cancer cases and

approximately 3.21 million cancer-related deaths. In China,

prostate cancer specifically contributes over 125,000 new cases

and more than 56,000 deaths. Similarly, the United States is

expected to see around 2.37 million new cancer cases and

approximately 640,000 cancer-related deaths in 2022. For prostate

cancer in the United States, the estimates are approximately 126,900

new cases and 34,600 deaths. These figures highlight the substantial

health challenges posed by cancer and the need for continued efforts

in prevention, early detection, and effective treatment strategies (2).

The data underscores a consistent rise in the incidence of prostate

cancer, a trend attributed to advancements in medical technology.

Improved diagnostic methods, heightened awareness prompting

proactive screening, and demographic shifts, including an aging

population, contribute to the increasing detection rates. As

healthcare technologies continue to progress, early detection

becomes more achievable, playing a pivotal role in effectively

managing and treating prostate cancer (3, 4). While many

prostate cancers exhibit slow growth, their impact on a patient’s

health and life can be profound, potentially progressing into

castration-resistant prostate cancer, which stands as the primary

cause of death in prostate cancer patients. Hence, the early diagnosis

and precise evaluation of prostate cancer hold immense significance

in mitigating the potential adverse outcomes associated with the

disease. Early detection allows for timely intervention and tailored

treatment strategies, contributing to better patient outcomes and

quality of life.

PET/CT stands as a widely utilized nuclear medicine technique

for comprehensive tumor examinations. By integrating Positron

Emission Tomography (PET) and Computed Tomography (CT),

PET/CT provides valuable insights into the metabolic activity

throughout the body. This imaging modality aids in the early

detection of tumor lesions, offering crucial information on tumor

size, location, local invasion, lymph node metastasis, and distant

metastasis. Additionally, PET/CT serves as a valuable tool in

distinguishing between focal changes and tumor recurrence

following radiotherapy. Its versatility and effectiveness make PET/

CT one of the most commonly employed methods for oncology

evaluations today. Moreover, its application in targeted cancer
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therapy further enhances its value in contributing to improved

patient care (5, 6).
18F-FDG (fluorodeoxyglucose) stands as a frequently employed

PET tracer for assessing tumor metabolic activity and diagnosing

tumor lesions. Its potential utility extends across various facets of

prostate cancer care, encompassing diagnosis, staging, treatment

evaluation, and prognosis, especially in cases of castration-resistant

metastatic prostate cancer. The versatility of 18F-FDG PET proves

valuable in providing comprehensive insights into prostate cancer,

aiding in precise diagnosis, effective staging, informed treatment

decisions, and prognostic assessments for patients (7, 8). While
18F-FDG is extensively utilized in oncology, it exhibits lower

specificity, occasionally accumulating in inflammation, infections,

and normal tissues. Additionally, it may be less sensitive to certain

tumor types, such as breast and prostate cancer. In instances where

these limitations are notable, alternative PET tracers may prove more

suitable for achieving higher specificity and sensitivity in imaging and

diagnosis (9–12). PSMA (Prostate Specific Membrane Antigen) is a

membrane antigen characterized by high expression in prostate tissue

and on the surface of prostate cancer cells. Due to its heightened

expression in prostate cancer, PSMA has evolved into a pivotal

marker for targeted diagnosis and treatment of prostate cancer.

The application of PET-CT imaging with radionuclide-labeled

PSMA has demonstrated significant potential in detecting and

staging prostate cancer, offering a promising approach for

improved visualization and assessment of the disease (13, 14).

Currently, PSMA imaging has gained recognition in the latest

international guidelines and is poised to become the forefront

choice for the diagnosis and treatment of prostate cancer in the

future. This acknowledgment underscores the increasing importance

of PSMA-based imaging methods in refining the accuracy and

precision of prostate cancer diagnostics, guiding targeted

therapeutic approaches. As guidelines evolve, the prominence of

PSMA imaging is expected to play a central role in the

comprehensive management of prostate cancer (15). PSMA-617,

PSMA-1007, PSMA-11, PSMA-I&T, and similar compounds are

chemical reagents designed to target the prostate-specific

membrane antigen (PSMA). They possess the ability to bind to

PSMA present on the surface of tumor cells, facilitating the

visualization of tumor signals and offering the potential for targeted

therapy. These PSMA ligands are preferred due to their advantages,

including small molecular weight, robust tissue permeability, rapid

blood clearance, and ease of large-scale synthesis. Consequently, they

have emerged as the primary choice for molecular imaging probes in

prostate cancer, finding widespread applications in the targeted

therapy of prostate cancer (13). This review seeks to provide a

comprehensive overview of the current research status of

commonly used PSMA ligand drugs for radioisotope labeling. The

focus is on exploring their properties, efficacy, and toxicity, along with

examining the outcomes of their combined application with other

treatments. The goal is to offer a consolidated understanding of the

current landscape of PSMA ligand drugs, shedding light on their

characteristics, therapeutic effectiveness, and potential synergies

when employed in conjunction with other therapeutic modalities.
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2 Radionuclide label PSMA-ligand
used for diagnosis

2.1 68Ga-PSMA-11

68Ga-PSMA-11 is the small molecule imaging agent known for

its favorable biological distribution characteristics. It was initially

utilized in clinical settings in 2012, and by the end of December

2020, 68Ga-PSMA-11 had become the earliest PSMA imaging agent

to rece ive approva l f rom the FDA (U.S . Food and

Drug Administration).

The complexation of the radionuclide gallium-68 is achieved

using the bifunctional non-cyclic chelating agent HBED-CC (N,N’-

bis[2-hydroxy-5-(carboxyethyl)]-N,N’-diacetic acid). This chelating

agent is hexadentate and adopts an octahedral geometry. In the

complex, gallium-68 is coordinated with 2 nitrogen atoms, 2

hydroxyl groups, and 2 carboxyl groups. The 68Ga-HBED-CC

group binds to the PSMA analogue Glu-NH-CO-NH-Lys(Ahx).

Figure 1 depicts the structure of 68Ga-PSMA-11 (16). 68Ga-PSMA-

11 PET/CT has shown notable specificity and sensitivity in the

diagnosis and staging of primary prostate cancer, re-staging of

patients with recurrent prostate cancer (PCa), and evaluating

castration-resistant prostate cancer (CRPC). The use of this

imaging technique can contribute to more accurate diagnosis,

staging, and assessment of treatment response in patients with

prostate cancer.
68Ga-PSMA-11 PET/CT has shown notable specificity and

sensitivity in the diagnosis and staging of primary prostate

cancer, re-staging of patients with recurrent prostate cancer

(PCa), and evaluating castration-resistant prostate cancer (CRPC).

The use of this imaging technique can contribute to more accurate
Frontiers in Oncology 03
diagnosis, staging, and assessment of treatment response in patients

with prostate cancer (17).
68Ga-PSMA-11 has been extensively demonstrated to exhibit

high sensitivity and specificity in the diagnosis of prostate cancer. It

significantly enhances the detection rate compared to other imaging

agents such as 18F-FDG PET/CT, 18F-PSMA-1007 PET/CT, and
64CuCl2 PET-CT (18). In particular, 68Ga-PSMA-11 PET/CT

displays higher sensitivity for prostate cancer diagnosis (19). Yang

J. et al. utilized the 68Ga-PSMA-11 PET Maximum Normalized

Threshold (SUVmax) to predict clinically significant prostate

cancer (PCa) and PSA levels in the gray area (4-10 ng/ml), which

is challenging for PCa diagnosis. In this study, the sensitivity and

specificity were reported as 86.21% and 86.54%, respectively. 68Ga-

PSMA-11 PET facilitates the screening and early diagnosis of

prostate cancer and can help avoid unnecessary biopsy

procedures (20).

In a study conducted by Hope et al., 68Ga-PSMA-11 PET

imaging scans were employed for preliminary staging in 764

patients with prostate cancer and pelvic lymph node metastasis.

The results indicated a positive 68Ga-PSMA-11 PET scan, with

reported sensitivity and specificity for pelvic lymph node metastasis

of 0.40 and 0.95, respectively (21). Consequently, 68Ga-PSMA-11

PET is considered beneficial for preoperative staging and assisting

in lymph node dissection. The study findings suggest that 18F-

PSMA-11 PET/MRI can help reduce false negatives for clinically

significant prostate cancer (csPCa) when compared to MRI alone.

This potential improvement in diagnostic accuracy may lead to a

reduction in the number of unnecessary prostate biopsies required

to diagnose clinically significant prostate cancer. The combined

information from PET and MRI imaging could enhance the

detection and localization of prostate cancer, thereby aiding in

more targeted and effective clinical decision-making (22).

Indeed, 68Ga-PSMA-11 PET is increasingly recommended by

various guidelines for detecting biochemical recurrent prostate

cancer. Its high accuracy in detection, along with its capability to

assess stage and prognosis, has contributed to its recognition and

adoption in clinical practice. This imaging modality has proven

valuable in the management of patients with biochemical

recurrence by providing detailed information about the location

and extent of disease, aiding in treatment planning, and

contributing to more informed clinical decision-making (23, 24).

This study examining 635 cases involving prostatectomy and/or

radiotherapy with 68Ga-PSMA-11 PET scans and histopathological

verification, the researchers found that the detection rates varied

with different PSA levels. The results were as follows: for PSA

levels <0.5ng/mL (n=136), the detection rate was 38%; for PSA

levels 0.5 to <1.0ng/mL (n=79), the detection rate was 57%; for

PSA levels 1.0 to <2.0ng/mL (n=89), the detection rate was 84%; for

PSA levels 2.0 to <5.0ng/mL (n=158), the detection rate was 86%.

The detection rate increased to 97% for PSA levels ≥5.0ng/mL

(n=173, P<.001). The study concluded that the rate of PSA

detection in localized recurrent prostate cancer with 68Ga-PSMA-

11 PET was significantly improved, demonstrating the effectiveness

of this imaging modality in detecting recurrent disease at various

PSA levels (23). The multicenter study involving 138 prostate

cancer (PCa) patients with biochemical recurrent (BCR) lesions,
FIGURE 1

The chemical structure of 68Ga-PSMA-11.
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classified as progressive, mixed, or nonprogressive, utilized

quantitative parameters (SUVmean, SUVmax, SUVpeak, volume)

to quantify tumor response at a focal level following 68Ga-PSMA-11

PET scans. The study demonstrated that patients with systemic

progression had a significantly higher risk of death compared to

those without progression (HR=5.70), with SUVmean identified as

having the highest prognostic value. Furthermore, 68Ga-PSMA-11

PET was found to possess significant prognostic value in

progressive patients for overall survival (HR=3.67). These findings

suggest that 68Ga-PSMA-11 PET can assist in restaging biochemical

recurrent prostate cancer and plays a crucial role in assessing

prognosis (24).
68Ga-PSMA-11 PET/CT stands out as a valuable tool for

evaluating metastatic castration-resistant prostate cancer

(mCRPC), enhancing the precision of staging, and aiding in

crucial clinical decision-making processes. With its high

sensitivity and specificity, this imaging modality provides detailed

insights into the localization and extent of metastatic lesions,

empowering doctors to make well-informed decisions on

treatment strategies and patient management for those facing

advanced prostate cancer (25, 26). In contrast to other imaging

techniques, 68Ga-PSMA-11 PET proves highly effective in detecting

small, distant, and atypical metastases associated with prostate

cancer, including instances of intraocular (27) and isolated

peritoneal metastases (28).
2.2 18F-PSMA-1007

PSMA-1007 represents a novel PSMA ligand derived from the

chemical structure of PSMA-617 (Figure 2). It targets the gluu-urea-

lys motif of the PSMA enzyme pocket S1` and concurrently engages

the naphthaln-based hydrophobic accessory pocket S1. The primary

distinction lies in the addition of two glutamic acids to the site

carrying the radioactive label, simulating the carboxyl group of the

DOTA chelating agent (29). Prostate-specific membrane antigen

(PSMA) is found in the proximal tubule cells of the kidney,
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resulting in significant uptake of renal tracers in PSMA-PET. This

uptake may contain valuable information about renal function.

PSMA-1007 has been validated for its excellent binding and

internalization properties in vitro. It exhibits high specific uptake

in vivo and demonstrates effective differentiation between normal

ganglia and lymph node metastasis in prostate cancer. Research

indicates that PET/CT diagnosis using 18F-PSMA-1007 offers

advantages over traditional imaging modalities such as CT, MRI,

ultrasound, and bone imaging (30). Moreover, in contrast to other

well-known PSMA ligands, PSMA-1007 primarily undergoes

metabolization through the hepatobiliary pathway, diverging from

the renal metabolism observed with other ligands. This distinctive

metabolic pathway could potentially confer benefits in the

differentiation of lymph node metastasis, particularly in patients

with recurrent prostate cancer (31, 32). In a retrospective survey

involving 73 prostate cancer patients, Rassek P et al. concluded that

renal uptake of 18F-PSMA-1007 can serve as an accurate measure

for quantifying renal function, utilizing parameters such as

SRFPSMA-TOTAL or SRFSUV (33).. In the latest clinical study,

which included 60 patients diagnosed with prostate cancer

exhibiting low PSA levels, 18F-PSMA-1007 PET/MRI detected 53

lesions in 45 patients, resulting in a detection rate of 75%. The

average PSA value in this cohort was 0.31 ng/mL. These findings

suggest that 18F-PSMA-1007 proves to be an excellent molecular

probe, particularly beneficial for early-stage biochemical recurrence

(BCR) patients with exceptionally low PSA levels (34). Given the

chemical structure and biological activity, 18F-PSMA-1007, along

with 177Lu-PSMA-617, holds promise in matching the diagnostic

capabilities. Further research endeavors will ascertain the clinical

significance of this ligand and its potential for practical application

in clinical settings. Ongoing studies will shed light on the utility and

effectiveness of this ligand, shaping its role in clinical diagnosis and

potentially opening avenues for enhanced prostate cancer

management (29, 35, 36).
2.3 18F-DCFPyL

18F-DCFPyL, or 2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine3-

carbonyl)-amino]-pentyl)-ureido)-pentanedioic acid, is a specific

small molecule imaging agent developed based on the Glu-urea-Lys

structure (Figure 3). This agent demonstrates high affinity for

binding to the extracellular region of Prostate-Specific Membrane

Antigen (PSMA) (37). It is also the second FDA-approved PSMA-

targeted PET imaging drug (38).
18F-DCFPyL has been validated in multiple prospective clinical

trials such as OSPREY and CONDOR, demonstrating its effectiveness

in clinical applications, including staging, re-staging, and efficacy

evaluation in patients with prostate cancer (PCa). In the Phase III

multicenter CONDOR trial, 18F-DCFPyL-PET/CT imaging was

conducted on 208 patients with prostate adenocarcinoma who had

undergone radical prostatectomy (RP) due to biochemical recurrence

and had negative results on standard imaging. The administered dose

was 333 MBq, and it was given intravenously 1 to 2 hours before

PET/CT imaging. The results revealed that 63.9% of the patients

altered their intended treatment plan after 18F-DCFPyL-PET/CT, and
FIGURE 2

The chemical structure of 18F-PSMA-1007.
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the disease detection rate ranged from 59% to 66% (39). Hence, 18F-

DCFPyL-PET/CT proves to be an effective tool for disease imaging in

patients with recurrent prostate cancer. In the OSPREY trial, 18F-

DCFPyL-PET/CT examinations were conducted on 252 male

patients with high-risk prostate cancer after radical prostatectomy

plus pelvic lymph node dissection. The median specificity and

sensitivity were reported as 97.9% (95% CI: 94.5% to 99.4%) and

40.3% (95% CI: 28.1% to 52.5%), respectively (40), The collective

evidence supports the utility of 18F-DCFPyL-PET/CT for detecting

lesions in patients with prostate cancer (PCa) and evaluating the

staging of lymph node or distant metastasis. Zsolt Szabo was the first

to employ 18F-DCFPyL in patients with hormone-independent or

castration-resistant prostate cancer. Studies have demonstrated that
18F-DCFPyL exhibits physiological uptake in salivary glands, lacrimal

glands, kidneys, liver, spleen, and small intestine, with no uptake

observed in the brain. Simultaneously, it is excreted through urine,

showing notable accumulation in the kidneys and bladder. Dosimetry

studies revealed that the effective dose of 18F-DCFPyL was 0.0165

mSv/MBq or 6.1 mGy (0.61 rem) at an injected dose of 370 MBq.

There was significant accumulation in prostate cancer foci (SUVmax

up to 9100, tumor/blood ratio up to 950). The highest radiation doses

were observed in renal viscera (0.0945 mGy/MBq), bladder wall

(0.0864 mGy/MBq), submandibular gland (0.0387 mGy/MBq), and

liver viscera (0.0380 mGy/MBq) (41).

Despite the relatively short duration of clinical application, 18F-

DCFPyL has undergone several evaluations, all of which report high

sensitivity, specificity, and positive detection rates. In a prospective

study involving 205 patients experiencing biochemical recurrence

(BCR) after initial radical prostate cancer surgery or radiation

therapy, separate examinations were conducted using 18F-

DCFPyL PET/CT and 18F-fluoromyclocholine PET/CT. The

positive detection rate of lesions increased with the rise in PSA

value. The overall detection rate of 18F-DCFPyL PET/CT was

superior to that of 18F-fluoromethylcholine PET/CT (58% vs

40%, p < 0.0001) (42). The 18F-PSMA PET/CT pair can also be
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liver, and penis, among others (43). Simultaneously, when

compared to other traditional imaging modalities, 18F-DCFPyL

PET/MR demonstrates superiority in pre-treatment screening of

prostate cancer patients with pretreatment lesion localization. In a

study led by Adriano Basso Dias et al., 18F-DCFPyL PET/MRI was

employed to screen prostate cancer patients undergoing focal

ablation therapy (FT). mpMRI and/or PET/MRI were conducted

on 34 patients with low/medium-risk PCa. 18F-DCFPyL PET/MRI

excluded focal treatment in nearly 30% of patients with low/

medium-risk PCa and exhibited higher sensitivity (97% vs 76%,

P = 0.02) but relatively lower specificity (30% vs 85%, P < 0.001).

As a result, its elevated sensitivity effectively detects lesions without

missing detections, enhancing the diagnostic efficacy of clinically

significant (CS) prostate cancer in patients undergoing focal

ablation (FT). Nonetheless, its lower specificity may restrict the

use of PET/MRI as a screening tool (44). Therefore, in conjunction

with histological characteristics and conventional imaging

examinations, 18F-PSMA PET/CT can be more effectively applied

in patients with prostate cancer. NCT04461509 is a Phase II clinical

trial, which is utilizing 18F-PSMA PET/MRI and enhanced prostate

imaging with standard mp/MRI to evaluate the effectiveness of focal

high-intensity focused ultrasound (HIFU) therapy on prostate

cancer targets Currently. 18F-DCF PET/CT imaging facilitates

individualized management of prostate cancer by eliminating

unnecessary biopsies through disease staging and risk

stratification (39, 45).

The 18F labeled PSMA targeting compound provides a

significant improvement in image quality and noise compared to

the 68Ga-labeled PSMA-targeting compound. This improvement

allows for the detection of subtle lesions, and the longer half-life of

110 minutes facilitates delayed imaging (46).
3 Radionuclide label PSMA-ligand
used for therapy

3.1 177Lu-PSMA-617

Although many treatments have emerged for metastatic

castration-resistant prostate cancer (mCRPC) over the past

decades, recent clinical trials have shown a survival benefit of
177Lu-PSMA-617 in mCRPC following chemotherapy (47).

Currently, a relatively novel treatment method for metastatic

castration-resistant prostate cancer (mCRPC) involves targeted

radioactive oligonucleotide therapy. In this approach, radioactive

isotopes are paired with monoclonal antibodies targeting cancer-

specific antigens, such as prostate-specific membrane antigen

(PSMA). This method is not only simple but also minimizes the

impact on normal tissues.

PSMA-617, a novel DOTA-conjugated PSMA inhibitor

containing naphthalene, displays elevated uptake in both tumors

and kidneys within the LNcaP tumor model, as observed through

small animal PET imaging. It efficiently internalizes into LNcaP

cells and exhibits swift renal clearance, making it promising for

therapeutic applications. The favorable pharmacokinetics lead to
FIGURE 3

The chemical structure of 18F-DCFPyL.
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target-to-non-target ratios of 1058 (tumor-to-blood) and 529

(tumor-to-muscle) at 24 hours post-injection in animal models

(48). This ligand is amenable to labeling with 68Ga, 111In, 177Lu, and
90Y (Figure 4). Early clinical studies have showcased the high-

contrast detection capabilities of 68Ga-PSMA-617 in identifying

prostate cancer (PCa) lesions. Moreover, it has been utilized in the

treatment of metastatic PCa across various medical centers (49, 50).

There is a substantial body of randomized clinical evidence and

practical experience regarding the use of the PSMA radioligand
177Lu-PSMA-617 for therapeutic purposes. Since obtaining

regulatory approval in 2013, Germany and several other regions

in Europe have accumulated significant experience in the

application of 177Lu-PSMA-617 for prostate cancer treatment

(51–53). In a randomized, parallel-group, open-label, phase 2

non-inferiority trial, Swayamjeet Satapathy et al. prospectively

compared the efficacy and safety of 177Lu-PSMA-617 with

docetaxel in patients with metastatic castration-resistant prostate

cancer (mCRPC). A total of 40 patients underwent randomization,

and the best prostate-specific antigen response rate (PSA-RR) was

60% (9/15) in the 177Lu-PSMA-617 group and 40% (8/20) in the

docetaxel group. The difference in PSA-RR between the two groups

was 20% (95% confidence interval, CI: -12-47, P=0.25).

Furthermore, the 6-month progression-free survival rates for the
177Lu-PSMA-617 group and the docetaxel group were 30% and

20%, respectively (difference 10%, 95% CI: -18-38, P=0.50). The

study concludes that 177Lu-PSMA-617 is safe and non-inferior to

docetaxel in the treatment of mCRPC and can be considered during

early stages of the disease process (54). As of March 2022, the FDA

has granted approval for the use of the drug exclusively in the

treatment of patients diagnosed with PSMA-positive metastatic

castration-resistant prostate cancer. This approval is specifically

designated for individuals who have undergone previous

treatments, such as androgen receptor inhibition or taxane

chemotherapy (55). In a phase III trial conducted by O. Sartor

et al., 831 out of 1179 screened patients were enrolled for

randomization between June 2018 and mid-October 2019. The

findings revealed that 177Lu-PSMA-617 led to a significant

extension in progression-free survival compared to standard

therapy. Despite a higher incidence of grade 3 or higher adverse

events in patients using 177Lu-PSMA-617 compared to those who
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did not, their overall quality of life was not significantly

impacted (56).

The fundamental principle of radioactive isotope therapy involves

delivering a high dose of radiation to target tissues while minimizing

toxicity to healthy tissues. The prerequisite for treatment is the presence

of a PSMA-positive tumor phenotype detected through PET or

imaging. The 177Lu-PSMA-617 treatment appears to be a safe

approach for castration-resistant prostate cancer. The maximum

tolerated dose for a single administration may range between 7.4-

11.1 GBq, depending on whether the tumor involves the bone marrow

(57). Early inclusion of clinical patients in studies has shown that the

distribution of lesions and physiological uptake regions is similar to

what is observed in early diagnostic 68Ga-PSMA-11 PET scans. This

similarity indicates promising therapeutic potential for 177Lu-PSMA-

617 treatment in castration-resistant prostate cancer (58).
3.2 177Lu-PSMA- I&T

PSMA I&T, or DOTAGA-(I - y) fk-fk (Sub - KuE), with

DOTAGA [1,4,7,10-tetraazacyclododececane-1(-glutaric acid)-

4,7,10-triacetic acid, 1,4,7, 10-tetraazecyclodecadecane-1-(glutamic

acid)-4,7,10-triethonic acid] as a chelating agent (59, 60). This small

molecule PSMA-targeted inhibitor exhibits rapid pharmacokinetics

and high affinity for PSMA (Figure 5). PSMA I&T can be labeled

with isotopes such as 68Ga, 111In, 177Lu, and 225Ac for imaging and

therapeutic purposes (61).

Compared to 177Lu-PSMA-617, 177Lu-PSMA-I&T demonstrates

similar mean tumor dose absorption and favorable safety profiles.

Notably, 177Lu-PSMA-I&T exhibits lower uptake in salivary glands,

resulting in reduced potential damage to these glands. However, it is

important to consider that the kidney uptake rate is relatively high

with 177Lu-PSMA-I&T (54, 62, 63). 177Lu-PSMA-I&T is utilized for

targeted radionuclide therapy and has shown promising efficacy in

patients with metastatic castration-resistant prostate cancer

(mCRPC). Several clinical trials are currently underway, including

NCT05204927, NCT05867615, and NCT04647526. NCT05204927 is

a prospective, multicenter, randomized Phase 3 clinical trial involving

400 metastatic prostate cancer patients randomized to receive either
177Lu-PSMA-I&T or hormone therapy. The trial aims to assess

disease progression based on solid tumor response criteria and

record PSA levels and symptoms.In a retrospective study

conducted by Amir Karimzadeh et al., 301 mCRPC patients treated

with 177Lu-PSMA-I&T were evaluated. The standard activity of
177Lu-PSMA-I&T was 7.4 GBq, administered every 4-10 weeks

(median, 6 weeks) for a total of 1138 cycles of intravenous

injection (median, three cycles per patient). Results indicated that

34% of patients demonstrated at least a 50% PSA response, with a

median progression-free PSA survival of 16.0 weeks and an overall

survival (OS) of 13.8 months (64). Mehmet Onur Demirkol et al.

conducted 177Lu-PSMA-I&T radionuclide therapy (RLT) on 33

patients with metastatic castration-resistant prostate cancer

(mCRPC) and 5 patients with metastatic hormone-sensitive

prostate cancer (mHSPC). Among the mCRPC patients, 56%

exhibited a PSA response of ≥30%. Notably, all mHSPC patients

showed a high PSA response ranging from 93.0% to 99.9%. These
FIGURE 4

The chemical structure of PSMA-617.
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findings suggest that 177Lu-PSMA-I&T RLT demonstrates significant

antitumor activity. However, it is important to note that some

patients experienced mild renal impairment or anemia during the

course of treatment (65).

Furthermore, 68Ga-PSMA-I&T PET/CT has demonstrated

successful utility in detecting primary lesions and staging prostate

cancer patients. This approach offers advantages in the stratification

and follow-up of patients undergoing treatment with the 177Lu-

PSMA-I&T (Integrated Diagnosis and Treatment) radioligand (60,

66). 225Ac-PSMA-I&T has demonstrated enhanced anti-tumor

effects in patients with advanced metastatic castration-resistant

prostate cancer (mCRPC) (67). A Phase I/II clinical trial named

AlphaBet (NCT05383079) is underway, combining 223Ra with
177Lu-PSMA-I&T. This combination aims to improve outcomes

for patients with mCRPC and bone metastases (68).
3.3 225Ac -PSMA-617

Alpha-targeted therapy (TAT) is a therapeutic approach that

targets cancer cell vectors based on drugs labeled with radionuclides

that emit alpha particles (69). Alpha-nuclides possess distinctive

characteristics, including high linear energy transfer, a limited

range, and potent cytotoxicity. The current alpha-radionuclides

deemed suitable for targeted therapy encompass 149Tb, 212/213Bi,
212Pb (212Bi), 225Ac, and 226/227Th. These radionuclides show

promise in targeted alpha-particle therapy due to their ability to

deliver focused and intense radiation, making them valuable

candidates for precision cancer treatment (70). Due to its extended

half-life (t1/2 = 10 days), distinctive decay properties, ease of

coordination, and selective destruction of cancer cells with minimal

damage to normal tissue, 225Ac stands out as one of the most

favorable choices for Targeted Alpha Therapy (TAT). The unique

characteristics of 225Ac make it an ideal candidate for precision cancer

treatment, offering the potential to effectively combat cancer while

minimizing harm to surrounding healthy tissues (71). Research

findings indicate that 225Ac-PSMA-617 has demonstrated efficacy

in patients with metastatic castration-resistant prostate cancer

(mCRPC). In a groundbreaking study conducted by Clemens

Kratochwil et al. in 2016, they pioneered the use of an alpha

nuclide-labeled PSMA ligand for human therapy. Two patients in

the study received treatment with 225Ac-PSMA-617 Radionuclide

Therapy (RLT) at a dosage of 100 kBq/kg of body weight every 2

months. Remarkably, these patients exhibited a significant reduction
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in prostate-specific antigen (PSA) levels, suggesting the therapeutic

potential of 225Ac-PSMA-617 in managing mCRPC (72).

The evaluation of 225Ac-PSMA therapy is currently limited by

the scarcity of prospective, randomized trials, with ongoing trials

such as NCT04597411 aiming to provide more robust insights. In a

recent multi-center retrospective study, 488 patients with metastatic

castration-resistant prostate cancer (mCRPC) underwent treatment

with 225Ac-PSMA for a total of 1174 cycles (median 2 cycles,

IQR 2-4). The patients were followed for a median duration of 9

months (IQR 5-17.5). The study reported a median overall survival

of 15.5 months (95% CI 13.4 to 18.3) and a median progression-free

survival of 7.9 months (6.8 to 8.9). These findings contribute to the

evolving understanding of the efficacy and outcomes associated

with 225Ac-PSMA therapy in mCRPC patients (73). Madhav Prasad

Yadav et al. conducted a study involving 28 patients with metastatic

castration-resistant prostate cancer (mCRPC) who were treated

with 225Ac-PSMA-617. The average administered activity was

26.5 ± 12 MBq (range, 9.25-62.9 MBq), with a median of 3 cycles

(range, 1-7 cycles). Following the first cycle and at the 8th week,

PSA reduction of >50% was observed in 25% and 39% of patients,

respectively. The median progression-free survival (PFS) and

overall survival (OS) were reported as 12 months (95% CI: 9-13

months) and 17 months (95% CI: 16 months - not reaching the

upper limit), respectively. The disease control rates were 82% and

63.6%, contributing valuable insights into the clinical outcomes of
225Ac-PSMA-617 therapy in mCRPC patients (74). Therefore,
255Ac-PSMA-617 RLT not only has good anti-tumor effect, but

also has good therapeutic safety.

Moreover, the unique capability of alpha rays to eliminate cells

that typically display resistance to beta or gamma rays, as well as

chemotherapy drugs, positions 225Ac-PSMA-617 treatment as a

compelling alternative. This makes it a viable option for patients

facing tumors that have developed resistance to the conventional

treatment with 177Lu-PSMA-617. The distinctive attributes of alpha

radiation introduce a promising avenue for therapeutic

intervention, particularly in addressing cells resistant to

established treatment approaches (71). Nalan Alan-Selcuk et al.

administered 225Ac-PSMA-617 to 23 mCRPC patients who had

previously undergone unsuccessful 177Lu-PSMA-617 treatment (2-

9 cycles). The median interval between doses was 13 weeks (range,

8-28 weeks), with an average dose activity of 7.6 MBq (range, 6.2-

10.0 MBq) per cycle. Following the first treatment cycle (n=18), 50%

of patients (n=9) exhibited disease control based on prostate-

specific membrane antigen PET progression criteria. The median
FIGURE 5

The chemical structure of PSMA-I&T.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1373606
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1373606
progression-free survival was 3.1 months, and the median overall

survival was 7.7 months (75).

The most prevalent adverse effect of 225Ac-PSMA-617 was dry

mouth (72–74, 76–78), and when administered in conjunction with
177Lu-PSMA-617, it may lead to a substantial rise in salivary

toxicity. Delayed nephrotoxicity has also been documented

following 2 cycles of 225Ac-PSMA-617 RLT (79).
Frontiers in Oncology 08
4 Discussion

The article comprehensively examines the role of diverse

radiolabeled PSMAs in both diagnosing and treating prostate

cancer. It aims to consolidate the clinical evidence supporting

various PSMA ligands in the context of prostate cancer. The

degree of PSMA uptake serves as a crucial biomarker for prostate
FIGURE 6

A 77-year-old male, diagnosed with prostate acinar adenocarcinoma through a biopsy, underwent intravenous injection of 68Ga-PSMA-11. 1 hour
later, a PET/CT scan was performed, and the maximum intensity projection (MIP) image showed unevenly increased PSMA expression (A). The
tomographic images revealed non-uniform internal density, small nodular low-density shadows, and scattered calcifications with increased tracer
uptake (B, C). These findings are consistent with the presentation of prostate cancer.
FIGURE 7

A 76-year-old male, diagnosed with prostate cancer for over 4 years and untreated, underwent intravenous injection of 68Ga-PSMA-11 followed by
PET/CT tomographic imaging. The maximum intensity projection (MIP) image showed an elevated focal uptake in the nodular structure of the
prostate (A). The tomographic images revealed a nodular increased PSMA expression focus in the right portion of the prostate parenchyma, with a
slightly decreased density in the corresponding area. Nodular high-density shadows were observed within the parenchyma (B, C). These findings are
consistent with the manifestation of prostate cancer.
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cancer, with elevated PSMA levels typically signifying the presence

of prostate cancer cells in specific regions. Active cancer cells often

exhibit heightened PSMA uptake, making PSMA a valuable

indicator for prostate cancer, metastasis, or lymph node

involvement. This information plays a pivotal role in guiding

treatment decisions for prostate cancer patients. Additionally, for

individuals undergoing PSMA radionuclide therapy, alterations in

PSMA uptake levels can be utilized to assess the treatment’s

effectiveness, where a reduction in uptake may indicate a positive

treatment response on the tumor (25). Earlier investigations have

established that PSMA (Prostate-Specific Membrane Antigen) is a

membrane protein that exhibits high expression in prostate tissue.

Normally, PSMA is predominantly present on the luminal surface

of prostate epithelial cells. However, in cases of prostate cancer, the

expression of PSMA significantly elevates, resulting in cancer cells

displaying a heightened affinity for PSMA. This characteristic

allows tracers like 68Ga-PSMA to selectively accumulate in vivo

within prostate cancer cells that overexpress PSMA, as detected by

positron emission tomography (PET-CT). Importantly, there is less

accumulation of these tracers in normal tissues (23, 80).

While PSMA serves as a valuable visualization tool, it comes

with certain limitations in comparison to the widely used imaging

agent 18F-FDG. One notable limitation is the high uptake of PSMA

in the liver, kidneys, and salivary glands. This heightened uptake in
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these normal tissues may potentially impact the diagnostic efficacy

of PSMA imaging (31). The strength of PSMA lies in its

comprehensive role in both radiological diagnosis and treatment.

Building on the foundation of 68Ga-PSMA-11 imaging diagnosis,

the administration of 177Lu-PSMA-617 for treatment is a significant

advancement. Following treatment and the assessment of recurrent

lesions in the early stages, 68Ga-PSMA-11 continues to exhibit

promising effects. Leveraging the radioactivity of 177Lu, 177Lu-

PSMA-617 serves as a targeted therapeutic agent for prostate

cancer. It releases beta rays within the body, facilitating the

localized destruction of cancer cells. With its high affinity for

PSMA, it selectively targets tumor cells, demonstrating efficacy in

the local treatment of refractory prostate cancer and metastatic

disease, forming an integral part of various treatment regimens (81).

Furthermore, 225Ac-PSMA-617 holds particular significance for

patients exhibiting resistance to 177Lu-PSMA-617. The unique

properties of 225Ac nuclide, including high energy, short range,

potent cytotoxicity, and easy coordination, have elevated it to a

recent hotspot in the realm of radioligand therapy (RLT) for

patients with metastatic castration-resistant prostate cancer

(mCRPC) (82). However, a common adverse reaction post-

treatment is dry mouth. Concomitant administration with 177Lu-

PSMA-617 may result in a notable escalation in salivary toxicity.

Simultaneously, careful attention must be directed towards

nephrotoxicity that may arise subsequent to the treatment (78).
FIGURE 8

A 65-year-old man, diagnosed with prostate cancer 7 years ago
during prostatectomy, experienced biochemical recurrence. A
baseline 68Ga-PSMA-11 PET/CT imaging was conducted, and the
maximum intensity projection (MIP) image revealed systemic PSMA
metastases, particularly in bone metastatic lesions (A). Following 2
cycles of Lu-PSMA-617 treatment, a reassessment of treatment
efficacy was performed using 68Ga-PSMA-11 imaging. The MIP image
showed no tracer uptake in new lesions, and there was a significant
reduction in tracer uptake overall (B). Adapted from Ref (81).
A B C

FIGURE 9

This 63-year-old male patient was diagnosed with prostate cancer 6
years ago and underwent a 68Ga-PSMA PET/CT imaging
examination. The maximum intensity projection (MIP) image
revealed a significant increase in tracer uptake in the skeletal region
(A). The patient received 4 cycles of 225Ac-PSMA-617 therapy, and
after 2 treatment cycles, subsequent 68Ga-PSMA PET/CT imaging
still showed multiple areas of tracer uptake in the skeletal region,
despite a notable reduction in SUVmax (B). A 68Ga-PSMA PET/CT
imaging performed 16 weeks after the last treatment showed a
substantial decrease in tracer uptake in the skeletal lesions (C).
Adapted from Ref (82).
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As a diagnostic and therapeutic tool, the substantial uptake of

PSMA in the salivary glands and urinary tract necessitates

modification to enhance its diagnostic and therapeutic efficacy.

Addressing this issue is crucial in future PSMA research. Moreover,

future studies should explore additional structural variants of

PSMA to ameliorate certain challenges associated with existing

PSMA ligand structures.
5 Conclusion

The development and application of PSMA ligands in the field

of prostate cancer diagnosis and treatment have witnessed

remarkable progress in recent years. From the pioneering 68Ga-

PSMA-11 to the therapeutic breakthroughs with 177Lu-PSMA-617

and other emerging compounds, these radiolabeled PSMA-

targeting agents have significantly enhanced our ability to detect

and manage prostate cancer. The continuous evolution and

integration of these agents into clinical practice hold tremendous

potential for personalized and effective management of prostate

cancer patients in the future. (Figures 6–9).
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