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Identification of hub genes
within the CCL18 signaling
pathway in hepatocellular
carcinoma through
bioinformatics analysis
Jinlei Mao †, Yuhang Tao †, Keke Wang, Hanru Sun,
Manqi Zhang, Liang Jin* and Yi Pan*

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of
Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University,
Nanjing, Jiangsu, China
Introduction: Hepatocellular carcinoma (HCC) is an aggressive malignancy, and

CCL18, a marker of M2 macrophage activation, is often associated with tumor

immune suppression. However, the role of CCL18 and its signaling pathway in

HCC is still limited. Our study focuses on investigating the prognostic impact of

CCL18 and its signaling pathway in HCC patients and biological functions in vitro.

Methods: HCC-related RNA-seq data were obtained from TCGA, ICGC, and

GEO. The 6 hub genes with the highest correlation to prognosis were identified

using univariate Cox and LASSO regression analysis. Multivariate Cox regression

analysis was performed to assess their independent prognostic potential and a

nomogram was constructed. In vitro experiments, including CCK8, EdU, RT-

qPCR, western blot, and transwell assays, were conducted to investigate the

biological effects of exogenous CCL18 and 6 hub genes. A core network of highly

expressed proteins in the high-risk group of tumors was constructed. Immune

cell infiltration was evaluated using the ESTIMATE and CIBERSORT packages.

Finally, potential treatments were explored using the OncoPredict package and

CAMP database.

Results: We identified 6 survival-related genes (BMI1, CCR3, CDC25C, CFL1,

LDHA, RAC1) within the CCL18 signaling pathway in HCC patients. A nomogram

was constructed using the TCGA_LIHC cohort to predict patient survival

probability. Exogenous CCL18, as well as overexpression of BMI1, CCR3,

CDC25C, CFL1, LDHA, and RAC1, can promote proliferation, migration,

invasion, stemness, and increased expression of PD-L1 protein in LM3 and

MHCC-97H cell lines. In the high-risk group of patients from the TCGA_LIHC

cohort, immune suppression was observed, with a strong correlation to 21

immune-related genes and suppressive immune cells.

Conclusion: Exogenous CCL18 promotes LM3 and MHCC-97H cells

proliferation, migration, invasion, stemness, and immune evasion. The high

expression of BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1 can serve as a

biomarkers for immune evasion in HCC.
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Introduction

Liver cancer is the sixth most common primary malignant tumor

and the fourth leading cause of cancer-related death worldwide, with

a five-year survival rate of 21%. Hepatocellular carcinoma (HCC)

accounts for more than 90% of liver cancer cases (1, 2). Although

hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol remain

important risk factors, the prevalence of obesity and diabetes has

made non-alcoholic fatty liver disease (NAFLD) or non-alcoholic

steatohepatitis (NASH) a dominant risk factor for HCC (3).

HCC presents intricate molecular characteristics and various

pathological subtypes in a more natural manner, and the

recommended treatment strategy for patients with advanced HCC

continues to be systemic therapy, utilizing first-line agents like

Sorafenib and Lenvatinib (3, 4). In recent times, there has been a

growing focus on immune checkpoint inhibitors (ICIs) for the

treatment of HCC. The combination of Atezolizumab (anti-

programmed death-ligand 1) and Bevacizumab (anti-vascular

endothelial growth factor) has emerged as a new standard for

patients with advanced HCC (5), offering a therapy that

modulates the HCC microenvironment. However, it is important

to note that this treatment is only effective in a minority of HCC

patients (6). In this regard, further research is needed to better

understand the tumor microenvironment in HCC. This will allow

for the identification of biomarkers that can be used to develop

personalized treatment strategies.

Tumor microenvironment (TME) is a complex ecosystem that

encompasses diverse immune cells, including dendritic cells (DC),

monocytes, macrophages, B cells, and T cells (7). The TME of HCC

accelerates tumor cell proliferation, invasion, and metastasis by

forming an immunosuppressive environment (8). Tumor-

associated macrophages (TAMs) have a high proportion in HCC
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TMEs and contribute to angiogenesis, cancer cell progression, and

treatment resistance (9, 10). Macrophages can be classified into two

main types: M1 and M2. M1 macrophages are involved in the

immune response against cancer cells and express the CD86

marker . On the other hand , M2 macrophages have

immunosuppressive functions and express the CD163 and CD206

markers (11). Of note, Guo et al. demonstrated that there is a

subgroup of M2 macrophages (CD68+ CD206+) with high

expression of chemokine ligand 18 (CCL18) in the HCC

microenvironment and may be involved in the HCC process (12).

CCL18 is a chemokine secreted by TAMs and serves as a

biomarker for M2 macrophages. It has been shown to promote

tumor cell proliferation and facilitate immune evasion, aiding in the

progression of tumor growth (13, 14). Lin et al. reported that CCL18

can promote HCC cell migration and invasion (15). However, research

on the immunosuppressive effects of CCL18 in HCC is relatively

limited. In this study, we systematically investigated the impact of the

CCL18 signaling pathway on the prognosis of HCC patients.

Consequently, six hub genes associated with prognosis were

determined through bioinformatics analysis. These genes are denoted

as BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1. Subsequently, we

validated the biological functions of exogenous CCL18 and these six

genes in LM3 and MHCC-97H cells through experimental assays.

Then, we conducted immune cell infiltration of high-risk group and

verified the influence of exogenous CCL18 and the expression of hub

genes on PD-L1 protein. Eventually, potential treatments were

explored using computational tools. The aim of this research is to

gain a better understanding of the mechanisms underlying the

development of immunosuppressive malignant HCC associated with

CCL18. Identifying relevant tumor biomarkers may serve as a reference

for diagnostic and immunotherapy of HCC.
Materials and methods

Database selection and data acquisition

In this study, we acquired gene expression matrix (RNA-seq) and

clinical information of HCC patients from The Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/; TCGA_LIHC; 362 patient

samples), International Cancer Genome Consortium (ICGC)

(https://dcc.icgc.org/; ICGC_JP; 230 patient samples), and Gene

Expression Omnibus (GEO) (GSE14520; 225 patient samples)

(Table 1). The tumor samples for RNA-seq included 374 cases for

TCGA_LIHC, 243 cases for ICGC_JP, and 225 cases for GSE14520.

Accordingly, the adjacent normal samples of RNA-seq included 50

cases for TCGA_LIHC, 202 cases for ICGC_JP, and 220 cases for

GSE14520. TCGA_LIHC dataset was used as the internal training

cohort while ICGC_JP and GSE14520 datasets were used as the
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external testing cohorts. GSE14520 dataset was downloaded through

“GEOquery” R package, and clinical data was acquired from the

website. All TCGA_LIHC and ICGC_JP data, gene-expressed profile

and clinical details were manually downloaded from the website.

Meanwhile, 99 genes that are implicated in the CCL18

signaling pathway were obtained from WikiPathways (https://

www.wikipathways.org/) (Table S1). Immune-related genes were

obtained from the ImmPort database (https://www.immport.org/

shared/home).
Identification of hub genes

We utilized the “survival” and “survminer” R packages to perform

univariate Cox regression analysis in the TCGA_LIHC training cohort

with the aim of identifying genes that have a substantial impact on

survival. Consequently, we observed significant variations in the

expression of 39 genes. Subsequently, the “glmnet” R package was

employed to conduct LASSO regression, enabling the selection of the

most crucial variables from this gene set. As a result, a subset of 6 genes,

specifically BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1, were

identified as prominent hub genes.
Construction of prediction model

The multivariate Cox regression analysis was employed using

the 6 hub genes. The risk score for individual patients in

TCGA_LIHC cohort was calculated using the following formula.

Risk   score =  on

i=1
coefficient(i)  �   gene(i)
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In this formula, coefficients were acquired from multivariate

Cox regression, where gene(i) represents mRNA expression. The

patients in both the training and test cohorts were classified into two

groups, namely the high- and low-risk groups, based on the median

value of the risk score. Additionally, we examined whether the risk

score independently served as a prognostic factor. The clinical

characteristics within TCGA_LIHC cohort including age, gender,

M, N, T stage, stage and risk score were analyzed through univariate

and multivariate Cox regression analysis. Analogous analyses were

performed using the ICGC_JP and GSE14520 cohorts.

A predictive nomogram was developed using the 6 hub genes to

estimate the survival probability for individual HCC patients. The

predictive capability of the nomogram was evaluated in both the

training and test cohorts through the utilization of receiver operating

characteristic (ROC) curves and calibration curves. The “rms”,

“timeROC” , and “pROC” R packages were utilized for

these assessments.
Survival and pathway correlation analysis

To evaluate the influence of the six hub genes on the overall

survival rate of TCGA_LIHC cohort, survival curves were generated

using the Kaplan-Meier method from the “survival” R package, and

the median value was taken as the best cut-off. The Kaplan-Meier

Plotter (http://kmplot.com/analysis/) platform was employed to

examine the association between the expression levels of prognostic

genes and various clinical endpoints, including overall survival (OS),

recurrence-free survival (RFS), progression-free survival (PFS), and

disease-specific survival (DSS). Additionally, the genes encompassed

within pathways were collected and subjected to analysis using the
TABLE 1 Clinical characteristics of the HCC patients in this research.

TCGA_LIHC ICGC_JP GSE14520

Number of tumor patients 362 Number of tumor patients 230 Number of tumor patients 225

Age

Gender

T_stage

N_stage

M_stage

Stage

>=60
<60
Male
Female
T1
T2
T3
T4
TX
Unknow
N0
N1
NX
Unknow
M0
M1
MX
stageI
stageII
stageIII
stageIV
unknow

198(54.25%)
164(45.75%)
245(67.12%)
117(32.88%)
178(49.17%)
90(24.86%)
78(21.55%)
13
1
2
247(68.23%)
4
110(30.39%)
1
260(71.82%)
3
99(27.35%)
168(83.46%)
83(22.92%)
83(22.92%)
4
24

Age

Gender

Stage

>=60
<60
Male
Female
stageI
stageII
stageIII
stageIV

185(80.43%)
45(19.57%)
170(73.91%)
60(26.09%)
35(15.22%)
105(45.65%)
71(30.87%)
19(8.26%)

Age

Gender

TNM_stage

BCLC_stage

CLIP_stage

>=60
<60
unknow
Male
Female
unknow
stageI
stageII
stageIII
unknow
Stage_A
Stage_B
Stage_C
unknow
Stage_0
Stage_1
Stage_2
Stage_3
Stage_4
Stage_5
unknow

43(19.11%)
178(79.11%)
4
191(84.89%)
30(13.33%)
4
93(41.33%)
77(34.22%)
48(21.33%)
6
148(65.78%)
22(9.78%)
29(12.89%)
26
97(43.11%)
74(32.89%)
35(15.56%)
9
3
1
6
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“GSVA” R package, with the parameter method = ‘ssgsea’ being

specifically chosen. Subsequently, the correlation between the

prognostic genes and the pathways was assessed using Spearman

correlation analysis (16).
Functional enrichment analysis and
establishment of a PPI network

The “limma” R package was utilized to identify differentially

expressed genes (DEGs) in the TCGA_LIHC cohort. This included

comparisons between HCC tumor and normal samples, as well as

between high- and low-risk groups (Log2 fold change > 1, p value<

0.05). A total of 308 genes were identified as the intersection

between the genes exhibiting high expression in tumors and the

genes within the high-risk score group. The findings were visually

represented through the utilization of volcano and Venn diagrams

using “ggvenn”, “tidyverse”, and “ggrepel” R packages, effectively

illustrating the intersection of 308 genes exhibiting high expression

in tumors and the genes within the high-risk score group.

The functional enrichment analysis of DEGs was systematically

performed using the “clusterProfiler” and “org.Hs.eg.db” R

packages, which facilitated Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses for a

comprehensive understanding of the biological functions

involved. The protein-protein interaction (PPI) network was

meticulously examined utilizing the STRING database (https://

cn.string-db.org/), and a significant molecular cluster was

identified through the application of MODE, a Cytoscape plugin

(Cytoscape software version 3.9.1).
Estimation of immune cell infiltration

The estimation of stromal, immune, and ESTIMATE scores was

performed using the “ESTIMATE” R package, which provides a

computational approach to calculate and quantify the stromal and

immune components within the tumor microenvironment.

Meanwhile, the “CIBERSORT” R package was utilized to estimate

the impact of the risk score on the proportions of 22 immune cell

subtypes in the TCGA_LIHC training cohort.
Drug sensitivity analysis

The “OncoPredict” R package was utilized to predict drug

sensitivity based on gene expression profiles. This approach enabled

the calculation of drug sensitivity values for each sample, with lower

values indicating higher efficacy of the drug. Comprehensive drug

sensitivity analysis was conducted on all samples to determine the

drug sensitivity values for commonly used tumor drugs.

CAMP (https://clue.io/) is an extensive database and analysis

platform that offers valuable resources and tools to delve into and

comprehend gene expression profiles and drug perturbations. In

order to identify potential small-molecule drugs for the treatment of

high-risk patients, we utilized the CAMP online database.
Frontiers in Oncology 04
Specifically, we selected downregulated genes from the pool of

significant genes, as well as upregulated genes from the top 150

genes. By inputting this gene set into the CAMP database, we

conducted a meticulous screening to identify promising small-

molecule drugs capable of modulating the dysregulated gene

expression patterns associated with high-risk patients.
Cell culture and transfection

L02, Huh7, HepG2, LM3 and MHCC-97H cells were purchased

from the Cell Bank of the Chinese Academy of Sciences (Shanghai,

China). Cells were incubated in DMEM medium with 10% fetal

bovine serum (FBS) and maintained in penicillin (100 IU/mL) and

streptomycin (100 mg/mL) in 5% CO2 at 37°C. The plasmids

encoding the BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1

genes were constructed by cloning the sequence of the coding

region using the appropriate primers (Table S2) and inserting the

fragment into the pcDNA3.1 (+) plasmid. The cells were transfected

with the plasmids using Lipofectamine 2000 Transfection Reagent

(Invitrogen) and then the medium was changed 6h after transfection.
RNA extraction and quantitative real-
time PCR

Total RNA was isolated using the TRIzol (Invitrogen) RNA

extraction method, following the manufacturers’ instructions. qRT-

PCR measurements were performed as described previously (17) with

the appropriate primers listed in Table S3. Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) was regarded as the internal reference, and

the 2−DDCt method was applied to express the ratio of the target gene

expression in the experimental group compared to the control group.
Protein extraction and western blotting

Protein extraction and western blotting analysis were

performed using previously standard procedures (17). The

following antibodies were used for western blotting: anti-E-

cadherin antibody(#20874-1-AP Proteintech, China), anti-N-

cadherin antibody(#22018-1-AP Proteintech, China), anti-ZEB1

antibody(#66279-1-Ig Proteintech, China), anti-Vimentin

antibody(10366-1-AP Proteintech, China), anti-SOX2 antibody

(#11064-1-AP Proteintech, China), anti-GAPDH antibody

(#10494-1-AP Proteintech, China), and anti-PD-L1 antibody

(#66248-1-Ig Proteintech, China).
Proliferation assay

Cell proliferation was detected using the Cell Counting Kit-8

(CCK-8, #K1018, APExBIO, USA) and the EdU cell proliferation

assay kit (#C0071S, Beyotime Biotech, China), following the

manufacturer’s instructions. The colony-formation assay was also

performed to assess cell proliferation. 5000 cells were plated per well
frontiersin.org
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in triplicate in 6-well plates. The culture medium was changed every

3 days. Once visible clones were observed, each well was washed

with PBS three times, fixed with methanol for 30 minutes at room

temperature, and then stained with 0.05% crystal violet for 30

minutes. After washing, the colonies were counted and imaged.
Migration and invasion assay

According to the published method (18), transwell migration

(without Matrigel) and Matrigel (Matrigel, Corning, China)

invasion assays were performed to evaluate cell migration and

invasion abilities, respectively. Additionally, cell migration was

measured using wound healing assays as previously described (18).
Sphere formation assay

A sphere formation assay was performed to assess the stemness

properties of LM3 andMHCC-97H cells. 1×105 cells were seeded into

the 6-well ultra-low attachment plates (Corning, China) in sphere

formation medium (#CCM0012, Minneapolis, USA). The cells were

incubated in a CO2 incubator for two weeks, and the number of

spheres was counted under a stereomicroscope (Olympus).
Statistical analysis

Statistical analysis was performed using R Studio (R version

4.2.3) and GraphPad Prism 9.0.2. For genes with multiple probes,

the maximum expression was selected. Cox regression analysis was

conducted using the “survival” package to assess the association

between variables and prognosis, including hazard ratios and 95%

confidence intervals (CI). Lasso analysis was employed as a variable

selection method to refine the scope of variables, with the lambda

value chosen for optimal regularization. All data were presented as

the mean and standard error of the mean (mean ± SD, n = 3).

GraphPad Prism was used to create bar graphs. A two-tailed

Student’s t-test was used to compare the means between two

groups, and an ANOVA test was used to assess significant

differences among various experimental groups. The p-values in

multiple comparisons were adjusted to control the false discovery

rate (FDR) using the Benjamini-Hochberg method. The OS was

evaluated using a Kaplan-Meier (K-M) curve, with statistical

significance assessed using a log-rank test. The correlation

between two variables conforming to a normal distribution was

calculated employing the Pearson method. P< 0.05 was considered

as statistically significant.
Results

Identification of prognostic-related genes

HCC raw datasets were obtained from the TCGA, ICGC, and

GEO databases. Prior to analysis, these datasets were normalized
Frontiers in Oncology 05
using the log2(TPM + 1) transformation. 99 genes within CCL18

signaling pathway were downloaded from WikiPathways

(Table S1). The expression patterns of these genes in the

TCGA_LIHC cohort (n = 424) were illustrated using a heatmap

(Figure S1A). Next, 39 genes exhibiting significant differences in

hazard ration (HR) were identified from the TCGA_LIHC cohort

by univariate Cox regression analysis (Figure 1A). Six hub genes,

namely BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1, were

identified using Lasso regression analysis (Figures 1B, C). Then,

we compared the expression of these six hub genes in

TCGA_LIHC, ICGC_JP (n = 445), and GSE14520 (n = 445)

cohorts between normal and tumor samples (Figures 1D–I). The

high expression of CCR3 and LDHA in tumor tissue is not

prominent. This study shows that BMI1, CCR3, CDC25C,

CFL1, and RAC1 consistently have higher expression levels,

while LDHA only shows increased expression in ICGC_JP, not

in TCGA_LIHC and GSE14520 cohorts. Additionally, the OS

analysis revealed that patients with high expression of 6 hub genes

exhibited a shorter survival time (Figures 1J–O) in the

TCGA_LIHC cohort. Similarly, the Kaplan-Meier Plotter

analyzed the correlation between the expression of six hub

genes and survival, including OS, RFS, PFS, DSS (Figures S1B–

E), and the results basically indicated that hub gene expression is

associated with a poor prognosis in patients with HCC. On the

other hand, the RT-qPCR assay was applied to detect the

expression of hub genes in L02 normal hepatocytes and Huh7,

HepG2, LM3, and MHCC-97H hepatoma cells (Figure 1P). Six

hub genes were significantly up-regulated in LM3 and MHCC-

97H cell lines, while only BMI1 and CDC25C were up-regulated

in hepG2 cells, and CFL1 and LDHA did not show up-regulation

in Huh7 cells. Additionally, the expression of hub genes was

significantly upregulated upon stimulation with CCL18 in most

HCC cells (Figure 1Q).
Construction and verification of
prognostic model

We calculated the risk score of individual HCC patients in all

cohorts using the following formula: Risk score = [BMI1 expression

× (0.1971976)] + [CCR3 expression × (0.2586062)] + [CDC25C

expression × (0.181479)] + [CFL1 expression × (0.2796217)] +

[LDHA expression × (0.3388622)] + [RAC1 expression ×

(0.1223471)]. Applying the median score as the best cut-off value,

patients were divided into two groups: the high- and low-risk group.

The K-M survival curve analysis revealed that the risk score served

as a robust prognostic indicator for HCC patients. Notably, patients

with higher risk scores exhibited significantly worse prognosis

compared to those in the low-risk group (TCGA_LIHC p<0.001;

ICGC_JP p<0.01; GSE14520 p<0.01) (Figures 2A–C).

To assess the potential of the risk score as an independent

prognostic factor, we conducted univariate and multivariate Cox

regression analyses to examine its association with other clinical

characteristics, such as age, gender, and stage. We found that age

and gender were not identified as independent predictors of

prognosis in HCC patients, and the risk score served as an
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FIGURE 1

Six hub genes associated with prognosis in CCL18 signaling pathway in HCC. (A) Univariate Cox regression analysis for CCL18 signaling pathway-
related genes in TCGA_LIHC training cohort. (B, C) The hub genes (n=6) were determined by the minimum lambda value of the LASSO regression
analysis. (D–I) The heatmaps (D–F) and box plots (G–I) showed the transcription expression of six hub genes in TCGA_LIHC, ICGC_JP, and
GSE14520 cohorts, consistently. (J–O) Survival analysis showed that all hub genes were associated with shorter survival. (P) RT-qPCR analysis of hub
genes expression levels in L02, Huh7, HepG2, LM3 and MHCC-97H cells. (Q) RT-qPCR analysis of hub genes levels in Huh7, HepG2, LM3 and
MHCC-97H cells after 48h of no stimulation or stimulation with 40 ng/mL CCL18. All experiments were performed with three experimental
replicates, each measured with qPCR once. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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FIGURE 2

Construction and verification of prediction model. (A–C) Validation of risk score in TCGA_LIHC, ICGC_JP, and GSE14520 cohorts for OS.
(D–F) Univariate and multivariate Cox regression analysis between risk score and other clinical characteristics in all cohorts. (G–I) Triplet graph
showed the relationship between risk score, survival status, and gene expression. (J) The prognostic nomogram was built based on the 6 hub
genes using TCGA_LIHC cohort. (K–M) The ROC curve for the prognostic performance of the nomogram in each cohort, including TCGA_LIHC
(K), ICGC_JP (L), and GSE14520 (M).
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independent risk factor for OS in all cohorts (p<0.01)

(Figures 2D–F). Risk score triptychs show the corresponding

risk score, gene expression, and survival status (Figures 2G-I).

Additionally, a predictive nomogram was constructed using

the TCGA_LIHC cohort, incorporating the expression levels of

the six hub genes. This nomogram provided a quantitative

assessment of the 1-, 3-, and 5-year survival rates for each HCC

patient (Figure 2J), thereby offering potential clinical utility. The

ROC curves showed the excellent predictive performance of the

hub genes (Figures 2K–M), with area under the curve (AUC)

values of 0.772 at 1-year, 0.735 at 3-year, and 0.725 at 5-year in the

training cohort (Figure 2K). Moreover, the calibration curves were

drawn to evaluate the consistency between the predictive survival

possibility and the actual probability in TCGA_LIHC, ICGC_JP

and GSE14520 cohorts (Figures S2A–H). These results

highlight the remarkable precision and accuracy of the

constructed nomogram.
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Exogenous CCL18 enhanced HCC cells’
proliferation, migration, invasion and stem
cell-like phenotype

CCL18 exerts distinct effects in various cancer types, demonstrating

its ability to enhance the proliferation of specific malignancies, such as

ovarian cancer and osteosarcoma. Furthermore, CCL18 acts as an

inducer, promoting tumor metastasis13. However, the effects of

CCL18 on HCC cells have not been deeply studied. Hence, our study

aimed to investigate the effects of exogenous CCL18 on HCC cells.

To investigate the biological functions of CCL18 in LM3 and

MHCC-97H cells, we stimulated the cells with or without 40ng/mL

CCL18 for 48h observed its impact on cell proliferation, migration,

invasion and stemness properties. CCK-8 and EdU assays revealed

that CCL18 promoted the proliferation abilities of LM3 and MHCC-

97H cells (Figures 3A, B). Transwell migration and invasion assays

showed that CCL18 significantly promoted the migration and
A B

D E

C

F

FIGURE 3

CCL18 promotes proliferation, migration, invasion and stemness properties of HCC cells in vitro. (A, B) Proliferation of LM3 and MHCC-97H cells
after 48h of no stimulation or stimulation with 40 ng/mL CCL18 was examined by CCK-8 assays (A) and EdU assays ((B), Scale bar:100 mm).
(C) Migration and invasion of LM3 and MHCC-97H after 48h of no stimulation or stimulation with 40 ng/mL CCL18 were detected by Transwell
assays. Scale bar:200 mm. (D) The protein levels of EMT and stemness related gene in LM3 and MHCC-97H cells after 48h of no stimulation or
stimulation with 40 ng/mL CCL18. (E) Sphere-formation abilities of LM3 and MHCC-97H cells were assessed after 48h of no stimulation or
stimulation with 40 ng/mL CCL18. Scale bar:200 mm. (F) The expression of stemness-related genes in LM3 and MHCC-97H cells after 48h of no
stimulation or stimulation with 40 ng/mL CCL18. All data are shown as the mean ± SD. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 by two-
tailed Student’s t-test.
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invasion abilities of LM3 and MHCC-97H cells (Figure 3C).

Alterations in the expression of Epithelial-Mesenchymal Transition

(EMT)-associated proteins were detected by western blotting,

indicating that CCL18 facilitated the EMT process (Figure 3D).

Cell stemness was determined by the sphere formation assay

(Figure 3E) and the detection of stemness gene expressions

(Figure 3F). The results suggest that CCL18 promotes stemness of

LM3 and MHCC-97H cells. Taken together, these data collectively

indicate that CCL18 may play a promoting role in HCC cell

proliferation, migration, invasion, and stemness in vitro.
PPI construction of high-risk tumor
samples and functional
enrichment analysis

To investigate the genomic composition of the high-risk group

in tumors, we reanalyzed the TCGA_LIHC cohort. Applying the
Frontiers in Oncology 09
thresholds of p< 0.05 and log2FoldChange > 1, we identified a total

of 2722 DEGs in HCC tumor samples (Figure 4A) and 475 DEGs in

the high-risk group (Figure 4B). By intersecting these two gene sets,

we identified a total of 308 genes (Figure 4C).

Next, to better understand the function and specific mechanism of

these genes, we utilized the “clusterProfiler” R package to conduct GO

and KEGG enrichment analysis. The analysis of biological processes

indicated a significant enrichment of genes specifically expressed in the

high-risk group of tumors in processes such as “mitotic nuclear

division” and “sister chromatid segregation” (Figure 4D).

Furthermore, the analysis of cellular components highlighted the

enrichment of these genes in cellular locations such as the

“chromosomal region” and “spindle” (Figure 4E). Moreover, the

molecular function analysis demonstrated a significant enrichment of

these genes in functions such as “DNA replication origin binding” and

“catalytic activity, acting on DNA” (Figure 4F). Additionally, the

KEGG pathway analysis indicated a significant enrichment of these

genes in pathways such as “cell cycle” and “DNA replication”
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FIGURE 4

Identification of DEGs in tumors with high-risk samples and PPI functional enrichment analysis. (A) The volcano plot showing the DEGs in the high-
and low-risk scores in TCGA_LIHC cohort. (B) The volcano plot revealed the DEGs in tumor and normal samples in TCGA_LIHC cohort. (C) The
Venn plot displayed the intersection of high-risk score samples and tumor samples. (D–G) The chord diagrams showed the results of GO
enrichment analysis, including biological process (D), molecular function (E), and cellular component (F), and KEGG result (G). (H) The key module
analyzed by MODE included 104 genes out of the 308 genes shown by the Cytoscape software.
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(Figure 4G). Furthermore, the interaction network of the 308 proteins

was analyzed using the STRING database. Subsequently, the MCODE

plugin identified a highly significant cluster consisting of 104 proteins

(Figure 4H). This observation suggests that these 104 proteins play a

crucial role as the main regulatory agents within the high-risk group

of HCC.
Evaluation of immune cell infiltration

The direct chemotactic effect of CCL18 on Treg cells and its role

in modulating the immunosuppressive tumor microenvironment

are well-established (19). Using the ESTIMATE R package, we

performed calculations of the relevant indicators for both the high-

and low-risk groups. Our results revealed no significant differences

in the Stromal Score and ESTIMATE Score values between the

high- and low-risk groups. However, a notable disparity was

observed in the Immune Score values, indicating a significantly

higher level of immune cell infiltration in the tumor samples from

the high-risk group (Figure 5A). This finding provides evidence that

the high-risk group of tumor samples exhibits a greater extent of

immune cell infiltration compared to the low-risk group.

Additionally, the CIBERSORT R package was employed to

investigate the composition of immune cells and explore the

correlation between hub genes and immune cells. The box plots

illustrate the estimated proportions of 22 immune cell types in both

the high- and low-risk groups (Figure 5B). The findings suggest that

immune suppression may indeed occur in the high-risk group of

HCC. This conclusion is supported by the higher relative

abundance of Memory B cells, resting dendritic cells, eosinophils,

M0 macrophages, neutrophils, T cells CD4 memory resting, T cells

follicular helper, and Tregs observed in this group. Conversely, the

low-risk group exhibits a higher relative abundance of M2

macrophages, resting mast cells, activated/resting NK cells, resting

T cells CD4 memory, and T cells gamma delta. The scatter plot

shows the proportions of the 22 immune cells at the individual

patient level (Figure 5C). Additionally, the Pearson correlation

coefficient was calculated to assess the correlation between hub

genes and immune cell types (Figure 5D). The Venn diagram

illustrates the high expression of 21 immune-related genes in the

high-risk group of tumor samples (Figure 5E). We computed the

correlation between these genes and immune cell types, and the

results were similar to previous findings (Figure 5F).

Eventually, up-regulation in PD-L1 protein expression was

observed in HCC cells after stimulation of CCL18 (Figure 5G) or

transfection with CCR3, CDC25C, CFL1, LDHA or RAC1 plasmid

(Figure 5H). Together, these results imply that CCL18 signaling

pathway is associated with immune cell infiltration and immune

escape in the HCC microenvironment.
Functional analysis of hub genes on
proliferation, migration, invasion and
stemness of HCC cells

We performed an analysis to examine the correlation between

six hub genes and various signaling pathways. By applying a
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significance threshold of p< 0.05 and |cor| > 0.3, we successfully

identified specific hub genes associated with different pathways.

Within the DNA replication pathway, we found BMI1, CDC25C,

and CFL1 to be the hub genes of interest. Similarly, the G2M

pathway revealed the presence of BMI1, CDC25C, CFL1, and RAC1

as significant hub genes. Moving to the PI3K pathway, our analysis

highlighted BMI1, CCR3, CFL1, and LDHA as the hub genes

involved. Lastly, within the EMT pathway, the hub genes CCR3,

CFL1, and RAC1 were found to play crucial roles (Figure 6A).

In order to elucidate the biological functions of the hub genes,

various analyses including proliferation, migration, invasion, and

stemness were conducted on HCC cells. Overexpression plasmids

of BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1 were

constructed and subsequently transfected into LM3 and MHCC-

97H cells. The transfection efficiency was confirmed through qPCR

analysis (Figure 6B). The CCK-8 and EdU assays demonstrated that

all the aforementioned genes played a role in promoting HCC cell

proliferation (Figures 6C, D). Transwell migration and invasion

assays suggested that overexpression of CCR3, LDHA, and RAC1

enhanced the migration and invasion abilities of both LM3 and

MHCC-97H cells (Figures 6E, F). The results of the sphere formation

assay revealed that all of the above genes supported the maintenance

of stemness properties in HCC cells (Figure 6G), and the detection of

stemness marker genes suggested that BMI1, CCR3, CDC25C, and

RAC1 maintained the stemness of LM3 and MHCC-97H cells by

upregulating stemness transcription factors (Figure 6H). Western

blot experiments showed that overexpression of BMI1, CCR3,

CDC25C, CFL1, LDHA, and RAC1 could induce EMT (Figure 6I).

Together, these results imply that different hub genes are

involved in different processes that contribute to HCC progression.
Identification of candidate agents in high-
risk score patients

To provide better clinical recommendations, we calculated the

sensitivity score of common drugs in TCGA_LIHC patients using the

“OncoPredict” R package. We then calculated the Pearson correlation

between the drug sensitivity score and risk score. Based on a

significance level of p<0.05 and a correlation coefficient of cor>0.3

or cor<-0.6, we selected 14 anti-tumor drugs for horizontal lollipop

mapping (Figures 7A–C). Meanwhile, we utilized the CAMP

database to further predict potential small molecule compounds for

the treatment of high-risk group patients. Based on the lowest scores,

we identified the top 10 ranking compounds as PD-198306,

fenretinide, MK-2206, wortmannin, vemurafenib, WYE-125132,

BMS-754807, selumetinib, BGT-226 and GSK-269962 (Figure 7D).

However, it is important to note that further experimental validation

and in-depth studies are required to confirm the therapeutic potential

and efficacy of these compounds.
Discussion

HCC is a highly malignant cancer that requires immediate

investigation of new therapeutic strategies. Traditional first-line
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FIGURE 5

Evaluation of immune infiltration and immune escape. (A) The Estimate R package was used to calculate stromal, immune, and ESTIMATE scores.
(B, C) The box plot (B) showed the different levels of 22 immune cell subtypes, and the relative proportion of immune cells is shown by the
accumulation diagram (C), both in the CIBERSORT package. (D) The correlation between hub genes and immune cells. (E) The Venn plot displays
the 21 immune-related genes in high-risk samples. (F) The correlation heat map shows the correlation of 21 immune-related genes with 22 immune
cells. (G, H) The protein levels of PD-L1 in LM3 and MHCC-97H cells were measured after stimulation without or with 40 ng/mL CCL18 for 48h
(G), or transfection with BMI1, CCR3, CDC25C, CFL1, LDHA and RAC1 overexpression plasmids for 48h (H). *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.
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FIGURE 6

Effects of hub genes on proliferation, migration, invasion and stemness properties in HCC cells. (A) The correlations between six hub genes and
pathway score were analyzed using Spearman. The abscissa represents the distribution of gene expression, and the ordinate represents the
distribution of pathway score. The density curve on the right represents the trend in the distribution of pathway immune score, while the upper
density curve represents the trend in the distribution of gene expression. The value on the top represents the correlation p value, correlation
coefficient and correlation calculation method. (B) The overexpression efficiency of BMI1, CCR3, CDC25C, CFL1, LDHA and RAC1 overexpression
plasmid was assessed by RT-qPCR. (C, D) Proliferation of LM3 and MHCC-97H cells after transfection with BMI1, CCR3, CDC25C, CFL1, LDHA and
RAC1 overexpression plasmid for 48h was examined by CCK-8 assays (C) and EdU assays ((D), Scale bar:100 mm). (E, F) Migration (E) and invasion (F)
of LM3 and MHCC-97H cells were detected after transfection with BMI1, CCR3, CDC25C, CFL1, LDHA and RAC1 overexpression plasmid for 48h
were detected by Transwell assays. Scale bar:200 mm. (G) Sphere-formation abilities of LM3 and MHCC-97H cells were observed after transfection
with BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1 overexpression plasmids for 48 hours. Scale bar: 200 mm. (H) The expression of stemness-related
genes in LM3 and MHCC-97H cells was analyzed after transfection with BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1 overexpression plasmids for
48h. (I) The protein levels of EMT-related genes in LM3 and MHCC-97H cells were measured after transfection with BMI1, CCR3, CDC25C, CFL1,
LDHA, and RAC1 overexpression plasmids for 48h. All data are shown as the mean ± SD. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 by two-
tailed Student’s t-test.
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treatment drugs, such as Sorafenib and Lenvatinib, have only shown

slight improvements in OS, with an extension of approximately 2.8

and 4.4 months (3). Over the past five years, significant

advancements have been made in the field of immunotherapy,

specifically in ICIs. However, in advanced HCC patients,

monotherapy with ICIs has only demonstrated objective response

rates of 15-20%, without any significant improvement in OS.

Furthermore, specific biomarkers for this subgroup of patients

have yet to be identified (20). The tumor microenvironment of

HCC is characterized by a significant presence of non-tumor

stromal cells, including cancer-associated fibroblasts, endothelial

cells, TAMs, B cells, and T cells. These cells play crucial roles in the

progression of cancer (7). Among these cells, our particular focus

lies on the role of macrophages.

CCL18, also known as macrophage inflammatory protein 4

(MIP-4), pulmonary and activation-regulated chemokine (PARC),

dendritic cell chemokine 1 (DC-CK1), and alternative macrophage

activation-associated CC chemokine 1 (AMAC-1), belongs to the

family of CC chemokines and acts as a chemoattractant. CCL18 is

located on chromosome 17 in the human genome and shares the

highest amino acid identity (65%) with CCL3. It encodes a protein

consisting of 89 amino acids, with the mature active form
Frontiers in Oncology 13
comprising 69 amino acids without a terminal alanine at the C-

terminus (13, 21). In recent years, more and more studies have

revealed the existence of multiple subtypes within M1 and M2

macrophages, including further subdivisions of M2 macrophages

into M2a, M2b, M2c, and M2d subgroups (14). However, the

specific M2 macrophage subtype responsible for secreting CCL18

remains to be conclusively determined. The progression of cancer

necessitates evasion of immune surveillance, and CCL18, which is

secreted by M2 macrophages, serves as a hallmark of macrophage

activation. It acts as a chemotactic factor that promotes immune

suppression and immune escape, thereby facilitating tumor

development (13). Studies have demonstrated the crucial role of

CCL18 in the progression of fibrotic immune diseases (22) and

tumors. CCL18 has been shown to promote immunosuppressive

states and progression in esophageal squamous cell carcinoma (23),

multiple myeloma (24), osteosarcoma (25), ovarian cancer (26), and

renal cell carcinoma (27). In a word, the CCL18 signaling pathway

has demonstrated its prognostic significance in patients

with tumors.

Several gene prognostic models related to signaling pathways

have been reported in HCC, including STING pathway genes (28),

hypoxia-related and immune-associated genes (29), and chromatin
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FIGURE 7

Screening of small molecule compounds with potential therapeutic effects in high-risk group. (A) The lollipop chart shows the results of
OncoPredict R package according to p<0.05, cor>0.3 or cor<-0.6. (B) Potential drugs for the treatment of high-risk HCC patients. (C) Potentially
inappropriate drugs for the treatment of high-risk HCC patients. (D) The top 10 compounds with the highest negative scores according to CAMP.
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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organization-related genes (30). However, the biological functions

and prognostic impact of CCL18 signaling pathway genes in HCC

remain largely unknown. In this study, we acquired CCL18

signaling pathway-associated genes from the Wikipathway

website and obtained RNA-seq sequencing data of HCC from

publicly available databases such as TCGA, ICGC, and GEO. By

employing a diverse range of well-established bioinformatics

methodologies, we successfully identified six key genes (BMI1,

CCR3, CDC25C, CFL1, LDHA, RAC1) that have a substantial

impact on prognosis. Subsequently, we validated the independent

prognostic value of the expression of these genes in predicting the

prognosis of HCC patients through multivariate Cox regression

analysis. Furthermore, we utilized these genes to construct a

nomogram that enables the prediction of patients’ OS rates at 1-,

3-, and 5- years. In summary, these findings provide robust

evidence supporting the prognostic evaluation and personalized

treatment of HCC, thereby contributing to the enhancement of

patients’ survival rates and treatment efficacy. Additionally, we

analyzed the core protein network of highly expressed proteins in

the high-risk group and compared the differences in immune cell

infiltration between the high- and low-risk groups. The results

revealed a higher proportion of immune-inhibitory cells in the

high-risk group, suggesting that the overexpression of these hub

genes indeed induces immune suppression in tumors. In the

experimental section, we investigated the effects of exogenous

CCL18 on the biological functions of LM3 and MHCC-97H cells.

We observed that exogenous CCL18 promoted cell proliferation,

migration, invasion, and stemness. Additionally, by overexpressing

hub genes in the cell lines, we identified that BMI1, CCR3,

CDC25C, CFL1, LDHA, and RAC1 participated in promoting

different functions of HCC cells. Furthermore, we discovered that

both exogenous CCL18 and overexpression of CCR3, CDC25C,

CFL1, LDHA, and RAC1 could induce the expression of PDL1 in

the HCC cell lines, which is consistent with the occurrence of

immune suppression in HCC. However, the molecular processes

and regulatory mechanisms underlying these findings require

further investigation in future studies.

BMI1, a polycomb-group protein, is involved in the regulation

of embryonic development and DNA damage repair. It is also an

oncogene, with dysregulated expression frequently associated with

various cancers. H. Wang et al. discovered that exogenous CCL18

can promote the up-regulation of OCT4 and BMI1 mRNA and

protein expression (31). Moreover, up-regulation of BMI1

expression in HCC has been linked to its role in blocking the

INK4a/ARF locus, NF-kB signaling pathway, and TGFb2/SMAD

signaling axis, while simultaneously activating the Wnt/b-catenin
signaling axis, thereby promoting the development of HCC (32).

Inhibition of BMI1 has been shown to enhance immune checkpoint

blockade in CCA cells (33). Additionally, BMI1 has been implicated

in promoting breast cancer (34) and endometrial cancer (35).

The role of CCR3 in tumor cells is relatively limited, as it is

primarily highly expressed in inflammatory cells such as mast cells,

eosinophils, basophils, and Th2 cells. It plays a significant role in

inflammatory responses (36). CCL18 acts as a neutral CCR3
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antagonist. CCR3 exerts its functions through various ligands. In

breast cancer, it promotes cancer progression through the CCL5-

CCR3 axis (37). Compared to primary prostate tumors, CCR3

exhibits high expression in bone and visceral metastases,

potentially exerting its effects via the CCR3/CCL7 axis (38). In

renal cell carcinoma, CCR3 facilitates tumor proliferation and

metastasis through the CCL11/CCR3 axis (39).

CDC25C is one of the three isoforms of the CDC25 phosphatase

family, and it plays a crucial role in regulating the G2/M transition and

mediating DNA damage repair during cell division. Extensive research

has demonstrated that abnormal expression of CDC25C is associated

with the progression of various types of cancer (40). CFL1, a 166-amino

acid phosphoprotein, is one of the five components representing actin-

binding proteins. It regulates the polymerization and depolymerization

of F-actin and G-actin (41). Similarly, CFL1 also contributes to the

proliferation, invasion, and metastasis of malignant tumors (42–44).

The lactate dehydrogenase isoenzymes (LDH) are tetramers composed

of LDHA and LDHB, and their aberrant expression is often associated

with cellular metabolism and tumor progression. Chen et al. discovered

that the expression of LDHA was upregulated and LDHB was

downregulated in prostate cancer cells by exogenous CCL18 at both

mRNA and protein levels (45). In addition, LDHA can also serve as a

biomarker for various malignant tumors (46–48). RAC1, a small GTP-

binding protein, belongs to the Rac subfamily of the Rho GTPase

family, and it is involved in various biological functions, including

regulating cell migration, signal transduction, and promoting cell

polarization. Lihong Shi et al. discovered that elevated levels of

CCL18 promote lymph node metastasis and distant metastasis in

NSCLC patients. They demonstrated that CCL18 activates RAC1 to

regulate cellular migration and invasion, ultimately leading to

cytoskeletal remodeling in vitro (49). RAC1 has been extensively

discussed for its role in promoting proliferation, participating in

angiogenesis, facilitating tumor migration and invasion, as well as its

involvement in stemness in tumor cells (50).

Immunotherapy remains a promising trend for HCC patients in

the future. In our study, we found that exogenous CCL18, as well as

CCR3, CDC25C, CFL1, LDHA or RAC1 plasmid could promote the

production of PD-L1 protein in LM3 and MHCC-97H cells. This

suggests that immune suppression may occur as a result.

Furthermore, the high-risk group derived from the six hub genes

also exhibits a positive correlation with immune-suppressive cells

such as Treg cells.

Our study provides the first systematic elucidation of the six hub

genes in the CCL18 signaling pathway that impact the prognosis of

HCC patients. Additionally, we constructed a protein-protein

interaction network of key proteins in the high-risk group and

analyzed the immune cell infiltration in the high-risk group. These

findings contribute to our understanding of immune evasion genes

in HCC.

Our study has several limitations. Firstly, in terms of variable

selection, it would be advantageous to explore a range of machine

learning methods, such as random forest and support vector

machines, to enhance the accuracy of our analysis. Secondly,

among the identified hub genes, CDC25C, CFL1, and LDHA are
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primarily associated with abnormal physiological activities, such as

cytoskeletal dynamics, cellular respiration, and cell replication and

proliferation, rather than directly interacting with the CCL18

chemokine. Lastly, in our cellular experiments, we have primarily

focused on functional experiments related to gene overexpression.

To further deepen our understanding, future investigations should

include knockdown and rescue experiments.
Conclusion

In summary, our study conducted a comprehensive analysis of the

prognostic impact of six hub genes within the CCL18 signaling

pathway in HCC patients. Our investigation demonstrated that

exogenous CCL18 enhances key oncogenic processes in HCC cell

lines LM3 and MHCC-97H, including proliferation, migration,

invasion, and up-regulation of the immune-suppressive marker PD-

L1 protein. We also investigated the functions of six key genes,

revealing their potential involvement in liver cancer development.

We further identified 21 immune-related genes that exhibit strong

correlations with immune suppressive cells. Collectively, these findings

significantly contribute to our understanding of immune evasion

within the tumor microenvironment and the underlying oncogenic

processes in HCC patients.
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