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Application of nano-
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Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of
Medicine, Hangzhou, China
Radiotherapy stands as a cornerstone in the treatment of numerous malignant

tumors, including non-small cell lung cancer. However, the critical challenge of

amplifying the tumoricidal effectiveness of radiotherapy while minimizing

collateral damage to healthy tissues remains an area of significant research

interest. Radiosensitizers, by methods such as amplifying DNA damage and

fostering the creation of free radicals, play a pivotal role in enhancing the

destructive impact of radiotherapy on tumors. Over recent decades, nano-

dimensional radiosensitizers have emerged as a notable advancement. Their

mechanisms include cell cycle arrest in the G2/M phase, combating tumor

hypoxia, and others, thereby enhancing the efficacy of radiotherapy. This

review delves into the evolving landscape of nanomaterials used for

radiosensitization in non-small cell lung cancer. It provides insights into the

current research progress and critically examines the challenges and future

prospects within this burgeoning field.
KEYWORDS

radiotherapy, nanomaterials, non-small cell lung cancer, radiosensitization, chemotherapy
Abbreviations: NSCLC, non-small cell lung cancer; ROS, reactive oxygen species; GNPs, gold nanoparticles;

Glu-GNPs, thio-glucose-bound gold nanoparticles; SER, sensitization enhancement ratio; AgNP, silver

nanoparticle; AGuIX, gadolinium nanoparticle; LOX, the copper oxide-dependent enzyme; Bi2Se3, bismuth

selenide nanoparticle; MSC, mesenchymal stromal cells; SeNP, Selenium nanoparticle; PTX, paclitaxel; PEG,

polyethylene glycol; Cum, curcumin; NO, nitric oxide; SP1, specificity protein 1; QD, semiconductor

nanocrystals; Cyp, cypate; MNC, magnetic nanoparticle clusters; DOX, doxorubicin; PR, partial response;

SD, stable disease; PD, progressed disease; mPFS, median progression-free survival; mOS, median overall

survival; nab-P, albumin-paclitaxel.
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1 Introduction

Radiotherapy, a prevalent treatment for non-small cell lung

cancer (NSCLC) and various other malignant tumors, is often used

in conjunction with chemotherapy and other treatments (1–3). Its

fundamental principle involves the interaction of ionizing radiation

with tumor cell components, either directly or indirectly. Direct

interaction leads to the damage of critical biological molecules like

DNA and proteins, hindering cell division and proliferation,

ultimately causing cell death. Indirectly, radiation induces the

production of reactive oxygen species (ROS) and free radicals,

disrupting these biological molecules (4).

However, the use of radiotherapy encounters many challenges.

Factors such as tumor stem cells, tumor heterogeneity, and

angiogenesis can limit its effectiveness. Moreover, complications

may arise, making it difficult for patients to tolerate prolonged

radiotherapy (5). A strategic approach to surmount these challenges

involves the use of radiosensitizers, which are designed to enhance

radiotherapy’s efficacy while mitigating side effects on normal

tissue (6).

In recent years, nanoparticles, known for their excellent

biocompatibility, high drug loading capacity, and robust tumor

permeability and retention (7, 8), have become a focal point in the

realm of tumor radiosensitization. When delivered to tumors, these

nanoparticles not only exert their therapeutic effects but also sensitize

tumor cells to radiotherapy through various mechanisms. This review

delves into the advancements in nano-radiosensitizers, particularly

focusing on their underlying mechanisms and contributions to

enhancing radiotherapy outcomes.
2 Nano-radiosensitizer

2.1 Metal nano-radiosensitizers

2.1.1 Gold nanoparticles
Metal materials have been used in radiotherapy research for

decades. In a pioneering study by Regulla in 1998, it was observed

that mouse embryonic fibroblasts irradiated with X-rays on a gold

surface exhibited increased biological effects compared to those in a

tissue-like environment (9). Further research by Herold et al.

revealed enhanced radiation effects in cancer cells with gold

particles (10). By 2010, T. Marques et al. demonstrated that gold

nanoparticles (GNPs) in tissues could selectively increase radiation

doses to target areas, illustrating the potential of metals in refining

radiotherapy (11).

Cuihong Wang et al. were the first to use thio-glucose-bound

gold nanoparticles (Glu-GNPs) on NSCLC cells. They found that

glucose enhances the uptake of Glu-GNPs by A549 cells, leading to

their accumulation in vesicular endosomes or lysosomes. Upon X-

ray exposure, Glu-GNPs triggered cell apoptosis through the

modulation of Bcl-2 family proteins and activation of the

mitochondrial apoptotic pathway (12). Tao Li’s team also worked

with Glu-GNPs in A549 cells, achieving sensitization enhancement

ratios (SER) of 1.41 and 1.15 for 160 kV and 6 MV X-rays,
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respectively (13). Shokouhozaman’s research indicated increased

inhibitory effects of Glu-GNPs on QU-DB lung cancer cells by

64.4% and 32.4% under 100 kV and 6 MV X-rays (14). These

findings proposed that Glu-GNPs may possess superior efficacy in

combating NSCLC cells under conditions of low-energy radiation.

However, the substantiation of these claims is somewhat feeble,

primarily due to the omission of in vivo experiments by

the researchers.

Additionally, GNPs have demonstrated potential in impeding

the migratory capabilities of A549 cells post-radiation therapy,

perhaps as a result of alterations in the cytoskeleton affecting

overall cellular adhesion (15). Nevertheless, it would behoove the

research to consider testing a broader range of dosages, extending

beyond the used levels of 2Gy and 5Gy. Moreover, albumin-bound

GNPs, known for their favorable biosafety profile, exhibited

radiosensitization and anti-tumor activity both in vivo and in

vitro experiments, boasting a SER of 1.432 (16). The study could

be strengthened by incorporating more tumor models beyond A549

for validation. Zhongli Cai’s team found that the dose enhancement

ratio of GNPs was lower in 3D culture models compared to single-

monolayer (1.3 vs 1.6) (17). Sherif et al. argued that the common

algorithm for calculating the dose enhancement ratio is overly

simplistic and fails to consider specific profiles, leading to a

decrease in the dose enhancement ratio due to potential rupture

and detachment of GNPs’ surface coating (18). Therefore,

optimizing the surface coating of GNPs was crucial, although it

would certainly be better if the models were more closely aligned

with the actual lung environment.

Fatma et al. modified GNPs with Schiff bases derived from

galactose, resulting in larger particles that showed greater

radiosensitization in A549 cells compared to unmodified GNPs

(19). Arvind’s study compared 3.9 and 37.4 nm GNPs in Lewis lung

cancer cells, finding significant radiosensitizing effects post-X-ray

irradiation with both sizes, but no significant difference between

them (20). Both studies might benefit from the inclusion of animal

experiments and a broader spectrum of radiotherapy

dose configurations.

Table 1 summarizes researches on GNP combined with

radiotherapy in NSCLC. These researches are extensive,

indicating that particle size, coating, and surface modifiers

significantly influence their radiosensitizing effect. Future studies

are needed to optimize these factors for better clinical application.

2.1.1.1 Other metal nanoparticles

In the realm of NSCLC radiosensitization, silver nanoparticles

(AgNPs) and gadolinium nanoparticles (AGuIX) have also shown

promise. Gowda et al. discovered that AgNPs, when modified with

gallic acid, effectively inhibited the expression of epithelial-

mesenchymal transition markers induced by X-ray in A549 cells

like Vimentin and N-cadherin, simultaneously promoting E-

cadherin upregulation. This modification thereby reduced tumor

cell radioresistance (21). Reetta’s team, in their study of AgNPs

across multiple NSCLC cell lines, observed that these nanoparticles

led to cell cycle arrest in different phases (A549 and Calu-1 cells in

G2 phase; BEAS-2B cells in S phase) and increased ROS production
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and protein oxidation in cell mitochondria, thus elevating the cells’

sensitivity to radiotherapy. It’s noteworthy, however, that these

nanoparticles did not modify the mitochondrial redox profiles

altered by radiation therapy (22). Adding GNPs as a horizontal

comparison would be more meaningful when studying AgNPs, as

gold and silver are both precious metals.

AGuIX, a polysiloxane nanoparticle containing gadolinium ions

(Gd3+), was first applied in H1299 and A549 cell. Applied initially

to H1299 and A549 cells, Upon X-ray exposure, AGuIX produced

photoelectrons, reactive oxygen species, and free radicals, leading to

G2/M phase arrest and enhancing both radiosensitization and

apoptosis in NSCLC cells (23). Wu Liu’s team innovated further

by attaching gadolinium nanoparticles to a pH-low insertion

peptide, boosting cellular Gd uptake dramatically and prolonging

its tumor residence, significantly improving radiosensitivity in A549

cells (24). The design and validation of these two studies are fairly

comprehensive, and we anticipate more profound research in

the future.

Chaebin et al. developed gadolinium-embedded carbon dots

(Gd@C-dots) via hydrothermal reaction, which compared to

AGuIX, showed reduced toxicity due to lower Gd leakage in vivo

and enhanced radiosensitivity in H1299 cells due to the catalytic

properties of carbon (25). Another research compared CA or amino

(pPD)-modified Gd@C-dots, with the pPD-modified Gd@C-dots

demonstrating better uptake and retention in H1299 cells,

indicating a higher potential for clinical application (26). Both

studies are considerably thorough, however, there is room for

further refinement particularly in the realms of in-situ tumor

models or dose escalation studies.

CuPRiX, created by partially dehydrogenating Gd from

DOTAGA(Gd) within AGuIX in an acidic environment, resulted

in the unchelated Gd chelating free Cu in A549 cells. This led to the

inhibition of the copper oxide-dependent enzyme (LOX) and reduced

cell migration, thereby improving tumor radiosensitization over

AGuIX (27). Research on copper nanoparticles is sparse, marking a

novel aspect of this study. However, it is apparent that this research

could benefit from a deeper exploration of the underlying

mechanisms. Currently, AGuIX is undergoing phase I clinical trials
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for brain metastases and gliomas (28, 29), with research on its

application in NSCLC still in the early stages. Below is Table 2

concluding metal nanoparticles above.
2.2 Semiconductor nano-radiosensitizer

In the field of NSCLC radiosensitization, semiconductor

nanoparticles have gained prominence. TiO2 nanoparticles, when

excited by high Cerenkov radiation from X-rays, form electron-hole

pairs that trigger the production of ROS, leading to DNA damage.

Utilizing this principle, Zi Ouyang’s team designed TiO2

nanoparticles that significantly heightened the radiosensitivity of

A549 cells (30). However, the lack of in vivo experiments was a

shortcoming of this study.

Similarly, semiconductor zinc oxide (ZnO) exhibits comparable

properties. Masoumeh wt al. developed ZnO nanoparticles, doping

them with gadolinium to create Gd-ZnO-NPs. At concentrations of

10 and 20 mg/mL in SKLC-6 cells, these nanoparticles showed SER

of 1.47 and 1.61, respectively, demonstrating a concentration-

dependent increase in radiosensitivity. Flow cytometry analysis

revealed that Gd-ZnO-NPs elevated apoptosis in NSCLC cells and

caused more cells to arrest in G1 phase. Combined with X-rays,

these nanoparticles downregulated the mRNA levels of DNA

damage repair genes such as XRCC2 and XRCC4, hindering

DNA repair and leading to increased cell death (31). Additionally,

Gd-ZnO NP enhanced the contrast of cancer cell CT and MR

images, further increasing its potential for clinical translation.

Jingfang Xiao et al. experimented with bismuth selenide

nanoparticles (Bi2Se3s), combining them with adipose-derived

mesenchymal stromal cells (adipose-derived MSCs) to create

adipose-derived MSCs/Bi2Se3s. These nanoparticles were found to

be more effectively enriched in lung tumors in tumor-bearing mice

compared to bare Bi2Se3s, thereby amplifying the radiosensitivity of

A549 cells and extending the survival time of mice (32). This study

used an in-situ tumor model, with rigorous design and thorough

verification, making it persuasive. Table 3 describes semiconductor

nanoparticles in the previous section.
TABLE 1 Types of GNPs used in combination with IR in NSCLC.

Nanoparticles Cells Mechanism Outcome Reference

Glu-GNPs A549 Promotes apoptosis via Bcl-2 family
proteins and mitochondrial pathway

Increased apoptosis under X-ray irradiation (12)

Glu-GNPs A549 Increased DNA double-strand breaks SER of 1.41 and 1.15 for 160 kV and 6 MV X-rays (13)

Glu-GNPs QU-
DB

Enhanced sensitivity to low-energy X-rays
in NSCLC cells

Inhibitory effects increased by 64.4% (100 kV) and 32.4% (6 MV) (14)

GNPs A549 Affects cytoskeleton, alters cell adhesion,
inhibits cell migration

Reduced migration ability post-radiotherapy (15)

Albumin-
bound GNPs

A549 Favorable biosafety profile,
enhance radiotherapy

SER of 1.432 in A549 cells, exhibited radiosensitization and anti-
tumor activity both in vivo and in vitro experiments

(16)

Schiff bases
-modified GNPs

A549 Larger particle size,
significant radiosensitization

More significant effect than unmodified GNPs (19)

GNPs Lewis Increased DNA damage significant radiosensitizing effects with both 3.9 and 37.4 nm GNPs (20)
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2.3 Other types of nano-radiosensitizers

Beyond metal and semiconductor nano-radiosensitizers, alloys,

oxides, and various other nano-radiosensitizing agents have been

explored. Yingming Sun et al. enhanced the solubility and stability

of platinum-iron alloy nanoparticles by integrating cysteine to form

FePt-Cys NPs. These nanoparticles, when combined with

radiotherapy in A549 and H1975 cells, notably reduced VEGF

and MMP2 expression, potentially contributing to their

radiosensitizing effects (33). Similarly, Shijing Ma’s team utilized

FePt NPs anchored on graphene oxide, successfully inhibiting the

proliferation of A549, H460, and H1975 cells. This approach

prompted autophagy, escalated ROS generation, and consequently

increased NSCLC cell radiosensitivity (34). Both researches were

well-conducted, but the former lacked a systemic toxicity

examination while the latter lacked a dose escalation study.

MnO2, a widely used oxidant, demonstrated the capability to

diminish reduced glutathione levels in both PC9 and TKI-resistant

PC9GR cells. This activity ameliorated the tumor hypoxic

environment and augmented radiotherapy effectiveness (35). The

absence of animal experimentation was a flaw in it. In another

study, MnO2 NPs, in combination with radiotherapy, enhanced

ROS synthesis and activated the cGAS/STING pathway in A549

and H520 cells, triggering anti-tumor immune responses in mice

(36). Feifei Li’s team synthesized gadolinium oxide nanoparticles

that, post X-ray irradiation, spurred hydroxyl radical and ROS

production in various cell lines, fostering cellular oxidative stress,
Frontiers in Oncology 04
autophagy, and enhancing radiotherapy efficacy (37). These two

studies have explored the fields of anti-tumor immunity and

autophagy respectively, which standed out as their highlights.

Yingbo Li et al. developed pH-sensitive superparamagnetic iron

oxide nanoclusters, which disintegrated in the tumor’s acidic milieu

and, under X-ray exposure, intensified ROS production, lipid

peroxidation, DNA damage, apoptosis, and iron death response,

thereby improving H460 cell radiosensitivity (38). This research

was also very solid, and it would be better if the long-term toxicity of

the drug could be detected.

Selenium nanoparticles (SeNPs), a well-known inorganic

nanomaterial, effectively augmented caspase-3 expression in A549

cells when used with radiotherapy, initiating apoptotic pathways

leading to cell death (39, 40). Jingxia Tian and his colleagues

discovered that SeNPs, in synergy with radiotherapy, significantly

inhibited proliferation-associated proteins (CCND1, c-Myc) and

invasion-related proteins (MMP2, MMP9) in A549 and H23 cells.

This synergy also promoted apoptosis-related proteins, thereby

curbing NSCLC cell migration and invasion and inducing

apoptosis (41). Shiqing Nie’s team evaluated the effects of various

selenium compounds in SPC-A1 cells, concluding that

selenadiazole SeD exhibited the most pronounced radiosensitizing

impact in vitro (42). All of these studies have investigated the

mechanisms involved, but they lacked in vivo experiments that

could be improved.

Thangirala et al. synthesized nano-diaminotetraacetic acid from

tetraiodothyroacetic acid, a ligand of thyroid integrin avb3. Applied
TABLE 3 Types of semiconductor nanoparticles used in combination with IR in NSCLC.

Nanoparticles Cells Mechanism Outcomes Refenrence

TiO2 A549 Production of ROS through electron-hole pairs
triggered by high Cerenkov radiation from X-rays.

Heightened radiosensitivity of A549 cells. (30)

Gd-ZnO-NPs SKLC-
6

Inducing apoptosis and cell cycle arrest in G1 phase,
downregulating DNA damage repair genes.

SER of 1.47 and 1.61 at concentrations of 10 and 20 mg/
mL, respectively; increased radiosensitivity.

(31)

Bi2Se3s A549 Enrichment in lung tumors when combined with
adipose-derived MSCs.

Amplified radiosensitivity; extended survival time in
tumor-bearing mice.

(32)
TABLE 2 Types of other metal nanoparticles used in combination with IR in NSCLC.

Nanoparticles Cells Mechanism Treatment Outcome Reference

GA-modified AgNPs A549 Inhibits epithelial-mesenchymal transition markers, promotes
E-cadherin upregulation

Reduces tumor cell radioresistance (21)

AgNPs A549, Calu-1,
BEAS-2B

Induces cell cycle arrest, increases ROS production and
protein oxidation

Elevates sensitivity to radiotherapy (22)

AGuIX H1299, A549 Generates photoelectrons, ROS, and free radicals; triggers G2/
M phase arrest

Enhances radiosensitization
and apoptosis

(23)

pH-low peptide inserted
Gd NPs

A549 Boosts cellular Gd uptake, prolongs tumor residence Significantly
enhances radiosensitivity

(24)

Gd@C-dots H1299 Reduces toxicity, catalytic properties of carbon
enhance radiosensitivity

Enhanced radiosensitivity, reduced
Gd leakage

(25)

Gd@C-dots
(pPD-modified)

H1299 Better uptake and retention Indicates higher potential for
clinical applications

(26)

CuPRiX A549 Inhibits LOX enzyme, reduces cell migration Improves tumor radiosensitization
over AGuIX

(27)
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to a thymus-less H1299 xenograft tumor model in mice, this

compound, upon external irradiation, achieved more significant

tumor regression than radiotherapy alone (43). Min Hua Chen’s

team designed hafnium-doped hydroxyapatite (Hf: HAp)

nanoparticles that, in conjunction with radiotherapy, led to a

substantial ROS accumulation in A549 cells, enhancing cellular

damage (44). Matthias and colleagues developed lutetium

phosphate nanoparticles doped with praseodymium cations,

which emitted photons upon X-ray irradiation, causing DNA

damage , c e l l c y c l e b l o ckage , and thus amp l i f y ing

radiosensitization in hypoxic A549 cells (45). Thao et al.’s design

of lutetium phosphate nanoparticles doped with praseodymium

and neodymium cations showed similar outcomes (46). The first

two studies were relatively comprehensive, and further exploration

in situ tumor irradiation and dose escalation was the direction for

follow-up expansion. The last two studies attempted to simulate the

in vivo tumor environment in vitro. However, if in vivo modeling

could be conducted, it would be more convincing.

Table 4 is a summary of the nanoparticles mentioned above.
2.4 Nano-radiosensitizers loaded
with drugs

2.4.1 Loading FDA approved NSCLC
chemotherapy drugs

Chemotherapy remains a cornerstone in the treatment of

NSCLC and various other cancers. Agents such as platinum,

paclitaxel, and pemetrexed have shown to augment radiotherapy’s

effectiveness through diverse mechanisms. For instance, cisplatin

disrupts the ATM pathway crucial for repairing cellular damage

caused by irradiation (47). Paclitaxel (PTX) orchestrates NSCLC

cells to pause at the radiosensitive G2/M phase (48), while

pemetrexed impedes nucleotide precursor synthesis, impacting

DNA repair (49). Nanotechnology’s advent has pioneered the

encapsulat ion and del ivery of these radiosensi t iz ing

chemotherapeutics directly into lung tumors, forging a novel and

synergistic approach in chemotherapy-radiotherapy treatments.

PTX, known for its poor water solubility, is traditionally

dissolved in polyoxyethylated castor oil, a substance linked to

allergic reactions and neurotoxicity (50). In 2006, T Negishi and

team leveraged NK105, a micellar nanoparticle formulation of PTX,

in mice inoculated with Lewis cells. Administering this formulation

followed by X-ray irradiation led to enhanced efficacy compared to

conventional PTX, notably inducing a higher rate of tumor cell

arrest in the G2/M phase (51). The experimental group setup in this

study was quite reasonable. However, in the absence of in-vitro

experiments to determine the IC50 of NK105, directly using a dose

of 45 mg kg−1 in vivo might not be quite suitable. Genexol-PM,

another micel lar formulation of pacl i taxel free from

polyoxyethylated castor oil, mirrored NK105’s antitumor effects

and radiosensitization properties (52). The study would be

improved by incorporating a group that was solely treated with

the drugs. Exploring further, Wheemoon et al. developed LOXab

NPs by fusing LOX antibodies with PTX, yielding a highly targeted

approach against A549 cells, resulting in increased apoptosis and
Frontiers in Oncology 05
radiosensitization (53). Despite the unirradiated tumor sites not

presenting a remarkable abscopal effect, the study which utilized a

model of tumors implanted on both sides of mice was well-

designed. Additionally, the FDA has approved an albumin-bound

form of paclitaxel for NSCLC’s frontline treatment, which will be

described in detail in later sections.

In the realm of platinum-based treatments, platinum

nanoparticles, particularly those of cisplatin-NPs and carboplatin-

NPs, are garnering significant attention. Y Hao and his colleagues

observed that cisplatin-NPs and carboplatin-NPs, when

administered via inhalation, concentrate more effectively in lung

tumors, enhancing radiotherapy’s synergistic effects while

minimizing normal tissue toxicity (54). Utilizing liposomes,

nanoscale drug carriers, coupled with EGFR antibodies and

cisplatin, showed promising results in targeting mouse A549

xenograft tumors and boosting radiosensitivity (55). Joseph et al.

crafted cisplatin precursor nanoparticles through alkali-catalyzed

sol-gel polymerization and modified them with polyethylene glycol

(PEG) to evade mononuclear phagocytic system uptake, resulting in

superior performance in vivo and in vitro (56). Maofan Zhang et al.

synthesized PEG-PLGA NPs encapsulating etoposide and cisplatin,

achieving significant SERs (1.6 and 1.65) in 344SQ and H460 cells

without added toxicity (57). Ling-Yu Chen and his team developed

albumin-based cisplatin-gold nanoparticles (Au-cisplatin NPs),

demonstrating remarkable superiority in tumor control and anti-

tumor immunity when combined with radiotherapy (58). The

aforementioned five studies each possessed their unique

attributes, including features such as inhalation drug delivery and

liposome encapsulation. Apart from the first study which did not

undertake a safety evaluation, the remaining investigations

enhanced efficacy without amplifying toxicity, representing

particular value in terms of clinical application utility.

Gemcitabine, a first-line therapy for advanced NSCLC, saw

innovation through Ji Liu et al.’s work, who attached RGDc peptides

to lipid GNPs loaded with gemcitabine. Activated by near-infrared

light, this combination hindered tumor growth and bolstered

radiosensitivity by facilitating ROS production in NSCLC cells (59).

For advanced NSCLC, doxorubicin (DOX) serves as a second-line

treatment. JingWang et al. prepared epidermal growth factor-modified

adriamycin nanoparticles (EGF@DOX-NPs), targeting cells

overexpressing EGFR, significantly heightening A549 cells’

radiosensitivity both in vitro and in vivo (60). Recognizing the high

expression of Glucose-regulated protein 78 on NSCLC surfaces, Abhay

et al. employed Glucose-regulated protein 78 targeting peptides with

DOX liposomes, enhancing drug delivery efficiency and markedly

improving radiotherapy efficacy in both A549 and H460 cells (61).

These three studies also boasted robust designs. Their future

exploration lies in the field of in-situ tumor studies.

There is Table 5 summarizing nano-radiosensitizers loaded

with FDA approved chemotherapy drugs in NSCLC.

2.4.2 Loading FDA approved chemotherapy drugs
for other tumors

Olaparib, an FDA-approved poly (ADP-ribose) polymerase

inhibitor, plays a pivotal role in inhibiting poly (ADP-ribose)

polymerase, essential for repairing radiation-induced DNA
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damage. It’s widely recognized for its efficacy in treating ovarian,

breast, pancreatic cancer and various other cancers (62–64). Min

Wu and colleagues innovatively synthesized Olaparib-NPs, which

demonstrated a significantly higher SER of 3.81 in A549 cells

compared to free Ola’s 1.66, without introducing additional

toxicity (65). Similarily, if in-situ tumor research was conducted,

it could make their studies more intriguing.

2.4.3 Loading natural anti-tumor compounds
Curcumin (Cum), known for its antitumor properties in lung

cancer, faces challenges in clinical use due to low solubility and

bioavailability. Overcoming this, Cum-NPs, made by encapsulating

Cum with polyvinylpyrrolidone-polycaprolactone, significantly

enhanced apoptosis in A549 cells compared to free Cum, thereby

enhancing the efficacy of radiotherapy (with a SER at 10% cell

survival of 1.55 versus 1.13) (66).

Cannabinoids, active compounds in cannabis, are able to inhibit

tumor growth. Wilfred and his team attached cannabinoids to

‘nanoparticle drones’ using gold nanoparticles, targeting lung tumors

in a transgenic mouse NSCLCmodel. Administered by inhalation, these

drones improved radiosensitivity while minimizing side effects (67).
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Maytansinoid DM1, an alkaloid with cancer-fighting properties

linked to maytansine, has been further optimized by Shi Gao’s

group. They nitrosylated DM1 to produce DM1-NO and then

loaded it onto PLGA-bPEG nanoparticles, creating DM1-NO

PLGA-NPs that targeted NSCLC effectively. X-ray irradiation

breaks the drug’s S-N bond, releasing DM1 and nitric oxide

(NO), which interacts with ROS to form free radicals and block

cells in the G2/M phase, enhancing radiosensitizing effect on H1299

cells (68).

Baicalein, an active anticancer agent derived from Scutellaria

baicalensis, suffers from low bioavailability. This challenge was

addressed by formulating it into solid lipid NPs. Applied to A549

cells, solid lipid NPs increased ROS and apoptosis, sensitizing them

to radiotherapy, while also providing radioprotection in normal

cells (69).

Absolutely, natural anti-tumor substances extracted from plants

in nature have advantages such as being inexpensive and readily

available. Figuring out how to better deliver them to tumors,

enhance anti-tumor effects, and reduce toxic side effects presents

a significant area of research. The studies above have provided

good examples.
TABLE 4 Types of other types of nano-radiosensitizers combined with IR in NSCLC.

Nanoparticles Cells Mechanism Outcomes Reference

FePt-Cys NPs A549,
H1975

Increased solubility and stability; reduction in VEGF
and MMP2 expression.

Significant radiosensitization effect. (33)

FePt NPs on Graphene Oxide A549,
H460,
H1975

Inhibition of cell proliferation; induction of
autophagy and increased ROS production.

Enhanced NSCLC cell radiosensitivity. (34)

MnO2 NPs PC9,
PC9GR

Reduction in glutathione levels; improvement in
tumor hypoxic environment.

Improved efficacy of radiotherapy. (35)

MnO2 NPs A549,
H520

Increased ROS synthesis; activation of cGAS/
STING pathway.

Triggered anti-tumor immune responses
in mice.

(36)

Gadolinium Oxide NPs A549,
H1299,
H1650

Induction of hydroxyl radical and ROS production;
cellular oxidative stress and autophagy.

Enhanced radiotherapy efficacy. (37)

pH-sensitive
superparamagnetic iron
oxide nanocluster

H460 pH-sensitive; promotes ROS production and
lipid peroxidation.

Increased DNA damage, apoptosis, and iron
death response; improved radiosensitivity.

(38)

SeNPs A549 Increase in caspase-3 expression; activation of
apoptotic pathways.

Induced cell death. (39, 40)

SeNPs A549, H23 Inhibition of proliferation and invasion-related
proteins; promotion of apoptosis-related proteins.

Inhibited cell migration and invasion;
induced apoptosis.

(41)

SeNPs SPC-A1 Radiosensitizing impact. Most significant radiosensitization effect
in vitro.

(42)

Nano-
diaminotetraacetic Acid

H1299 Significant tumor regression upon
external irradiation.

More effective than radiotherapy alone. (43)

Hafnium-doped
Hydroxyapatite NPs

A549 Large accumulation of ROS. Contributed to cellular damage. (44)

LuPO4:Pr3+ NPs A549 Emission of photons upon X-ray irradiation; DNA
damage and cell cycle blockage.

Enhanced radiosensitization. (45)

LuPO4: Pr3+, Nd 3+ A549 Similar to LuPO4:Pr3+ NPs. Similar outcomes as LuPO4:Pr3+ NPs. (46)
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Presented below is Table 6, summarizing nano-radiosensitizers

that encapsulate FDA-approved chemotherapy drugs for various

tumor treatments and natural anti-tumor compounds.

2.4.4 Loading drugs targeting high expression
biomarkers in NSCLC

Jinghui Zhang’s team discovered that H1299 cells, which

survived repeated X-ray irradiation, exhibit high expression of

ALDH1 and CD133 proteins. Notably, in the ALDH1+ CD133+

NSCLC cell subset, miR-21 and miR-95 levels were significantly

elevated compared to the ALDH1- CD133- group. Addressing this,

the researchers used calcium carbonate nanoparticles to deliver

anti-miR21 and anti-miR95 to NSCLC cells. This approach

markedly inhibited tumor growth and enhanced radiosensitivity
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in H1299 cells, potentially by upregulating PTEN, SNX1, and

SGPP1, while concurrently suppressing the PI3K-Akt pathway (70).

The overexpression of the MUC1-C subunit, commonly found

in NSCLC tumors, led Alexandre et al. to develop MUC1-C

antibody-conjugated Gd-based nanoparticles. These nanoparticles

achieved a SER of 1.86 in H460 cells and showed prolonged

retention in tumor models, boosting the effectiveness of

fractionated radiotherapy (71).

Specificity protein 1 (SP1), often overexpressed in NSCLC, was

targeted by GNPs-siSP1, comprising siSP1 and gold nanoparticles.

GNPs-siSP1, easily internalized by A549 cells, reduced SP1

expression, upregulated granzyme B, and arrested cells in the G2/

M phase, thereby enhancing radiosensitivity with SERs of 2.09 and

2.13 at 10 nM and 20 nM concentrations, respectively (72).
TABLE 6 Types of nano-radiosensitizers loading FDA approved chemotherapy drugs for other tumors or natural anti-tumor compounds in
combination with IR in NSCLC.

Nanoparticles Cells Mechanism Outcomes Reference

Olaparib-NPs A549 Inhibition of DSB repair and the
promotion of cell apoptosis.

SER of 3.81, without additional toxicity. (65)

Cum-NPs A549 Increased apoptosis. SER10 of 1.55. (66)

Nanoparticle
Drones

Transgenic mouse
NSCLC model

Attached to GNPs, targeting lung tumors;
administered by inhalation.

Improved radiosensitivity, minimized
side effects.

(67)

DM1-NO
PLGA-NPs

H1299 Released DM1 and NO upon X-ray irradiation,
blocking cells in G2/M phase.

Enhanced radiosensitivity. (68)

solid lipid NPs A549 Increased ROS and apoptosis. Sensitized cells to radiotherapy, provided
radioprotection in normal cells.

(69)
TABLE 5 Types of nano-radiosensitizers loading FDA approved NSCLC chemotherapy drugs combined with IR in NSCLC.

Nanoparticle Cells Mechanism Outcomes Reference

NK105 Lewis Tumor cell arrest in the G2/M phase. More effective than conventional PTX (51)

Genexol-PM A549,
H460

controlled drug release. Antitumor effect and radiosensitization (52)

LOXab NPs A549 High targeting; increased cell apoptosis. Radiosensitization. (53)

Cisplatin-NPs and
carboplatin-NPs

LLC Administered via inhalation or intravenous Higher concentration in lung tumors by
inhalation; better synergistic effect
with radiotherapy.

(54)

Cisplatin-incorporated liposomes A549 Highly targeting tumors Improved radiosensitivity. (55)

Cisplatin precursor NPs A549,
H460

Reduced mononuclear phagocytosis
system uptake.

Outperformed other treatment groups. (56)

PEG-PLGA NPs (Etoposide
& Cisplatin)

344SQ,
H460

Increases in
the intensity of the apoptosis marker cleaved
caspase 3.

SERs of 1.6 and 1.65 respectively; no
additional toxicity.

(57)

Au-cisplatin NPs A549,
H520,
Lewis

enhanced recruitment of effector tumor-
infiltrating immune cells

Superior tumor control and anti-tumor immunity
compared to radiotherapy alone.

(58)

Lipid GNPs (Gemcitabine) NSCLC
cells

RGDc peptide on lipid GNPs loaded with
gemcitabine; activated by near-infrared light.

Inhibited tumor proliferation;
enhanced radiosensitivity.

(59)

EGF@DOX-NPs A549 Highly targeting tumors Improved radiosensitivity in vitro and in vivo. (60)

Glucose-regulated protein 78
targeting peptide-Dox liposomes

A549,
H460

Efficient drug delivery; Enhanced radiotherapy efficacy. (61)
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KRAS is a member of the human Ras gene family, with KRAS

mutations present in 20% -25% of NSCLCs. Linlin Yang et al.

engineered EGFRapt-3WJ-siKRASG12C nanoparticles targeting

KRAS mutations, effectively reducing KRASG12C expression in

H2122, H2030, and H1299 cells. This innovation inhibited the

downstream MAPK pathway and amplified the tumor-suppressive

impact of radiotherapy (73).

2.4.5 Loading drugs targeting genes
HPNAS-4 has been recognized as a pro-apoptotic gene. When

plasmids carrying the HPNAS-4 gene were delivered to NSCLC

cells using liposomes, there was a notable overexpression of the

hPNAS-4 protein. This led to increased apoptosis in A549 and

Lewis cells, significantly enhancing the efficacy of radiotherapy (74).

In another study, Chang’s team developed plasmids that

combined radiation-responsive Egr1 promoters with hypoxia-

responsive enhancers. These plasmids, when introduced into

A549 cells via liposomes, triggered the overexpression of the pro-

apoptotic protein Smac. This intervention promoted apoptosis and

caused G2/M phase arrest in the cells, ultimately improving the

radiosensitivity of A549 cells under hypoxic conditions (75).

Nowadays, people can initially select the research targets by

screening the genes that are differentially expressed in normal

tissues and tumor tissues from the public database. How to

further screen the preliminary data to pinpoint the specific

molecules and design rigorous experiments around them is a

topic worthy of deep investigation.

Table 7 presents an overview of nano-radiosensitizers

encapsulating drugs specifically aimed at targeting highly

expressed biomarkers or genes in NSCLC.

2.4.6 Loading multiple drugs
The exceptional targeting and loading capacity of nanoparticles

allow for the efficient delivery of increased drug quantities to

tumors. Jyothi et al. developed multifunctional dual drug loaded

nanoparticles, encapsulating the DNA-PK inhibitor NU7441 and

gemcitabine in superparamagnetic iron oxide nanoparticles, and

augmented them with folate for targeting folate receptors, which are
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overexpressed in various cancers, including NSCLC. These folate-

coupled MDNPs demonstrated prolonged retention in NSCLC

compared to their uncoupled counterparts. Upon reaching

tumors, multifunctional dual drug loaded nanoparticles

underwent vesicle-mediated endocytosis, releasing their contents

in the acidic environment of endosomes or lysosomes, thereby

exerting cytotoxic effects and enhancing the radiosensitivity of A549

and H460 cells (76). Roshni and his colleagues co-loaded NU7441

and cisplatin into nanoparticles, attaching them to antibodies

targeting the Ephrin receptor A2, prevalent in NSCLC. These

Ephrin-coupled NPs significantly increased A549 cells ’

radiosensitivity (77). Kin et al. crafted diblock copolymer

nanoparticles for the sequential release of warfarin and docetaxel

into H460 cells, which, when combined with radiotherapy,

outperformed other treatment modalities (78).

Moataz’s team developed C-siPLK1-NPs carrying cetuximab,

an EGFR-targeting monoclonal antibody, and siPLK1, an siRNA

targeting the mitotic regulator PLK1. These nanoparticles effectively

targeted A549 and H460 cells, reduced PLK1 expression, induced

G2/M blockade, and acted as radiosensitizers (79). Shuzhen Chen

et al. utilized Fe3O4 magnetic NPs to carry SiBIRC5 and BIRC5

antisense oligodeoxynucleotides, addressing the upregulated anti-

apoptotic protein BIRC5 in NSCLC. These magnetic NPs enhanced

drug uptake in A549 and H460 cells, diminished BIRC5 expression,

and increased death receptor 5 expression, thereby improving

radiotherapy’s therapeutic effect. Moreover, Magnetic field

guidance further amplified drug enrichment in tumors (80).

Jinghua Han’s team engineered nanoparticles loaded with DOX

and 5-aminolevulinic acid, a radiosensitizer, coupled with a

neurotensin receptor 1 ligand to target neurotensin receptor 1-

high-expressing H1299 cells. The acidic tumor environment

triggered DOX release for cytotoxic impact, while 5-

aminolevulinic acid targeted mitochondria, enhancing radiation-

induced oxidative stress and the overall efficacy of radiation therapy

in treating H1299 cells (81).

Packaging two types of drugs into nanoparticles, one being an

FDA-approved chemotherapy drug and the other a radiosensitizer,

has become the choice of many researchers. On the basis of
TABLE 7 Types of nano-radiosensitizers loading drugs targeting high expression biomarkers or genes in NSCLC in combination with IR.

Nanoparticles Cells Mechanism Outcomes Reference

Calcium Carbonate Nanoparticles H1299 Delivery of anti-miR21 and anti-miR95;
upregulation of PTEN, SNX1, SGPP1.

Inhibited tumor growth;
enhanced radiosensitivity.

(70)

MUC1-C Antibody-Conjugated
Gd-based NPs

H460 Prolonged retention in tumors. SER of 1.86. (71)

GNPs-siSP1 A549 Reduced SP1 expression; upregulated
granzyme B; G2/M phase arrest.

SERs of 2.09 and 2.13. (72)

EGFRapt-3WJ-siKRASG12C NPs H2122,
H2030,
H1299

Targeting KRAS mutations; inhibition of
MAPK pathway.

Reduced KRASG12C expression; amplified
radiotherapy impact.

(73)

HPNAS-4 Gene Plasmids
in Liposomes

A549, Lewis Overexpression of hPNAS-4 protein;
induced apoptosis.

Increased apoptosis; enhanced
radiotherapy efficacy.

(74)

Egr1- hypoxia-responsive
enhancers Plasmids in Liposomes

A549 Overexpression of pro-apoptotic protein Smac;
G2/M phase arrest.

Promoted apoptosis; improved
radiosensitivity under hypoxic conditions.

(75)
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guaranteeing precision in tumor targeting and releasing medications

in the optimal order, this approach is capable of amalgamating

traditional drugs, consequently contributing to a more efficacious

anti-cancer impact.

2.4.7 Loading other types of drugs
XIAP, an inhibitor of apoptotic protease-3, plays a crucial role

in cellular apoptosis. By using liposomes to transport siXIAP into

both p53 wild-type and mutant H1299 cells, researchers

significantly enhanced radiosensitivity, particularly in p53-mutant

cells (82). This study also lacked in vivo experiments.

Survivin, known as a radioresistance factor, can be counteracted

by mS-T34A, a plasmid that prevents survivin from binding to

activated caspase-9. Qing-Zhong’s team used liposomes to create

Lip-mS, effectively increasing cell apoptosis, inhibiting tumor

angiogenesis, and enhancing radiosensitivity in Lewis cells (83).

The DNA double-strand repair inhibitor KU55933, known for

inhibiting DNA double-strand break repair in H460 cells, saw

improved radiosensitizing effects when loaded onto nano-lipid

polymers by Xi Tian and his colleagues (84).

Radiotherapy of primary tumors in concert with

immunoadjuvants can lead to regression of tumors out of the

radiation field, which is called as abscopal effect (85). Yao Hao

et al. used biodegradable nanopolymers encapsulated with anti-

CD40 antibody to significantly enhance radiotherapy’s effect in

Lewis cells, slowing tumor growth both within and outside

irradiated fields and improving mice survival (86).

All three studies mentioned above were deficient in drug safety

evaluations. There was room for enhancement in this area.
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Lonidamine, an oxidative phosphorylation inhibitor, was

innova t i ve l y combined wi th mi tochondr i a - t a rge t ed

triphenylphosphine cation and encapsulated in liposomes by

Saijun Wang’s team to form TPP- Lonidamine@Lip, which

activated AMP-dependent protein kinase through oxidative

phosphorylation inhibition, reduced PD-L1 expression, and

bolstered anti-tumor immunity. Additionally, it reversed tumor

hypoxia, making A549 cells more radiosensitive (87). While this

research was quite comprehensive, it would be more beneficial if an

in-situ tumor model was utilized.

Presented below, Table 8 enumerates various nano-

radiosensitizers designed to carry other types of drugs or

multiple drugs.
2.5 Combination of nano-radiosensitizers
with radiotherapy plus phototherapy,
thermotherapy, or immunotherapy

2.5.1 Nano-radiosensitizers+ Radiotherapy
+ Phototherapy

Wensha Yang and his colleagues utilized polyethylene glycol-

coated, amine-functionalized semiconductor nanocrystals (QDs),

which, under X-ray irradiation, excited photons to activate

photosensitizers. Applied to H460 cells, these QD-photosensitizer

conjugates, in conjunction with radiotherapy, were more effective in

cell destruction compared to other treatments (88).

Jun Ma’s team developed Ce6/PTX 2-NP/G@NHs, polymer

nanoparticles composed of the paclitaxel prodrug and
TABLE 8 Types of nano-radiosensitizers mutiple drugs in combination with IR in NSCLC.

Nanoparticles Cells Mechanism Outcomes Reference

Folate-coupled multifunctional dual drug loaded
NPs encapsulating NU7441 and gemcitabine

A549,
H460

Endocytosis and release in
acidic environment.

Increased apoptosis;
enhanced radiosensitivity.

(76)

Ephrin-coupled NPs A549 Co-loaded with NU7441 and
cisplatin; targeting NSCLC.

Significantly increased radiosensitivity. (77)

Diblock Copolymer NPs H460 Sequential release of warfarin
and docetaxel.

Superior therapeutic effect compared to
other treatments.

(78)

C-siPLK1-NPs carrying Cetuximab and siPLK1 A549,
H460

Reduced PLK1 expression; induced
G2/M blockade.

Acted as radiosensitizer. (79)

Fe3O4 magnetic nanoparticles loaded with SiBIRC5
and BIRC5 antisense sequence

A549,
H460

Reduced BIRC5 expression; increased
death receptor 5 expression.

Improved radiotherapy efficacy. (80)

NTSR1 ligand-coupled NPs loading DOX & 5-
aminolevulinic acid

H1299 Targeted cytotoxic effects; amplified
radiation-induced stress.

Enhanced killing effect of radiation. (81)

siXIAP Liposomes H1299 Transporting siXIAP into p53 wild-
type/mutant cells.

Significantly enhanced radiosensitivity,
especially in p53-mutant cells.

(82)

Lip-mS combining mS-T34A plasmid
with liposomes

Lewis Inhibit survivin. Increased apoptosis, inhibited tumor
angiogenesis, enhanced radiosensitivity.

(83)

Nano-lipid Polymers with KU55933 H460 Inhibit DNA repair. Improved radiosensitizing effect. (84)

Anti-CD40 Nanopolymers Lewis Encapsulated with anti-CD40
antibody for radio-immunotherapy.

Slowed tumor growth in and out of
irradiated fields, improved survival.

(86)

TPP- Lonidamine@Lip A549 Activated AMPK, reduced PD-L1. Enhanced anti-tumor immunity,
increased radiosensitivity.

(87)
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photosensitizer Ce6. These nanoparticles were readily uptaken by

NSCLC cells, with Ce6 promoting ROS production and creating a

hypoxic environment under laser irradiation. This induced PTX

release, directly killing cancer cells and inactivating the PI3K/AKT

pathway. As a result, the nanoparticles increased apoptosis in A549

cells, especially when combined with radiotherapy (89).

Cypate (Cyp), an indocyanine green derivative, generates heat

under near-infrared light irradiation. Cyp-polymethylmethacrylic

acid-Fe@MSCs, comprising polymethylmethacrylic acid

nanoparticles loaded with iron and Cyp, encapsulated in

mesenchymal stem cell membranes, were more effective in

targeting Lewis cells, leading to significant tumor shrinkage under

laser and X-ray irradiation (90).

2.5.2 Nano-radiosensitizers+ Radiotherapy
+ Thermotherapy

Magnetic nanoparticle clusters (MNCs), wrapped with

polyacrylic acid for biocompatibility, generated heat in an

alternating magnet ic field and were used for cancer

thermotherapy. Jia Ma et al. found that MNCs-treated H460 cells

showed increased expression of Hsp70 and caspase-3 under

alternating magnetic field and radiotherapy, significantly

suppressing tumors more than other treatments (91).

Mn-Zn ferrite magnetic nanoparticles, similar to MNCs, were

integrated into PEG-b-PCL block copolymer micelles and modified

with hyaluronic acid targeting A549 cells. In tumors, Mn-Zn ferrite

magnetic NPs not only generated heat, but also raised oxygenation

levels under alternating magnetic field, thereby enhancing A549

cells’ radiosensitivity (92).

Tsl-MTX, comprising 1-methylxanthine and temperature-

sensitive liposomes, released its contents upon local heating of

tumors, achieving pronounced tumor regression, particularly

when combined with radiotherapy (93).

2.5.3 Nano-radiosensitizers+ Radiotherapy
+ Immunotherapy

Yun Hu’s team explored the potential of hafnium oxide

nanoparticles NBTXR3 in an anti-PD1 resistant lung cancer

model 344SQR. Only the group receiving NBTXR3 with high and

low-dose irradiation (12Gy*3F and 1Gy*2F) plus immunotherapy

(anti-PD1 and anti-CTLA-4) exhibited significant CD8+ T cell/Treg

cell ratio improvement and tumor regression, highlighting

NBTXR3’s synergy with radiation and immunotherapy (94). In

further studies, combining NBTXR3 with radiotherapy and

inhibitors of TIGIT and LAG3, the team demonstrated a

significantly enhanced treatment effect, supporting the clinical

translation of NBTXR3 (95).

Ying Wang et al. found that cisplatin-loaded nanoparticles

induced CXCL10 secretion in tumors. Post-irradiation, there was

increased CD8+ T cell infiltration in both irradiated and

unirradiated tumors. Combining this with anti-PD1 therapy

resulted in significantly greater tumor regression, illustrating

cisplatin-loaded NPs’ role in boosting anti-tumor immunity post-

radiotherapy and achieving an abscopal effect (96).
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Leveraging nanotechnology to enhance radiation sensitization,

and pairing it with phototherapy or thermotherapy could

significantly improve the tumor-targeting ability and anti-cancer

efficacy of drugs. Moreover, immunotherapy has emerged as one of

the most promising research fields in oncology in recent years,

suggesting that boosting anti-cancer immunity holds substantial

potential for exploration. By integrating the use of nanomedicine, it

allows us to combine differing methods of cancer treatment, thus

offering profound clinical implications.

Presented next is Table 9, showcasing nano-radiosensitizers

that are employed in combination with radiotherapy plus

phototherapy, thermotherapy, or immunotherapy.
3 Clinical studies of nanomaterials
involved in radiotherapy in NSCLC

The combination of paclitaxel and platinum represents a primary

treatment option for advanced NSCLC (97). Paclitaxel’s poor water

solubility often necessitates its dissolution in lox, which is linked to

allergic reactions and neurotoxicity (50). In a significant development,

Neil Desai et al., in 2006, synthesized 130nm albumin-paclitaxel

particles (nab-P), which demonstrated enhanced anti-tumor effects

and reduced toxicity compared to traditional paclitaxel (98). The FDA

approved nab-P for first-line NSCLC treatment in 2012.

The inaugural phase I clinical study combining nab-P and

radiotherapy in NSCLC was conducted by V. L. Keedy’s team in

2010. Administering a 66Gy/33F + nab-P+ carboplatin regimen to

11 pts with locally advanced NSCLC, they observed 9 partial

responses (PR), 1 stable disease (SD), and 1 withdrawal post-

consent. The most severe adverse event was grade 3, indicating

that a 40mg/m2 weekly nab-P regimen is safer in combination with

carboplatin and radiotherapy (99).

In 2017, Kan Wu et al. reported a phase II clinical trial of

radiotherapy combined with carboplatin + 60mg/m2 nab-P in

locally advanced squamous cell lung cancer. Of 8 pts, 5 showed

PR, 2 had SD, and 1 experienced progressed disease (PD). The

median progression-free survival (mPFS) and overall survival

(mOS) were 12.1 and 15.2 months, respectively (100).

These two studies represented the earliest phase I or II clinical

trials involving the use of nab-P l during radiotherapy for NSCLC

pts, with the disadvantage of having few participants. In subsequent

clinical trials, the number of participants was relatively increased,

compensating for this drawback.

Ryo Shimoyama et al. initiated a phase 3 clinical trial in 2020,

investigating synchronized carboplatin with or without nab-P

during radiotherapy for stage III NSCLC. Results of this ongoing

study are highly anticipated (101).

Up to now, clinical studies on nab-P plus carboplatin during

radiotherapy are limited. Although the combination is a class I

recommendation for NSCLC patients, conventional paclitaxel plus

carboplatin remains the recommended synchronous chemotherapy

regimen during radiotherapy. Further research is needed to validate

nab-P plus carboplatin as synchronized chemotherapy in NSCLC.
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In parallel, C. Shen et al. conducted a multicenter, open-label

phase I study on NBTXR3, involving patients with various cancers,

including lung cancer. Early results from this ongoing trial, which is

still recruiting patients, have shown overall tumor regression in 8

out of 9 patients, including 4 with lung cancer. These promising

findings highlight the potential of combining SBRT with NBTXR3

and anti PD-1 therapy in solid tumors, and emphasize the necessity

for further research involving more patients with inoperable

NSCLC and other malignancies (102).

More clinical trials are described in Table 10 (99–108).
4 Conclusions

The burgeoning advancement of novel nanomaterials in

biomedicine offers an array of possibilities for augmenting the

efficacy of radiotherapy in treating tumors clinically. This article

delves into various nano-radiosensitizers, which either intrinsically

heighten the radiosensitivity of NSCLC cells or act as carriers for

radiosensitive drugs, thereby localizing their delivery to tumors.

This synchronization of radiotherapy and targeted drug action

amplifies the radiosensitivity of NSCLC cells through

diverse mechanisms.

Nonetheless , the cl inical adoption of these nano-

radiosensitizers is not without hurdles. Unlike traditional drugs,

nanodrugs, due to their smaller sizes, may not biodegrade,

potentially leading to long-term accumulation in the body and

resultant unknown toxic side effects, which limits their utility in

radiotherapy. As such, the future direction in this field lies in

bolstering biocompatibility, enhancing tumor-targeting

capabilities, optimizing drug loading capacity, and cutting costs
Frontiers in Oncology 11
without compromising biosafety. Moreover, the multifunctionality

of nanoparticles should be fully harnessed to facilitate tumor

imaging and to extend the amalgamation of various treatments

such as radiotherapy, chemotherapy, thermotherapy, phototherapy,

and immunotherapy, thereby transcending the restrictions of

singular treatment modes. Current clinical trials predominantly

involve small sample sizes and have follow-up periods generally

ranging from one to two years. Hence, there is a pressing need for

more comprehensive studies with extended follow-up periods to

evaluate the long-term efficacy of nano-radiosensitizers.

In tandem with this, the merging of radiosensitizers with proton

therapy is viewed as a promising avenue of future development.

Proton therapy, in contrast to traditional radiotherapy, offers

specific dosimetric advantages and fewer off-target effects.

Therefore, coupling proton therapy with nano-radiosensitizers

corresponds more closely with the objectives of precision

medicine. Nonetheless, up to this point, scant researches have

been conducted on the combination of radiosensitizers with

proton therapy in the treatment of NSCLC.

Researchers such as Bronk treated lung cancer cells by

nanoscaffold, discovering it amplified the effectiveness of

radiotherapy (109). In addition, Yun’s team inoculated one side

of a mouse limb with PD-1 inhibitor-resistant 344SQR cells and

treated them with NBTXR3, PD-1 inhibitors, or proton therapy.

After 76 days, they inoculated 344SQR cells on the other side again.

As a result, they found that mice subjected to the triple combination

therapy displayed increased infiltration and activation of cytotoxic

immune cells, underscoring remarkable anti-tumor treatment

effects (110). While neither study compared proton therapy with

X-ray therapy, the outstanding efficacy of proton therapy should

not be sidelined. The future holds the promise of extensive research
TABLE 9 Types of nano-radiosensitizers in combination with IR plus phototherapy, thermotherapy, or immunotherapy.

Nanoparticles Combined
teatment

Cells Mechanism Outcomes Reference

QDs-
Photosensitizer
Conjugates

Phototherapy H460 QDs, upon irradiation, excited photons to
activate photosensitizers.

Enhanced
cell destruction.

(88)

Ce6/PTX 2-
NP/G@NHs

Phototherapy A549 Ce6 promoted ROS production and created a hypoxic
environment under laser. Inactivating the PI3K/AKT pathway

Increased apoptosis. (89)

Cyp-
polymethylmethacrylic
acid-Fe@MSCs

Phototherapy Lewis Cypate generated heat under near-infrared light;
targeting tumors.

Significant
tumor shrinkage.

(90)

PAA modified MNCs Thermotherapy H460 Heat generation in an alternating magnetic field; increased
expression of Hsp70 and caspase-3.

Significant
tumor suppression.

(91)

HA modified
magnetic NPs

Thermotherapy A549 Heat generation and increased oxygenation in tumors; modified
with hyaluronic acid.

Enhanced
radiosensitivity
of tumors.

(92)

Tsl-MTX Thermotherapy A549 Precise content release upon local heating. Pronounced
tumor regression.

(93)

NBTXR3 Immunotherapy 344SQR CD8+ T cell/Treg cell ratio improvement. Tumor regression;
abscopal effect

(94, 95)

CDDP-NPs Immunotherapy Lewis CXCL10 secretion in tumors; increased CD8+ T cell infiltration Significant tumor
regression;
abscopal effect.

(96)
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exploring the amalgamation of nano-radiosensitizers with

proton therapy.

Despite these hurdles, the field of nano-radiosensitizers teems

with immense potential. As studies advance, it is entirely

conceivable that nano-radiosensitizers could emerge as a favored

option in the treatment arsenal for NSCLC, thereby ushering in

novel dimensions in cancer therapy.
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TABLE 10 Clinical studies of nanomaterials involved in radiotherapy in NSCLC.

Nanoparticles Phase Pts Cancer Regimen Outcomes Reference

nab-P I 11 Locally
Advanced NSCLC

66Gy/33F + 40mg/m2 nab-P
+ carboplatin.

9 PRs, 1 SD, 1 withdrawal; most severe
adverse event was grade 3.

(99)

nab-P II 8 Locally Advanced
Squamous Cell
Lung Cancer

66Gy/33F + 60mg/m2 nab-P
+ carboplatin

ORR 75%; mPFS 12.1 months; mOS
15.2 months.

(100)

nab-P III Recruiting Stage III NSCLC 60Gy/30F+ carboplatin ± 30
mg/m2nab-P

ongoing (101)

nab-P I/II 58 Locally
Advanced NSCLC

60Gy/30F+ weekly nab-P (40
or 50 mg/m2) + carboplatin

Feasible with weekly nab-P at 50 mg/m2;
mPFS 11.8 months; 2-year OS 66.1%.
ORR 76.8%

(103)

nab-P I 14 Locally
Advanced NSCLC

60Gy/30F+ weekly nab-P (40,
60 or 80 mg/m2)
+ carboplatin

ORR 71.4%;
Recommendation for nab-P at 40 mg/m2

(104)

nab-P I 19 Locally
Advanced NSCLC

64Gy/32F+ weekly nab-P (30
or 40 mg/m2) + carboplatin

Recommendation for weekly nab-P at 40
mg/m2; mPFS 13.4 months; ORR 76.5%

(105)

nab-P I/II 28 Locally
Advanced NSCLC

60Gy/30F+ biweekly nab-P
(100 mg/m2) + carboplatin

ORR 96.4%; mPFS 18.2 months; 2-year
OS 67.8%

(106)

nab-P I 18 stage III NSCLC 60Gy/30F+ biweekly nab-P
(60, 80 or 100 mg/m2)
+ carboplatin

Recommendation for biweekly nab-P at
100 mg/m2

(107)

nab-P II 10 Locally
Advanced NSCLC

60Gy/30F+ weekly nab-P (40
mg/m2) + carboplatin

ORR 40%; mPFS 6.7 months; (108)

NBTXR3 I Recruiting Various Cancers
including
Lung Cancer

SBRT + NBTXR3 + anti PD-
1 therapy.

Overall tumor regression in 8 out of 9 pts;
ongoing trial.

(102)
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